Polarisation and future measurements

Alex Tapper

- Introduction
- HERA performance
- Charged current DIS
- Neutral current DIS
- Exotics searches
- DVCS
- Conclusions

Thanks to:

Uta Stoesslein

Kunihiro Nagano

Mayuko Kataoka

Catherine Fry

Lorenzo Bellagamba

Fabian Zomer

Zhiqing Zhang

Introduction

- Many studies of what measurements we can make with various luminosities and polarisations in future physics at HERA workshop and other sources
- Usually based on 1 fb⁻¹ and polarisation of 70% with $\delta P/P=1\%$
- Update these studies for more realistic HERA running scenarios
- Do these change our requirements on the polarisation error?
- What is the optimal fraction of left and right-handed data?

Luminosity

F. Willeke DIS '04

Scenario	1	2	3	4
1-8 2004	р	р	р	р
10-12 2004	р	р	е	р
1-8 2005	р	р	е	е
10-12 2005	е	е	е	е
1-8 2006	е	е	е	е
10-12 2006	р	е	р	р
1-8 2007	р	е	р	р

Polarisation

- Mean values -40% and +33%
- Peak values |P|>50%
- Error is 1.6% from LPOL and 3.5% from TPOL so far...

S. Schmitt

 $\sigma^{cc}(\mathbf{P}) = (1 \pm \mathbf{P}) \cdot \sigma^{cc}(0)$

 Pure V-A structure of the SM predicts no right-handed charged currents

	Ρ	Stat. (%)	Syst. (%)	δ P/P=1%	δP/P=2%
е⁻р	-0.5	0.9	1.6	0.3	0.7
	+0.5	1.6	1.6	1.0	2.0
e⁺p	-0.5	2.2	1.6	1.0	2.0
	+0.5	1.3	1.6	0.3	0.7

- CC total cross section Q²>400 GeV² y<0.9
- Luminosity 4x200 pb⁻¹ with error 1%
- |P| = 0.5

- $\frac{\partial \sigma}{\sigma} \propto \left(\frac{\partial P}{P}\right) \cdot \frac{P}{1 \pm P}$
- Pol error largest contribution for $\delta P/P=2\%$ in RH e-p

Z. Zhang

Start with measured HERA I points

- Assume |P|=50%
- Systematic uncertainty 2-3% from HERA I assumed for HERA II
- Does not include luminosity uncertainty
- Assumes scenario 3 luminosities
- Does not consider correlated systematics
- Fits e⁺p and e⁻p separately

Stat + sys error on zero CC cross-sections

- e⁺p data provides better limit than e⁻p data
- Almost no dependence on fraction of left and right-handed data

- Consider extrapolated limit on zero cross section
- 200 pb⁻¹ each for right and left-handed data
- Limit strong function of polarisation but at expected polarisations relatively insensitive to error
- Need highest possible polarisation

M. Kataoka

- Charged current, particularly e⁺p because it probes d-quark, important input to QCD fits
- How does P as normalisation affect this?
- Plot δP/(1+P) for different polarisations and different errors
- Plot of (1+P) is for e⁺p so P>0 gives higher cross section
- Opposite for e-p

- $\delta P/P=1\%$ for P=-70% gives a normalisation error of ~2.5%
- $\delta P/P=2\%$ for P=-50% gives a normalisation error of ~2%

- Since CC EW studies are insensitive to fractions of left and right-handed data, how much can statistical precision profit from taking un equal shares of left and right handed data?
- Could get as much as 20%
- Rather modest improvement

Neutral current DIS

$$\frac{d^2\sigma^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[H_0^{\pm} + PH_P^{\pm} \right]$$

- Only terms with Z⁰
 exchange contribute
- Significant only at high Q²
- Sensitivity to the couplings of the up and down quarks to the Z⁰

Neutral current DIS

- Dashed (dotted) lines show change of 10 (20)% in P
- Couplings extraction for 1 fb⁻¹ and $P=\pm 0.5$

F. Zomer

Exotics searches

- Leptoquark F=0 (e⁺p) and F=2 (e⁻p) states both have right and left-handed states so sensitivity can be improved using polarised beams
- For RPV SUSY squark production only left handed e⁻ and right-handed e⁺ are involved so additional sensitivity using polarised beams
- Excited neutrinos are essentially like CC DIS so sensitivity can be increased with polarised beams
- The effect of increasing precision in the polarisation measurement is negligible for any exotic searches.

DVCS - Beam Spin Asymmetry SSA ~ Im (τ_{BH} · τ_{pvcs})

varying beam polarization [HERMES, CLAS 2001]
 one beam spin asymmetry (SSA) per beam charge

or counting events scattered 'up' and 'below' rotated-by-90° lepton scattering plane (*left* and *right*) to get sin ϕ weight \rightarrow 2 bins in ϕ

DVCS - Expected uncertainties for A_{LU}

Conclusions

- Overall would like the highest possible polarisation and highest
 possible luminosity
- Sensitivity to polarisation error smaller at lower polarisations
- If we get full luminosities at the highest polarisations and make progress with luminosity uncertainties a 2% relative error on the polarisation is the largest uncertainty in some cross sections.
 A 1% relative error would be preferable.
- No significant benefit to be gained by taking unequal shares of left and right-handed data