Silicon detector alignment study update
 POL analysis meeting
 $17^{\text {th }}$ November 2004

Catherine Fry

Imperial College London

Outline of studies

- Data studies:
- check beam tilt from four data sets
- subtract background and measure $x-\eta$ slope
- MC studies:
- use newest version of tpolmc
- varying silicon angle w.r.t. beam
- varying silicon AND cal angle TOGETHER w.r.t. beam (i.e. changing beam tilt)
- varying parameter "DILU" - fraction of light penetrating into opposite cal plate (only up/down)
- varying cal angle w.r.t. beam - fixed silicon angle
- Compare mc with data:
- for cal and silicon quantities

Beam tilt measurements

- Use same four data sets as Yongdok
- Subtract background by normalising laser on and laser off data to tail of energy distribution
- Fit 2-D ellipse to silicon y-x plot for $\mathrm{pc}=0$ and 1 and extract beam tilt w.r.t. silicon:

- Seems that the beam tilt varies with time

$\boldsymbol{\alpha} /^{\circ}$	$\mathbf{p c}=\mathbf{0}$	$\mathbf{p c}=\mathbf{1}$
$\mathbf{1}^{\text {st }}$ March	6.8 ± 0.3	6.8 ± 0.3
$\mathbf{7}^{\text {th }}$ March	4.5 ± 0.1	4.7 ± 0.1
$\mathbf{2 4}^{\text {th }}$ May	3.1 ± 0.1	2.9 ± 0.1
$\mathbf{1 1}^{\text {th }}$ August	3.4 ± 0.2	2.9 ± 0.2

Data: $x-\eta$

Laser on

Compton only

- Slope should be zero if no angle between silicon and cal
- Want to compare slope with mc to determine angle
- Why such high \times for extreme η in Compton distribution?
- Same thing happens in Compton y - η distribution (i.e. high y values for extreme η bins)
- Could it be due to low stats in extreme η bins and bad background subtraction?
Catherine Fry

MC: varying silicon angle

- Same idea as before:
- rotate silicon angle w.r.t. beam until find $x-\eta$ slope which matches the slope measured in the backgroundsubtracted data

- Now with newer version of tpolmc, cal angle $=0.06^{\circ}$, $\operatorname{DILU}=0.04$, generate 200k events at many silicon angles from -30.0° to 5.0°
- Find slope that matches that in data gives silicon angle $=-21^{\circ}$ - still crazy!
- But, have not yet accounted for possible beam tilt...

MC: varying beam tilt

- Keep silicon and cal angles w.r.t. beam equal and vary them together to simulate change in beam tilt
- Simulate 200k events at silicon/cal angles (beam tilt) from -5.0° to $+5.5^{\circ}$
- Plot $x-\eta$ slope as function of beam tilt
- Seems simulating beam tilt of few degrees can have relatively large effect on $x-\eta$ slope (compared to data value of -1.3)
Catherine Fry
Silicon Alignment Study

MC: varying DILU - I

- Want to find what is best value for DILU (fraction of light penetrating into opposite cal plate - up/down)
- Simulate 200k events at silicon angle $=0.0^{\circ}$ and cal angle $=0.06^{\circ}$ and vary DILU from 0.00 to 0.24
- Find value of DILU doesn'† have a huge effect on $x-\eta$ slope (compared to data value of -1.3)

MC: varying DILU - II

- Compare mc η distributions from different DILU values with background-subtracted data η distribution normalised to the mc (August $11^{\text {th }}$)
- Subtract data from mc histograms and find which value of DILU gives best match:

MC: accounting for beam tilt

- Will account for beam tilt by fixing silicon angle $=3.1^{\circ}$ (from ellipse fit to data on $11^{\text {th }}$ August), then vary cal angle from 0.0° to 4.0°, with DILU $=0.10$
- Plot $x-\eta$ vs. cal angle and fit straight line
- Cal angle which gives same $x-\eta$ slope as data is $1.5 \pm 0.1^{\circ}$
- Implies $1.6 \pm 0.2^{\circ}$ between cal and silicon (3.1-1.5 = 1.6°)

Slope vs. cal angle (dilu $=0.10$ silicon angle $=3.1$ degrees)

Cal-Si angle from four dates

- Compare data: $1^{\text {st }}$ Mar, $7^{\text {th }}$ Mar, $24^{\text {th }}$ May and $11^{\text {th }}$ Aug
- Use the following procedure for all samples:
- measure $\times-\eta$ slope
- measure beam tilt from silicon $x-y$ ellipse fit
- simulate mc samples with silicon angle set to beam tilt and vary cal angle
- plot mc $x-\eta$ slope vs. cal angle and find which cal angle matches $x-\eta$ slope in data

Date	Beam tilt $/{ }^{\circ}$	Cal angle $/{ }^{\circ}$	Angle between cal and silicon $/{ }^{\circ}$
$1^{\text {st }}$ Mar	6.8 ± 0.4	1.7 ± 0.2	5.1 ± 0.4
$7^{\text {th }}$ Mar	4.6 ± 0.2	1.9 ± 0.1	2.7 ± 0.2
$2^{\text {th }}$ May	3.0 ± 0.2	1.4 ± 0.1	1.6 ± 0.2
${11^{\text {th }} \text { Aug }}{ }^{\circ}$	3.1 ± 0.2	1.5 ± 0.1	1.6 ± 0.2

Catherine Fry
Silicon Alignment Study

Comparing mc with data

- Use mc sample:
- 200k events
- silicon angle $=0.0^{\circ}$
- calo angle $=0.06^{\circ}$
- DILU = 0.10
- Subtract background from data and normalise to me distributions

Energy: u/d and I/r

Energy (left + right)

Catherine Fry
Silicon Alignment Study

Cal asymmetry: u/d and I/r
 Left-right asymmetry

Si cluster position: x and y

Cluster distribution in x

Catherine Fry
Silicon Alignment Study

Si number clusters: x and y

Number of clusters in y

Si cluster chg: x and y

Cluster charge in x

Cluster charge in y

Catherine Fry
Silicon Alignment Study

Summary

- In silicon data beam tilt seems to vary over time
- Measure a slope in $x-\eta$ distribution \rightarrow some angle between cal and silicon
- Just varying silicon angle in the mc and keeping cal fixed to 0.06° $\rightarrow-21^{\circ}$ between silicon and cal! Crazy...
- Investigate beam tilt effects by varying cal and silicon angles together in mc by few degrees \rightarrow produces large change in $x-\eta$ slope
- Varying DILU has small effect on $x-\eta$ slope
- $\operatorname{DILU}=0.10$ gives η distribution which best matches data
- Accounting for beam tilt in $\mathrm{mc} \boldsymbol{\rightarrow} 1.6$ to 5.1° between silicon and cal from four data samples
- See some differences in both cal and silicon quantities between mc and data

Future plans

- Think about silicon background subtraction in extreme η regions
- Estimate additional error on cal-Si angle from the error on beam tilt by changing beam tilt angle in mc by small amounts
- Try to understand differences between mc and data and repeat comparison with more 'realistic' angles for silicon and cal in mc

