

Silicon detector alignment study review

POL analysis meeting 15th December 2004

Catherine Fry
Imperial College London

Outline

Data

- x-η slope
- fit beam ellipse to silicon data

· MC

- tuning parameters
- vary cal angle w.r.t. beam for fixed silicon angle
- Compare data and MC to extract siliconcalorimeter angle

x-η distribution

- This distribution should be flat if silicon and calorimeter are perfectly aligned
- But we see a slope of -1.3 mm / η \Rightarrow suggests some angle between the two detectors
- Will use MC to find which angles for silicon and calorimeter w.r.t.
 beam give the same slope

Beam tilt measurements

- Measure beam tilt w.r.t. silicon detector
- Fit 2D ellipse to backgroundsubtracted data
- See that beam tilt changes over time:

1 st March	6.8 ± 0.3 °		
7 th March	4.6 ± 0.1 °		
24 th May	3.0 ± 0.1 °		
8 th July	3.4 ± 0.3 °		
9 th July	3.4 ± 0.5 °		
12 th July	3.4 ± 0.3 °		
13 th July	4.7 ± 0.4 °		
15 th July	3.5 ± 0.6 °		

3 rd August	4.5 ± 0.3 °		
4 th August	4.7 ± 0.4 °		
5 th August	4.1 ± 0.4 °		
6 th August	4.3 ± 0.4 °		
10 th -11 th August	3.5 ± 0.2 °		
11 th August	3.3 ± 0.3 °		
11 th August	3.4 ± 0.2 °		

MC - beam tilt dependence

- Keep silicon and cal angles w.r.t. beam equal and vary them together
- Plot $x-\eta$ slope as function of beam tilt
- Seems simulating a beam tilt of a few degrees can have relatively large effect on x-η slope (compared to data value of -1.3)

MC - DILU dependence

- Plot $x-\eta$ slope as a function of DILU (fraction of light penetrating into opposite cal plate up/down)
- Find that, given the size of errors, DILU has no significant effect on the $x-\eta$ slope (compared to data value of -1.3)
- Vary DILU until find value whose η distribution best matches the data
 - DILU = 0.05
- (N.B. should really do this whilst reoptimising other parameters)

Silicon Alignment Study

MC - polarisation dependence

• Seems P_y has no effect on x- η slope (as expected) so no need to simulate the exact value for each data sample for the rotation study

Energy (u+d and l+r)

pink = data

blue = mc

Silicon Alignment Study

Asymmetry (u/d and l/r)

Number of silicon clusters

Silicon cluster position

Silicon cluster charge

Catherine Fry

Silicon Alignment Study

The measurement

- In MC fix silicon angle w.r.t. beam to that measured by ellipse fit for each data sample
- Vary cal angle w.r.t. beam and simulate 200k events at each angle
- Measure $x-\eta$ slope from MC for each call angle
- Plot x-η against cal angle and fit a straight line
- From fit, calculate which cal angle matches the x-η slope from the data

Catherine Fry

Silicon Alignment Study

Si-Cal angle

				•		
Date	Beam tilt / °	Cal angle / °	Angle between silicon and cal / $^{\circ}$			
1 st Mar	6.8 ± 0.4	1.7 ± 0.2	4.4 ± 0.5			
7 th Mar	4.6 ± 0.2	1.9 ± 0.1	2.7 ± 0.3			
24 th May	3.0 ± 0.2	1.4 ± 0.1	1.8 ± 0.2			
8 th July	3.4 ± 0.3	1.2 ± 0.2	2.2 ± 0.3			
9 th July	3.4 ± 0.5	1.9 ± 0.2	1.5 ± 0.6			
12 th July	3.4 ± 0.3	1.5 ± 0.2	1.9 ± 0.4			
13 th July	4.7 ± 0.4	1.9 ± 0.2	2.8 ± 0.4	aver	age =	
15 th July	3.5 ± 0.6	1.4 ± 0.2	2.2 ± 0.6	22.	010	
3 rd August	4.5 ± 0.3	2.1 ± 0.2	2.4 ± 0.3	2.2 ±	· 0.4 °	
4 th August	4.7 ± 0.4	1.9 ± 0.2	2.8 ± 0.4			
5 th August	4.1 ± 0.4	1.9 ± 0.2	2.1 ± 0.4			
6 th August	4.3 ± 0.4	1.7 ± 0.2	2.6 ± 0.4			
10 th -11 th August	3.5 ± 0.2	1.3 ± 0.2	2.2 ± 0.3			
11 th August	3.3 ± 0.3	1.5 ± 0.2	1.8 ± 0.3			
11 th Aug	3.1 ± 0.2	1.5 ± 0.1	1.8 ± 0.3			

Conclusions

- Made 15 measurements of misalignment angle between silicon and calorimeter
- Average angle = 2.2 ± 0.4 °
- Not yet had time to compare ellipse-fit method of measuring beam tilt with the laser scan method