Silicon detector
 alignment study review

POL analysis meeting
$15^{\text {th }}$ December 2004

Catherine Fry
Imperial College London

Outline

- Data
- $x-\eta$ slope
- fit beam ellipse to silicon data
- MC
- tuning parameters
- vary cal angle w.r.t. beam for fixed silicon angle
- Compare data and MC to extract siliconcalorimeter angle

$x-\eta$ distribution

Compton only
August 11 ${ }^{\text {th }}$

- This distribution should be flat if silicon and calorimeter are perfectly aligned
- But we see a slope of $-1.3 \mathrm{~mm} / \eta \rightarrow$ suggests some angle between the two detectors
- Will use MC to find which angles for silicon and calorimeter w.r.t. beam give the same slope

Beam tilt measurements

- Measure beam tilt w.r.t. silicon detector
- Fit 2D ellipse to backgroundsubtracted data
- See that beam tilt changes over time:

$1^{\text {st }}$ March	$6.8 \pm 0.3^{\circ}$
$7^{\text {th }}$ March	$4.6 \pm 0.1^{\circ}$
$24^{\text {th }}$ May	$3.0 \pm 0.1^{\circ}$
$8^{\text {th }}$ July	$3.4 \pm 0.3^{\circ}$
$9^{\text {th }}$ July	$3.4 \pm 0.5^{\circ}$
$12^{\text {th }}$ July	$3.4 \pm 0.3^{\circ}$
$13^{\text {th }}$ July	$4.7 \pm 0.4^{\circ}$
$15^{\text {th }}$ July	$3.5 \pm 0.6^{\circ}$

$3^{\text {rd }}$ August	$4.5 \pm 0.3^{\circ}$
$4^{\text {th }}$ August	$4.7 \pm 0.4^{\circ}$
$5^{\text {th }}$ August	$4.1 \pm 0.4^{\circ}$
$6^{\text {th }}$ August	$4.3 \pm 0.4^{\circ}$
$10^{\text {th }}-11^{\text {th }}$ Augus t	$3.5 \pm 0.2^{\circ}$
$11^{\text {th }}$ August	$3.3 \pm 0.3^{\circ}$
$11^{\text {th }}$ August	$3.4 \pm 0.2^{\circ}$

MC - beam tilt dependence

- Keep silicon and cal angles w.r.t. beam equal and vary them together
- Plot $x-\eta$ slope as function of beam tilt

Slope vs. beam tilt (dilu $=0.04$)

- Seems simulating a beam tilt of a few degrees can have relatively large effect on $x-\eta$ slope (compared to data value of -1.3)

MC - DILU dependence

- Plot $x-\eta$ slope as a function of DILU (fraction of light penetrating into opposite cal plate - up/down)
- Find that, given the size of errors, DILU has no significant effect on the $x-\eta$ slope (compared to data value of -1.3)
- Vary DILU until find value whose η distribution best matches the data
- DILU = 0.05
- (N.B. should really do this whilst reoptimising other parameters)

Silicon Alignment Study

MC - polarisation dependence

- Seems Py has no effect on $x-\eta$ slope (as expected) so no need to simulate the exact value for each data sample for the rotation study

Energy (up + down)

Energy / GeV
Silicon Alignment Study

Asymmetry (u/d and I/r)

Left-right asymmetry

Catherine Fry
Silicon A Alignment Study

Number of silicon clusters

Number of clusters in \mathbf{x}

Silicon cluster position

Single cluster distribution in x

Single cluster distribution in y

Silicon cluster charge

Single cluster charge in x

Single cluster charge in y

The measurement

- In MC fix silicon angle w.r.t. beam to that measured by ellipse fit for each data sample
- Vary cal angle w.r.t. beam and simulate 200k events at each angle
- Measure $x-\eta$ slope from MC for each cal angle
- Plot $x-\eta$ against cal angle and fit a straight line
- From fit, calculate which cal angle matches the $x-\eta$ slope from the data

Catherine Fry
Silicon Alignment Study
13

Si-Cal angle

Date	Beam tilt $/^{\circ}$	Cal angle ${ }^{\circ}$	Angle between silicon and cal $/{ }^{\circ}$
$1{ }^{\text {st }}$ Mar	6.8 ± 0.4	1.7 ± 0.2	4.4 ± 0.5
$7^{\text {th }}$ Mar	4.6 ± 0.2	1.9 ± 0.1	2.7 ± 0.3
$24^{\text {th }}$ May	3.0 ± 0.2	1.4 ± 0.1	1.8 ± 0.2
$8^{\text {th }}$ July	3.4 ± 0.3	1.2 ± 0.2	2.2 ± 0.3
$9^{\text {th }}$ July	3.4 ± 0.5	1.9 ± 0.2	1.5 ± 0.6
$12^{\text {th }}$ July	3.4 ± 0.3	1.5 ± 0.2	$1.9 \pm 0.4 \quad \square$
$13^{\text {th }}$ July	4.7 ± 0.4	1.9 ± 0.2	2.8 ± 0.4 aver
$15^{\text {th }}$ July	3.5 ± 0.6	1.4 ± 0.2	2.2 ± 0.6
$3^{\text {rd }}$ August	4.5 ± 0.3	2.1 ± 0.2	$2.4 \pm 0.3 \quad 2.2 \pm$
$4^{\text {th }}$ August	4.7 ± 0.4	1.9 ± 0.2	2.8 ± 0.4
$5^{\text {th }}$ August	4.1 ± 0.4	1.9 ± 0.2	2.1 ± 0.4
$6^{\text {th }}$ August	4.3 ± 0.4	1.7 ± 0.2	2.6 ± 0.4
$10^{\text {th }}$ - $11^{\text {th }}$ August	3.5 ± 0.2	1.3 ± 0.2	2.2 ± 0.3
$11^{\text {th }}$ August	3.3 ± 0.3	1.5 ± 0.2	1.8 ± 0.3
$11^{\text {th }}$ Aug	3.1 ± 0.2	1.5 ± 0.1	1.8 ± 0.3

Conclusions

- Made 15 measurements of misalignment angle between silicon and calorimeter
- Average angle $=2.2 \pm 0.4^{\circ}$
- Not yet had time to compare ellipse-fit method of measuring beam tilt with the laser scan method

