Channels, Chases, & Challenges – New Physics at the LHC

Jürgen Reuter

Albert-Ludwigs-Universität Freiburg/University of Edinburgh

Talk, DESY, Hamburg, 23. June 2010

describes microcosm

(too well?)

The Standard Model of Particle Physics – Doubts

The Standard Model of Particle Physics – Doubts

- describes microcosm (too well?)
- 28 free parameters

- Form of the Higgs potential?

Hierarchy problem

chiral symmetry: $\delta m_f \propto v \ln(\Lambda^2/v^2)$

no symmetry protects Higgs from quantum corrections

$$\delta M_{H}^{2} \propto \Lambda^{2} \sim M_{\rm Planck}^{2} = (10^{19})^{2}\,{\rm GeV}^{2}$$

Open Questions

- Unification of all forces (?)
- Baryon asymmetry $\Delta N_B \Delta N_{\bar{B}} \sim 10^{-9}$ missing CP violation
- Flavour: three generations
- Tiny neutrino masses: $m_{
 u} \sim rac{v^2}{M}$
- Dark matter:
 - stable
 - weakly interacting
 - $m_{DM} \sim 100 \, \mathrm{GeV}$
- Quantum theory of gravity
- Cosmic inflation
- Cosmological constant

Ideas for New Physics since 1970

(1) New building blocks, sub structure

- Technicolor/Topcolor: Higgs bound state of strongly interacting particles

(2) Symmetry for the elimination of quantum corrections

- Supersymmetry: Spin-statistics \Rightarrow bosonic and fermionic corrections cancel each other
- Little-Higgs models: Global symmetries ⇒ corrections from particles of like statistics cancel each other

(3) Nontrivial space-time structure eliminates hierarchy

- Additional space dimensions: Gravitation appears only weak
- Noncommutative space-time: Space-time coarse-grained

(4) Ignoring the hierarchy

 Anthropic Principle: Parameters are the way they are, <u>because</u> we observe them

Ideas for New Physics since 1970

(1) New building blocks, sub structure

- Technicolor/Topcolor: Higgs bound state of strongly interacting particles

(2) Symmetry for the elimination of quantum corrections

- Supersymmetry: Spin-statistics \Rightarrow bosonic and fermionic corrections cancel each other
- Little-Higgs models: Global symmetries ⇒ corrections from particles of like statistics cancel each other

(3) Nontrivial space-time structure eliminates hierarchy

- Additional space dimensions: Gravitation appears only weak
- Noncommutative space-time: Space-time coarse-grained

(4) Ignoring the hierarchy

 Anthropic Principle: Parameters are the way they are, <u>because</u> we observe them

Little Higgs Models

Kilian/JRR PRD 70 (2004), 015004; Kilian/Rainwater/JRR PRD 71 (2005), 015008; PRD 74 (2006), 095003; Butenuth/JRR, 2010

- "Little Big Higgs": Higgs boson heavy (300 - 500 GeV)
- Extensive low-energy constraints
- Tiny neutrino masses in LHM
- General search strategy at the LHC
- Proposal of methods to distinguish model classes

- Prediction of new scalar particles: Pseudoaxions
- Light electroweak singlets
- Good discovery prospects at LHC
- Model building aspects: T parity and dark matter in generalized models

Little Higgs Models

Kilian/JRR PRD 70 (2004), 015004; Kilian/Rainwater/JRR PRD 71 (2005), 015008; PRD 74 (2006), 095003; Butenuth/JRR, 2010

- "Little Big Higgs": Higgs boson heavy (300 - 500 GeV)
- Extensive low-energy constraints
- Tiny neutrino masses in LHM
- General search strategy at the LHC
- Proposal of methods to distinguish model classes

- Prediction of new scalar particles: Pseudoaxions
- Light electroweak singlets
- Good discovery prospects at LHC
- Model building aspects: T parity and dark matter in generalized models

E_6 SUSY Grand Unification

Supersymmetry: consistent extrapolation to high scales

- \Rightarrow two Higgs doublets H^u, H^d
- ⇒ TeV-scale SM-superpartners

Bottom-Up Approach: just MSSM

- Unifies Higgs and matter fields
- Ansatz: all new particles in the spectrum at TeV scale

$$Q_{L} = (\mathbf{3}, \mathbf{2})_{\frac{1}{6}, Q'_{Q}}$$

$$u^{c} = (\bar{\mathbf{3}}, \mathbf{1})_{-\frac{2}{3}, Q'_{u}}$$

$$d^{c} = (\bar{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}, Q'_{d}}$$

$$H^{u} = (\mathbf{1}, \mathbf{2})_{\frac{1}{2}, Q'_{Hu}}$$

$$H^{d} = (\mathbf{1}, \mathbf{2})_{-\frac{1}{2}, Q'_{Hd}}$$

$$S = (\mathbf{1}, \mathbf{1})_{0, Q'_{S}} \neq 0$$

$$D = (\mathbf{3}, \mathbf{1})_{-\frac{1}{3}, Q'_D}$$
$$D^c = (\bar{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}, -Q'_D}$$

JR/Kilian, PLB 642 (2006), 81

Intermediate Pati-Salam symmetry

JRR/Kilian, PLB 642 ('06), 81

- Additional particles spoil simple unification
- Gauge couling unification below Λ_{Planck} due to intermediate

 $SU(3/4) \times SU(2)_L \times SU(2)_R[\times U(1)_{\chi}]$ Pati-Salam symmetry at $\sim 10^{15-16} \text{GeV}$

- SU(2)_R and SU(2)_L: identical particle content ⇒ running
- Crossing of SU(3/4) and SU(2)_{L/R} couplings determines E₆ breaking scale

$$T^{15}_{SU(4)} \propto \frac{B-L}{2}$$

$$\blacktriangleright Y = \frac{B-L}{2} + T_R^3$$

 $\begin{array}{c|c} \bullet & U(1) \text{ Matching-Bedingung} \\ \frac{1}{g_Y^2} = \frac{2}{5} \frac{1}{g_{B-L}^2} + \frac{3}{5} \frac{1}{g_R^2} \end{array} \end{array}$

• Integrating out ν^c (see-saw)

 Flavour symmetry forbids diquark couplings

Effects by U(1) mixing

- Braam/Knochel/JRR, JHEP 1006:013; King et al., 2009
- Two U(1) factors below the intermediate scale
- Kinetic mixing: non-rational coefficients (gauge couplings)

$$\mathcal{L} = i g_i Q_i^a A_i^{\mu} \bar{\psi}^a \gamma_{\mu} \psi^a - \frac{1}{4} F_i^{\mu\nu} \delta_{ij} F_{\mu\nu,j} - \frac{1}{4} F_i^{\mu\nu} \Delta Z_{ij} F_{\mu\nu,j}.$$

Effects through the running:

Problems and *E*₆/Pati-Salam breaking

JRR et al., 2010

- *E*₆ superpotential vanishes identically ⇒ *E*₆ operators generate PS superpotential Power suppression: top Yukawa ?
- discrete symmetry to discriminate lepto-/diquark couplings/H parity violate GUT multiplet structure
- strong constraints from perturbativity above Λ_{PS}
- Difficulties to find irreps for PS breaking
 - 27, 351, and 351' break E_6 to rank 5 $U(1)_{\chi}$ broken, no quartic singlet potential But: construction of PS-NMSSM possible

Kilian/Knochel/JRR, 2010

- No rank reduction: adjoint breaking
- $\blacktriangleright \ \, \text{Breaking with} \langle (\mathbf{27})(\overline{\mathbf{27}})\rangle \text{ or } \langle \mathbf{27}\rangle \ \, \overline{\mathbf{27}}\rangle \qquad \mathbf{27}\times\overline{\mathbf{27}}=\mathbf{1}+\mathbf{78}+\mathbf{650}$
- 650 smallest irrep for $E_6 \rightarrow G_{PS} \times U(1)$
- Possible to generate superpotential which does the breaking and allows for leptoquark couplings

1/26 J. Reuter Channels, Chases & C

Alternative: Orbifold Breaking

Braam/Knochel/JRR, JHEP 1006:013

- 5D Orbifolds excluded:
 - either doublet-triplet splitting or no leptoquark pheno
 - or no protection against proton decay \Rightarrow 6DOrbifolds
- Consider: $\mathbb{R}^4\times(\mathbb{R}^2/\Gamma),$ Γ one of 17 crystallographic groups
- Use shifts of the root lattice of the bulk E_6 and discrete Wilson lines on the tori
- $E_6 \supset SU(3) \times SU(2)^2 \times U(1)^2$ breakings by $\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4$.
- H parity: at least one fixed point, which distinguishes Higgs/matter
- use \mathbb{Z}_3 symmetry: simplest examples

- SUSY conserved by non-trivial embedding of $SU(2)\ {\rm R}$ symmetry

Model Building \Rightarrow Phenomenology

Scan of PSSSM parameter space

Braam/JRR/Wiesler, 0909.3081;

Braam/Horst/Knochel/JRR, 2010

- # free parameters ~ $\mathcal{O}(100)$, additional assumptions:
 - Unified soft-breaking terms Flavour structure
 - \Rightarrow Reduction to 14 parameter
- Further constraints:
 - (1) Experimental search limits for new particles
 - (2) Running couplings perturbative up to Λ_{E_6}
 - (3) Scalar (non-Higgs) mass terms positive

 $(\Leftrightarrow \mathsf{No} \mathsf{ false vacuum})$

- 14-dim. parameter space
- \Rightarrow Grid scan: $\rightarrow 10^{28}$ points
- Investigation per point (RGE, Higgs potential minimization, Calculation of masses) ~ 5 s
- Lsg.: Monte-Carlo Markov chain through the parameter space
 - ⇒ Effective search for relevant parameter tuples

Scan of PSSSM parameter space

Braam/JRR/Wiesler, 0909.3081;

Braam/Horst/Knochel/JRR, 2010

- # free parameters ~ $\mathcal{O}(100)$, additional assumptions:
 - Unified soft-breaking terms Flavour structure
 - \Rightarrow Reduction to 14 parameter
- Further constraints:
 - (1) Experimental search limits for new particles
 - (2) Running couplings perturbative up to Λ_{E_6}
 - (3) Scalar (non-Higgs) mass terms positive

 $(\Leftrightarrow \mathsf{No} \text{ false vacuum})$

- 14-dim. parameter space
- \Rightarrow Grid scan: $\rightarrow 10^{28}$ points
- Investigation per point (RGE, Higgs potential minimization, Calculation of masses) ~ 5 s
- Lsg.: Monte-Carlo Markov chain through the parameter space
 - ⇒ Effective search for relevant parameter tuples

- ▶ Vanishing 1-loop QCD β function \Rightarrow light gluino
- Higgs-/neutralino sector different because of admixture of singlet superfield
- TeV-scale Z'
- Flavoured Higgs sector: Unhiggses, Unhiggsinos
- Leptoquarks/Leptoquarkinos

New particles at the Large Hadron Collider

LHC @ CERN: since march 2010 7 TeV pp collider $\sqrt{s} = 14$ TeV

WHIZARD

Kilian/Ohl/JRR + PhDs, hep-ph/0102195, 0708.4233

- Acronym: W, HIggs, Z, And Respective Decays (deprecated)
- Fast adaptive multi-channel Monte-Carlo integration
- Very efficient phase space and event generation
- Optimized matrix elements
- Recent version: 2.0.2 (18.5.2010) http://projects.hepforge.org/whizard und http://whizard.event-generator.org
- Parton shower (k^{\perp} ordered and analytic)
- no hadronization
- Underlying Event: pre-release (for 2.1)
- Arbitrary processes: matrix element generator (O'Mega)
- BSM: see next page
- New features: ME/PS matching, cascades, versatile new steering syntax, WHIZARD as shared library

WHIZARD – Overview over BSM models Very high level of complexity:

- $e^+e^- \rightarrow t\bar{t}H \rightarrow b\bar{b}b\bar{b}jj\ell\nu$ (110,000 diagrams)
- ▶ $e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8j$ (12,000,000 diagrams)
- ▶ $pp \rightarrow \ell\ell + nj, n = 0, 1, 2, 3, 4, \dots$ (2,100,000 diagrams with 4 Jets + flavours)
- ▶ $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 bbbb$ (32,000 diagrams, 22 color flows, ~ 10,000 PS channels)
- ▶ $pp \rightarrow VVjj \rightarrow jj\ell\ell\nu\nu$ incl. anom. TGC/QGC
- Test case $gg \rightarrow 9g$ (224,000,000 diagrams)

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	-	QCD
Standard model	SM_CKM	SM
SM with anomalous couplings	SM_ac_CKM	SM_ac
SM with anomalous top couplings	-	SM_top
SM with K matrix	-	SM_KM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	-	MSSM_Grav
NMSSM	-	NMSSM
extended SUSY models	-	PSSSM
Littlest Higgs	-	Littlest
Littlest Higgs with ungauged $U(1)$	-	Littlest_Eta
Littlest Higgs with T parity	-	Littlest_Tpar
Simplest Little Higgs (anomaly-free)	-	Simplest
Simplest Little Higgs (universal)	-	Simplest_univ
UED	-	UED
3-Site Higgsless Model	-	Threeshl
Noncommutative SM (inoff.)	-	NCSM
SM with Z'	-	Zprime
SM with gravitino and photino	-	GravTest
Augmentable SM template	-	Template

easy to implement new models (FeynRules interface)

Predictions from E_6 GUTs for LHC

Braam/JRR/Wiesler,

0909.3081

R

- ► Simulations for the *E*⁶ model with WHIZARD
- Implementation of leptoquark/leptoquarkino + Higgs/weak ino sector
- First analyses: BRs, cross sections for scalar leptoquarks, S/B
- In progress: leptoquarkino pheno

C	uts	Background	$m_D =$	= 0.6 TeV	$m_D =$	= 0.8 TeV	$m_D =$	= 1.0 TeV
p_T	$M_{\ell\ell}$	N_{BG}	N_1	S_1/\sqrt{B}	N_2	S_2/\sqrt{B}	N_3	S_3/\sqrt{B}
50	10	413274	64553	93	14823	23	4819	7
100	150	3272	40749	194	10891	92	3767	45
200	150	198	12986	113	5678	74	2405	47

Predictions from E_6 GUTs for LHC

Braam/JRR/Wiesler,

0909.3081

R

- ► Simulations for the *E*⁶ model with WHIZARD
- Implementation of leptoquark/leptoquarkino + Higgs/weak ino sector
- First analyses: BRs, cross sections for scalar leptoquarks, S/B
- In progress: leptoquarkino pheno

C	uts	Background	$m_D =$	= 0.6 TeV	$m_D =$	= 0.8 TeV	$m_D =$	= 1.0 TeV
p_T	$M_{\ell\ell}$	N_{BG}	N_1	S_1/\sqrt{B}	N_2	S_2/\sqrt{B}	N_3	S_3/\sqrt{B}
50	10	413274	64553	93	14823	23	4819	7
100	150	3272	40749	194	10891	92	3767	45
200	150	198	12986	113	5678	74	2405	47

Braam/JRR/Wiesler, 0909.3081

Proton Decay in the PSSSM

Mallot/JRR, 2010

- Superpotential (and soft breaking) do not induce proton decay
- Study exchange of E₆ gauge bosons/gauginos
- Technical steps (top-down):
 - 1. Group-theoretical weights from Clebsch-Gordan decomposition Horst/Mallot/JRR, 2010
 - 2. Calculation of the proton decay Wilson coefficients at Λ_{GUT}
 - 3. Short-distance (SUSY) RG factor
 - 4. Matching to SM dim. 6 Fermi operators
 - 5. Long-distance (SM/QCD) RG factor
 - 6. Matching to mesonic/baryonic operators (similar to chiral pert. theory)
 - 7. Calculation of the baryon decay matrix element and the width
- \Rightarrow very conservative estimate:

$$1/\Gamma_{tot}(p \rightarrow X) \quad \approx \quad 10^{40} - 10^{46} \text{ years}$$

Summary/Outlook SUSY GUTs

- Grand Unified Theories with intermediate breaking
- Viable paths: $E_6 \rightarrow SU(3/4) \times SU(2)_L \times SU(2)_R \times U(1)^2$
- Possible breaking scenarios: Higgs vs. Orbifold boundary conditions
- Proton decay beyond experimental reach
- Direct detection through chiral exotics at LHC
- Interesting, but intricate pheno at LHC
- Embedding in heterotic string theory
- Flavour important: continous vs. discrete symmetries
- Dark matter cocktail: complex pheno
- Open questions: SUSY breaking mechanism, flavour, see-saw

ALTERNATIVE ELECTROWEAK SYMMETRY BREAKING

Resonances in VV scattering

Alboteanu/Kilian/JRR, JHEP 0811:010

Model-independent description for LHC, respect weak isospin ($\rho \approx 0$):

	J = 0	J = 1	J = 2
I = 0	σ^0 (Higgs ?)	$\omega^0 (\gamma'/Z'?)$	a^0 (Graviton ?)
I = 1	π^{\pm} , π^{0} (2HDM ?)	$ ho^{\pm}, ho^{0} \; (W'/Z' \; ?)$	t^{\pm}, t^0
I = 2	$\phi^{\pm\pm},\phi^{\pm},\phi^{0}$ (Higgs triplet ?)	—	$f^{\pm\pm}, f^{\pm}, f^0$

LHC access limited: 1. resonance correct, guarantee unitarity

K-Matrix unitarization

$$\mathcal{A}_K(s) = \mathcal{A}(s)/(1 - i\mathcal{A}(s))$$

- Low-energy theorem (LET): s/v²
- K-matrix ampl.: $|\mathcal{A}(s)|^2 \stackrel{s \to \infty}{\to} 1$
- Poles ±iv: M₀, Γ large

- Unitarization in each spin-isospin eigen-channel
- breaks crossing invariance
- Explicit "time arrow" in WHIZARD

3

Outlook (I)

ONGOING/FUTURE PROJECTS

- SUSY GUTs (we had this)
- LHC Pheno / WHIZARD
 - QCD features: BLHA, automatic dipole subtraction, FeynArts/LoopTools Interface, CKKW matching, parton shower development, GOLEM interface
 - SM/BSM projects: new model implementation/validation, LHC searches
 - LHC cascades: strategies for mass/spin determination
 - highly-boosted particles at LHC
- Pheno-driven model building
 - Theoretical aspects of Little Higgs/Technicolor models
 - Dark matter models

Outlook (II)

- LHC: new era of physics is beginning
- New particles, new symmetries, new interactions
- A lot to do: Model building and phenomenology
- Interesting times ahead!

Outlook (II)

- LHC: new era of physics is beginning
- New particles, new symmetries, new interactions
- A lot to do: Model building and phenomenology
- Interesting times ahead!

"Though this be madness, yet there is method in 't.". - (Hamlet, Act II, Scene II).