Silicon detector alignment study

POL analysis meeting
3rd November 2004

Catherine Fry

Imperial College London

Outline of study

- If calorimeter and silicon perfectly aligned:
- $x_{\text {si }}$ should be flat plotted against $\eta_{\text {cal }}$
- Plot $x_{s i}-\eta_{\text {cal }}$ distribution - this is not flat!
- Convert $\eta_{\text {cal }}$ to $y_{\text {cal }}$ using $y(\eta)$
- Then measure slope of $y_{c a l}-x_{s i}$ distribution and calculate angle between silicon and calorimeter
- Also generated MC with range of angles between Si and cal and looked for which angle had same slope in $x_{S i}-\eta_{\text {cal }}$ as the data

Silicon data: $x-\eta$

- Laser on and nclusx=1 and no cut on energy
- Fit straight line: $-0.6<\eta<0.6$

Catherine Fry
Silicon Alignment Study

Convert η to y and calc. tilt

- To convert η to $y_{\text {cal }}$ use:
$-\lg =\ln ((1+\eta) /(1-\eta))$
$-y(\eta)=y 0+\lg \left(P_{0}+P_{1}^{*} \lg ^{2}+P_{2}{ }^{\star} \lg ^{4}+P_{3}^{*} \lg ^{6}\right)$
- Use range: $-0.9<\eta<0.9$

Not yet calculated errors properly

MC simulation

- Simulate 100k or 200k events at silicon angles between $\pm 45^{\circ}$ w.r.t. lepton beam
- Leave calorimeter angle set to 0.06° w.r.t. lepton beam
- For each Si angle: fit straight line to $x-\eta$ profile with nclus $x=1$ for $-0.6<\eta<0.6$
- Plot gradient of fit vs. angle...

MC results

angle of Si w.r.t. lepton beam
Catherine Fry Silicon Alignment Study

Summary and future plans

- Converting η to $y_{\text {cal }}$ using $y(\eta)$ suggests 9.6° (sign?) between calorimeter and silicon x-axes
- Using MC to find silicon angle which best matches the $x-\eta$ slope from the data suggests -21° between silicon and the lepton beam
- Clearly these two do not agree and seem too large
- Want to consider:
- Could the beam tilt (measured to be $\sim 5^{\circ}$ with ellipse fitting method) be having an effect? Is this in the simulation?
- Can we really calculate $y_{\text {cal }}$ with a method involving information from the silicon detector, $y(\eta)$, to deduce the angle between the calorimeter and the silicon?
- Check parameters of $y(\eta)$
- Proper error calculation from $y(\eta)$ method

