Silicon detector alignment study

POL analysis meeting 3rd November 2004

Catherine Fry
Imperial College London

Outline of study

- If calorimeter and silicon perfectly aligned:
 - x_{Si} should be flat plotted against η_{cal}
- Plot x_{Si} η_{cal} distribution this is not flat!
- Convert η_{cal} to y_{cal} using $y(\eta)$
- Then measure slope of y_{cal} x_{Si} distribution and calculate angle between silicon and calorimeter
- Also generated MC with range of angles between Si and cal and looked for which angle had same slope in x_{Si} η_{cal} as the data

Silicon data: x - η

- Laser on and nclusx=1 and no cut on energy
- Fit straight line: $-0.6 < \eta < 0.6$

Convert η to y and calc. tilt

- To convert η to y_{cal} use:
 - $\lg = \ln ((1 + \eta) / (1 \eta))$
 - $y(\eta) = y0 + lg(P_0 + P_1*lg^2 + P_2*lg^4 + P_3*lg^6)$

Silicon Alignment Study

MC simulation

- Simulate 100k or 200k events at silicon angles between ±45° w.r.t. lepton beam
- Leave calorimeter angle set to 0.06° w.r.t.
 lepton beam
- For each Si angle: fit straight line to x η profile with nclusx=1 for -0.6 < η < 0.6
- Plot gradient of fit vs. angle...

MC results

Summary and future plans

- Converting η to y_{cal} using $y(\eta)$ suggests 9.6° (sign?) between calorimeter and silicon x-axes
- Using MC to find silicon angle which best matches the x η slope from the data suggests -21° between silicon and the lepton beam
- Clearly these two do not agree and seem too large
- Want to consider:
 - Could the beam tilt (measured to be ~5° with ellipse fitting method) be having an effect? Is this in the simulation?
 - Can we really calculate y_{cal} with a method involving information from the silicon detector, $y(\eta)$, to deduce the angle between the calorimeter and the silicon?
 - Check parameters of $y(\eta)$
 - Proper error calculation from $y(\eta)$ method