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Overview - Polarization and Polarimetry at HERA

HERA and lepton polarization

- HERA — Electron (positron) proton collider

- Physics case — Why longitudinal polarization?

- Sokolov-Ternov effect - Build-up of transverse polarization

- Spin rotators — Rotating transverse to longitudinal

- Polarization at HERA — Example for polarization build-up

- Compton scattering — Basis for all three polarimeters at HERA

Three polarimeters

- Transverse polarimeter TPOL

e Experimental setup, apparatus, polarization measurement and systematic uncertainties
- Longitudinal polarimeter LPOL

e Experimental setup, apparatus, polarization measurement and systematic uncertainties

- Cavity longitudinal polarimeter
e Experimental setup, apparatus, polarization measurement and systematic studies

Conclusion and Outlook
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HERA — Electron (Positron) Proton Collider

e ¢*p collider at DESY in Hamburg, — SR
Germany |

e Operation 1992 — 2007
e Colliding experiments:

B e L e

H1 and ZEUS
27.5 GeV 820/920 GeV o L N e

.,

Vs = 300/318 GeV

e Fixed target experiments:
HERMES, HERA-b (with p-beam)

e e-beam polarized

¢ | ongitudinal polarization delivered to
- HERMES since 1995 (HERAI)
- H1 and ZEUS since 2001 (HERA Il)

2 5

27.5 GeV
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HERA — Electron (Positron) Proton Collider

e ¢*p collider at DESY in Hamburg, 2~ 600 — MER
Germany 2 f LER
| _ = 2% HERA I '
e Operation 1992 — 2007 = ] 2002/03 — 2007
e Colliding experiments: é 997
H1 and ZEUS E 300 - _ HERA |
ki ] © 1993/94 — 2000
+ S 200
: I l - g 100—: e
27.5 GeV 820/920 GeV ] —

0-"'II"'I"'I"'I"'I"'I"'I'
Vs = 300/318 GeV 0 200 400 600 800 1000 1200 1400
: : Days of Running
e Fixed target experiments:

HERMES, HERA-b (with p-beam) e e-beam polarized

e | ongitudinal polarization delivered to
- HERMES since 1995 (HERA |)
- H1 and ZEUS since 2001 (HERA Il)

e Integrated luminosity: ~0.5 fb-"
collected per colliding experiment

L 5

27.5 GeV
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Physics Case - Why longitudinal Polarization?

HERMES: Nucleon spin structure

e Determine the spin-dependent structure
functions of nucleons

—> Spin-Y2 structure of the proton arises from
its constituents:

1 1

AY = Au+ A+ Ad+ Ad+ As + As
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Physics Case - Why longitudinal Polarization?

HERMES: Nucleon spin structure

e Determine the spin-dependent structure
functions of nucleons

—> Spin-Y2 structure of the proton arises from
its constituents

H1 and ZEUS:

=1
[,
=

51200 ]
o ep—vX
o : : RN Cm ]
e Chirality of charged current interactions 1001 . Lz el
i7ati i 4 ZEUS 98-06 i
- Polarization dependence of CC DIS cross [ AN ¢'p X ]
section 801 N * H199.04 "
i “*\ A ZEUS 06-07 (prel.)
— Linear dependence according to sol \i 4 ZEUS 9300 N
Standard Model for leptons in both [ CTEQ6D ‘“\ g
101t - - MRST 2004 \ g T
helicities wf RS P .
" - .._"J.'."-.;;-'J‘- ™ -
- Search for right-handed W bosons (beyond [ X AN ]
- = M |
the Standard Model) 2L AT e N
m e y<0.9 N
e Upper limit on non-vanishing cross {,; il A A T‘“~Z1
sections at P,= %1 ' ' P.
— Set lower limit on Wz mass oce = (1 — Pe)a(%c + (1+ Pe)agc

CC interactions: [Ant06,Gla09]
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Physics Case - Why longitudinal Polarization?

HERMES: Nucleon spin structure

e Determine the spin-dependent structure
functions of nucleons

—> Spin-Y2 structure of the proton arises from
its constituents

H1 and ZEUS: 81.5# e p (mHEHGeV)
e Chirality of charged current interactions vl P07
81.0-: cC
e Electroweak parameters: W boson mass mw | fGoopbrand G
- Ratio ONc/0cc constrains W boson mass 805 1 7 ce NG
[ . 1000 pb-1

in (My,, M,) plane.
—> Standard Model consistent if M, and

80.0

M, in agreement with other experiments S/ 19% systematics
79.5 +
—> Test of electroweak universality | Prospects
- Sensitivity to electroweak mixing angle 700 ey
) 2 2 0 50 100 150 200 250 300 GeV

EW@HERA: [BER*96]
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Physics Case - Why longitudinal Polarization?

HERMES: Nucleon spin structure

e Determine the spin-dependent structure
functions of nucleons

—> Spin-Y2 structure of the proton arises from
its constituents

H1 and ZEUS: oish Gy

e Chirality of charged current interactions vl P=07
81.04 CC
e Electroweak parameters: W boson mass | 1008 Pt and .
e Light quark (u,d) neutral current couplings 205 | oy coanc
and yZ° interference structure functions F, | , 7 0000
and xF, 8001
- Detailed comparison of polarized NC and CC i 1% systematics
. 79.5 +
cross sections - Prospects
—> Measure all four u- and d-type vector N
and axial-vector couplings to the 29 0 50 100 150 200 250 300 GeV
my

boson

EW@HERA: [BER*96]
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Physics Case - Why longitudinal Polarization?

HERMES: Nucleon spin structure

e Determine the spin-dependent structure
functions of nucleons

—> Spin-Y2 structure of the proton arises from
its constituents

H1 and ZEUS:
e Chirality of charged current interactions
e Electroweak parameters: W boson mass

e Light quark (u,d) neutral current couplings
and yZ° interference structure functions F,
and xF,

e | eptoquarks and Supersymmetry, ...
- NC DIS is main background to LQs, reduced

815+
GeV
80.5 +
80.0 +

79.5 +

by polarization

79,0 Aty

e- p (mH=1Ol61GeV)
P=-0.7
CC
CC +NC G
1000 pb-! and 7 (m};=800 GeV)

7. e 1% systematics

Prospects

B

- E.g. R-parity violating squark production,
where only €; and eE are involved

>

250 300 GeV
my

50 100 150 200

EW@HERA: [BER*96]

PST2009
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Sokolov-Ternov Effect - Build-Up of transverse Polarization

e Storage ring: particles move perpendicular to B
B-field of bending dipoles

e Particles emit synchrotron radiation upon bending
— Induces spin-flips

e Spin-flip transition probabilities differ:  wy # wy % ~—A ****
—> Particle spins align (anti)parallel to p_ o Aol
B-field, defining polarization: ne+ny
e Exponential build-up: P(t) = Py (1 — e /=)
- With asymptotic polarization limit and build-up time:
Wiy —wyip _ 1y p* GeV®
Py = Wt TwWit ~ 92.4% Tst = wryFwir T 00s- 5 m3

e Depolarizing effects in real machine
- Stochastic kicks by emission of synchrotron radiation
> Induce oscillations of particles around the closed orbit Pr.x < Py

- Misalignments and field errors in dipoles and quadrupoles

> Induce spin diffusion weakening polarization build-up Tuera = O(40min)

— Smaller maximal polarization P and build-up time =
Sokolov-Ternov in storage rings: [ST64,B*94]
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Spin Rotators - Rotating transverse to longitudinal

e Arcs of storage ring:
—> Transverse polarization must be kept
e Straight sections with interaction points:

— Longitudinal polarization, if surrounded
by a pair of spin rotators

e Rotate natural transverse polarization to
longitudinal (and back)

- By series of 6 alternating vertical and
horizontal bends (dipoles)

- Symmetric scheme

e Takes part in bending of the arcs
(effective horizontal bending)

- Separation magnets inside experiments
e Needed for head-on collision scheme
e Have effect on spin-rotation too

» Last rotator bend has to be weaker
e Both helicities possible

Hall North

HERA mini rotator pair (principle)

negative helicity

Spin
|
rotators

positive helicity

oo Y

| | |
A2 AN/
/ /

N N |
. . g LOINE L T i yeam
— Well-defined helicities: e, and e / S L ! dimeion
NN I DTN D
Mini rotators: [BS86]
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Polarization at HERA

Example for Polarization Build-Up

e Typical values

- Py ~ 40%

- Rise times 7= 40 min
e Continuous monitoring

- Two fast, independent
polarimeters

¢ |ndividual from fill to fill

- Machine tuning to optimize
orbits and other machine
parameters

e Beam-beam interactions cause

beam tune shifts

- Colliding and non-colliding
bunches have different
polarization

- Size of difference is subject to

machine tuning

e Complete HERA Il running
period covered

— Over 99% of all physics fills

had at least one polarimeter

operational

Build-up: [B*94]

Thu Aug A5 12:88 2684 HERA-& Sat Aug B7 12:88 2804
pi: 73.8 [mAl —-1.8 [h] 228 [GeW~scl e+i B.8 [mAl B.8 [h] 12.8 [GeV-c]
Current [mAl Energy [GeW- o] Lifetime L[hl
=1 S O S R T T S R D e A L B 34
‘ i Energy —
it i Tau .
58 o - &5
. ;é Current —
4@ i -4 em
38 4 15
28 - 1@
18 =1
B 1 1 N 1 B
12 14 16 18 28 22 & 2 4 & 8 18 12 14 16 18 28 22 24 2 4 & & 18 12
e+ injection Time [hl
Folarization [%]
78 T T T T T T T T T T T T T T T T 7 T T 1 78
Transwerse @
50 | Longitudinal B H £@
58 - 5a
48 - 48
38 - =8
28 - 28
18 | = 4 18
a 1 1 1 1 1 1 LB 1 1 1 1 1 1 1 1 1 1 a
12 14 16 158 28 22 8 2 4 & 8 16 12 14 16 18 28 22 24 &2 4 & & 1@ 12
Time [h1l
Transverse FPolarisation [%]
78 T T T T T T T T T T T T 7 T T T T T T T 78
Colliding Bunches @
56 | Mon Colliding Bunches B - &@
58 = - 58
48 | . 4 4@
38 - =8
28 - 28
18 | O - 18
a L | ] [ o A T T M a
12 14 16 18 28 22 & 2 4 & 8 18 12 14 16 18 28 22 24 2 4 & & 1@ 12
Time [h1l
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Compton Scattering - Basis for all three Polarimeters at HERA

e Backscatter low-energy photons off high-energy Laboratory frame
electrons or positrons

e Correlation between scattering angle ¢ and
photon energy E, \

Ec.—E (141 /k; L N
cosf = E“’(_ ; ki) :m \ lE( \
e Y E?
 Kinematical endpoint tan fap, = —— N
max __ 2E6 a9F B ‘
Comptonedge  EJ™ = 577 b= 2B

e Cross section dependent on polarization of both particles

Lo = 59(E) + S1%1(E)0s 26 + S Py Say (E)sing + S Pz (E)

- S,, S, linear and circular components of laser beam polarization
- P, P,: transverse and longitudinal components of lepton beam polarization

—> Use asymmetry between S; = +1 and S, = -1 states for polarization

measurement
o E.)—o E
A(y, ) ) L(y7 'y) R(y, ’y)

or(y, By) + or(y, E,)

Compton: [LT54a,L T54b]
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Transverse Polarimeter - Experimental Setup

Hall North

e Measures transverse polarization in straight
section West outside any spin rotators

e Operation 1993 - 2007 Hall West
e Transverse polarization HERA-b
—> Spatial asymmetry between

left and right laser helicity states TPOL

Jap, ThdE, \ AGp Jap, T2y dE,
3

A(y) = AS
) ap, Do dE, NN Y

—_
=

j—
[+

Ey (GeV)

e Single-photon Mode: ny= 0.01 per bunch crossing

- Bremsstrahlung‘s background separately measured
with laser off and subtracted statistically

MR = e 0o O

3, 1mrad 'Y‘

TPOL
| 65m ‘ Calorimeter
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Transverse Polarimeter - Apparatus

[ Lasel’ nylon fiber phot(qmylltgl)li)ers
Invisiple
- Argon-lon laser: green 514.5 nm Al spacer
(241 eV), 10 W Ccw Al front plate

- Circular polarization by Pockels cell,
switched at =80 Hz

- Light polarization monitored behind
interaction point using Glan-prism

— Measured circular polarization S;>0.99
e Compact electromagnetic calorimeter

wavelength
shifters

Pb absorber

W absorber

scintillators

optical decoupling

—_— A Y
- Scintillator-tungsten sampling calorimeter, N ¥ Eu
~19X, deep y o Yol || [t
- Read-out with wavelength-shifters from all 4 == z““\*:‘lll
sides: Up, Down, Left, Right 000N FgEr

- Upper and lower half optically isolated

— Impact position measurement by energy
asymmetry _ Eup — Epown
= Evp + Epown
— Photon energy measurement by energy sum

E’y - EUp + EDown

-20 -10 0 10 20 y (mm)
TPOL: [B*93,B*94]
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Transverse Polarimeter - Apparatus

e Single-photon mode: photon rate ~100kHz

_ _ _ < 160 E
- Absolute calibration using Compton edge G 140 3 .
- Main background bremsstrahlung g 120 = :
» Statistical background subtraction using ~ 100 0
laser off data T g O
- Separate measurements of colliding and L g 3
. g i) m
non-colliding bunches o . Laser ON
. . o . 40 - Laser OFF
- Statistical uncertainty oF/P = 2-3% per min 20 — ON-OFF
¢ Single-bunches oP/P = 10% per 10 min 0 2
IIII|IIII|IIII|II
e Upgrade 2000/2001 o > 10150 EZ?Ge\f)O
- Fast DAQ enabling single-bunch
measurement Silicon s}rip detectors x & y
- Added position sensitive detectors and o =14
preradiator of 1X, in front of detector |} JH || [ Ey
(readout frequency ~2 kHz) y Yo i P
. . . AN L L i
— In-situ measurement of ideal calorimeter I N
response, i.e. n(y)-transformation and LR RN
position dependent total response 77N o
Lead 1X, Moving Fiber
TPOL: [B*93,B*94]
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Transverse Polarimeter - Apparatus

L Single‘phOton mode: phOton rate ~100kHz Energy asymmetry 1 fit
- Absolute calibration using Compton edge Catorimetercentre .
- Main background bremsstrahlung

» Statistical background subtraction using
laser off data

- Separate measurements of colliding and :
non-colliding bunches 7 e

[

Energy asymmetry 1
<
[\

LU RARRARNERLN RN RN RRRNRRRYRRLE AL
bbb bbb b b b

- . . g I T T T T T
- Statistical uncertainty 6P/P = 2-3% per min 3 %" ; i L o —_
e Single-bunches 8P/P ~ 10% per 10 min L0 e g e
-0.01 ; .
:I 1 I | N I | 11 1 | I | I l I | N I | 11 | I | I II
e Upgrade 2000/2001 A5 a0 s 0 s q0 1
Silicon y-position (mm)
- Fast DAQ enabling single-bunch Energy sum it

measurement é\ 15.5 ;I T ¢Calor1meterée1;trel i :
- Added position sensitive detectors and Pl E
. . = E H 3
preradiator of 1X, in front of detector S1475 £ P =
S w5 F N 2o E
(readout frequency ~2 kHz) S 1425 | s E
: : : © 4 E \; E
— In-situ measurement of ideal calorimeter B E | § I i
response, i.e. n(y)-transformation and E o F T T T T
position dependent total response £ N S B RENTL N N P
] ) . . . é - 1 | fry +'+E'”””+T | | 1 |
- Fit with analytical physical model using em 02 F ]

shower description and detector effects 20 -10 0 10 20

Silicon y-position (mm)

TPOL: [B*93,8*94]
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Transverse Polarimeter - Polarization Measurement

e Polarization measurement using spatial

2 B RN RARE RRRERARE RRRN RARE RERERARE RRLS
5 - eV<E_  <11.6 Ge 3
asymmetry of energy asymmetry 7, 22000 | 2O R ihote E
switching laser between left and right 1750 |- RIGHT E
- Polarization given by “shift of means* 1500 =
— _ _ 1250 005
A?] =1L — TR = ASgPyHn > - o
1000 |
* HERA I analyzing power II, 750 |
- Using Monte Carlo and rise time 500 |
measurements in flat machine 250 E
: EII el b bt b bewn bwwn By 1
e HERA Il analyzing power I1, 0 1720806-0402 0 02040608 1
- Beam conditions and detector changed fnergy asymmetry
* More variable beam size and divergence - Determination of analyzing
(folcu_s) atnd Compton interaction distance to power dependencies for final
catorimeter polarization values still under
e Exchanged calorimeter and added dead study using Monte Carlo

material in front _
— Planned: improvement of

absolute scale and
dependencies based on
IL,, — IL, (0beam, D1p) measured 7(y)-transformation

—> Analyzing power became dependent on
beam divergence and IP distance

TPOL: [B*93,B*94]
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Transverse Polarimeter - Systematic Uncertainties

* Dominant contribution: analyzing power II,

| Source of systematic uncertainty | AP/P |

- Dependence on intrinsic beam width and . 1E%ect1;0nic ?Obiset, < 181?
1 alorimeter calpration < . 0
dlvergence (fOCUS) Background subtraction < 30.1%
- Dependence on distance of Compton Laser light polarisation +0.1%
interaction to calorimeter (Do) Compton beam centering £0.4%
Focus correction +1.0%
- Absolute scale Interaction point region +0.3%
Interaction point distance +2.1%

e Focus dependence included 2004 as Absolute analyzing power scale | *1.7% |
correction to analyzing power, but not for Total systematic uncertainty | [#2.9%
IP distance

= 0.11 5

e Current contribution from IP distance is = o.105 3
estimated as upper limit from geometrical 0.1 3
acceptance 0095 3

0.09 3
e The three contributions are correlated 0.085
— Need detailed realistic simulation of 00022 J - HERA | const
magnetic beam line (interaction vertex 007 3 - HERA Il const.
dlStFIbUtIOﬂ) 0.065 —E — HERA Il focus corr.
— Need precise calorimeter response, i.e. 0.06 ST T T T T T T T
17(y)-transformation and energy resolution 035 04 045 05 055 06 065 0.7
for simulation G, (mm)

Systematics: [A*07b,CGOS04]
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Longitudinal Polarimeter - Experimental Setup

e Measures longitudinal polarization
in-between the HERMES spin rotators

e Operation 1997 - 2007
e | ongitudinal polarization

Hall West
HERA-B

—> Energy dependent asymmetry between
left and right laser helicity states

A(E,) = AS, P,

* Multi-photon Mode: n, = 1000 per bunch crossing

- Bremsstrahlung‘s background from long straight
section too high for single-photon mode

0 5 10 15
8.7mrad Y E, (GeV)

HERMES IP

gas target ‘ LPOL

Calorimeter

54m
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Longitudinal Polarimeter - Apparatus

e Compact electromagnetic Cerenkov calorimeter Compmx
- 4 NaBi(WOQ,), crystals, ~19 X, deep, with 4 PMTs ™ o

- Crystals optically isolated N
— Energy sharing allows positioning to < 1 mm

e Laser

Frequency-doubled Nd:YAG laser: green 532 nm (2.33 eV)
Pulsed at 100 Hz, 3 ns long with 100 mJ per pulse
Synchronized with lepton bunches

Trigger for read-out at 200Hz, every 2" event is background event
Circular polarization by Pockels cell, flipped every pulse

Monitored using Glan-Thompson prism

aluminized mylar

photomultiplier

— Measured circular polarization S;> 0.999

8.7mrad Y
€ \ — y > I
HE_E/“"RMES T POL '4\ 4.4cm
gas target ¥ LPOL
‘ Calorimeter

54m
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Longitudinal Polarimeter - Polarization Measurement

e Multi-photon mode: Detector signal corresponds to
integral of energy-weighted cross-section

E’y
_[53 P, = .
Eglln

- T(Ey) = single-photon relative response function,
constant for linear detector

dO‘C

r(Ey)Ey —-
3

dE,

- E™™ _ energy threshold of detector
e Energy dependent asymmetry then becomes

I — I
A:: S3 P, <0 S3 P, >0 _ ASgPZHZ
Is,p. <0+ Is,p.>0

- Analyzing power from test beam: IT, = 0.1929 + 0.0017

- Energy-weighted cross section distributions differ most
at Compton edge

—> Not strongly dependent on 7™
e Calorimeter response is critical issue
—> Total energy in detector: E> 5 TeV !
e Statistical uncertainty oP/P = 1-2% per minute
- Single-bunches: 0P/P = 6% per 5 minutes

e SP

3 z

1 — Sk,
-7 S4P,

1] 1] |
o

5 10 15

E, (GeV)

15

counts

30 £

HEF

10 £

spin 3/2

spin 112

i afe s

00

."‘.‘f?“’"' L] YN}
PRl

LPOL: [B*02a]
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Longitudinal Polarimeter - Systematic Uncertainties

e Dominant uncertainty: analyzing power

| Source of systematic uncertainty | AP/P |
- Determined from test beam Analyzing power o *1.2%
measurements Response function from test beam +0.9%
_ . : Extrapolation single- to multi-photon +0.8%
CrOSS_CheCKed with data t-aken with a Analyzing power long-term stabilit +0.5%
tungsten-scintillator sampling Gainymatgclrll)ing s Y 030
calorimeter . o ‘
Laser light polarization +0.2%
e Contributions to analyzing power Helicity dependent luminosity +0.4%
) Interaction region stability +0.8%
- Shape of single-photon response Total (HERA 1) 11.6%
function Extra uncertainty for new calorimeter <+1.2%
— Measured in test beams Total (HERA II) +2.0%
- Extrapolation single-photon to multi-
photon mode g
—> Measured in tunnel using a NDF to . I
attenuate signal over 3 orders of = T
magnitude - T
: = P
* Replacement of crystals in 2004 2 105 o
- Performance cross-checked with gt g
sampling calorimeter, but not in test 7 008 | /
beams 2 ool
— Extra uncertainty as upper limit - W
(LE5 &
_ AP B 3 I E ] ERT
— Current best estimate —- = 2.0% beam energy (GeV.

P
LPOL Systematics: [B*02a, A*05, A*07b]
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Longitudinal Polarimeter - Systematic Uncertainties

e Dominant uncertainty: analyzing power

| Source of systematic uncertainty | AP/P |
- Determined from test beam Analyzing power o *1.2%
measurements Response function from test beam +0.9%
_ : : Extrapolation single- to multi-photon +0.8%
Cross—checked with data t-aken with a Analyzing power long-term stability +0.5%
tungsten-scintillator sampling Gain matching 103%
calorimeter Laser light polarization +0.2%
e Contributions to analyzing power Helicity dependent luminosity +0.4%
) Interaction region stability +0.8%
- Shape of single-photon response Total (HERA 1) 1.6%
function Extra uncertainty for new calorimeter < #1.2%
—> Measured in test beams Total (HERA II) +2.0%
- Extrapolation single-photon to multi-
photon mode g
— Measured in tunnel using a NDF to =
attenuate signal over 3 orders of =
magnitude 2!
. ez
e Replacement of crystals in 2004 E
- Performance cross-checked with B | ++ e e

sampling calorimeter, but not in test 0.9
beams 05 |

— Extra uncertainty as upper limit T

] AP 'In _ |l-|'1
— Current best estimate —- = 2.0% mumber of Compton photons

LPOL Systematics: [B*02a, A*05, A*07b]
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Cavity Longitudinal Polarimeter - Motivation

e Why building a third polarimeter?

- Both transverse and longitudinal polarimeter are statistically limited
e TPOL needing scattering rate <100 kHz to maintain single-photon mode
e LPOL being limited by laser pulse frequency of 100 Hz

—> Statistical precision of groups of bunches on per minute level sufficient, but faster
bunch-wise measurement desirable

- Both polarimeters have systematical uncertainties around 2% or higher
e Spatial asymmetries at TPOL are difficult to handle

e Energy asymmetries at LPOL easier, but self-calibrating properties by using markers in
the energy distribution of single or few photons are unavailable

— The combined results of H1 and ZEUS need a more precise polarization measurement
in order not to be dominated by polarization

e Third polarimeter project employs a Fabry-Perot cavity to stock laser
photons with a very high density at the Compton interaction point

- Works in continuous few-photon mode: ny= 1 per bunch crossing
e Very high statistics with scattering rates in ©(MHz)
e Self-calibrating properties: Use Compton and Bremsstrahlung‘s edges for calibration
— Very fast measurement with small systematics

— Technically very challenging Cavity LPOL: [Zha01, Zom03]
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Cavity Longitudinal Polarimeter - Experimental Setup

e Measures longitudinal polarization in-between
the HERMES spin rotators

- Fabry-Perot cavity installed spring 2003

Hall West
HERA-B

- First Compton events observed in March 2005

- Much increased operation till end of HERA

e Qver 450 hours of efficient data taken
(Oct. 2006 — end)

e Continuous few-photon mode: ny= 1 per bunch crossing
— Very high statistics, one measurement per bunch and helicity only = 10 seconds

cw laser
1 3 30
\
c R | / \\; S —1 Y > I
_E/‘ ® 7 POL ;/ '_"\ N 4.4cm
HERMES p Cavity IP
gas target LPOL
‘ ‘ Calorimeter
44m

Cavity LPOL: [Zha01, Zom03]
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Cavity Longitudinal Polarimeter - Apparatus

e Laser A .

Infrared Nd:YAG laser: 1064nm, initial
power 0.7W, cw

Laser and all optical components on
table in tunnel

Circular polarization by rotating quarter
wave plate, flipped every few seconds

Monitored and measured behind cavity

e High finesse Fabry-Perot Cavity

Length 2 m, crossing angle 3.3°

- Cavity mirrors inside vacuum vessel T v
- Finesse ~30000 o= =
- Amplification of laser power by means ] il “‘“"fw% b i
of constructive interference, gain =5000 S —
— Laser power stored =3 kW 3

Cavity LPOL: [Zha01, Zom03]
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Cavity Longitudinal Polarimeter - Polarization Measurement

e Measures longitudinal polarization
by energy asymmetry from Compton
cross section

e Overall fit to energy distributions for
left and right laser helicity states

e Absolute calibration using Compton
and Bremsstrahlung‘s edge positions

e Contributions included in description
- Synchrotron radiation peak

Black body radiation

Compton peak, rate and flux

Bremsstrahlung‘s edge, rate and flux

Detector resolution + non-linearity

parameters

e Detailed Monte Carlo simulation of
the calorimeter response

- E.Q. description of the synchrotron
radiation peak using MC input

Cavity LPOL: [Zha01, Zom03]

Events

Events
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Cavity Longitudinal Polarimeter - Polarization Measurement

e Measures longitudinal polarization
by energy asymmetry from Compton
cross section

Events

' Syn, rad. peak:

e Overall fit to energy distributions for
left and right laser helicity states

e Absolute calibration using Compton
and Bremsstrahlung‘s edge positions

ID“_:I1D“”20””3D 40 0'“ - ID.SI — 1 — r1.5
. . . . . . E (GeV) . E (GeV)
e Contributions included in description

Synchrotron radiation peak

Black body radiation

Compton peak, rate and flux

Bremsstrahlung‘s edge, rate and flux

Detector resolution + non-linearity

parameters

e Detailed Monte Carlo simulation of
the calorimeter response

- E.Q. description of the synchrotron
radiation peak using MC input

Events

aRECS L  LR B
g v Compton peak;

Cavity LPOL: [Zha01, Zom03]
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Cavity Longitudinal Polarimeter -

Systematic Studies

e Statistical uncertainties
- O0P/P = 3% per bunch and 10 s doublet

— Much higher statistical precision than
other two polarimeters

e Systematical studies include
- Laser polarization uncertainty
- Laser circularity (MOCO position scan)
- Laser power variation
- Electronic noise
- Detector parameters
- Calorimeter position scan in x and y
- Synchrotron radiation cut
- Black body temperature
- Beam position scan
- E-beam energy uncertainty

e Preliminary errors conservatively
estimated

e Some studies have common
uncertainty sources

— Further error reduction expected with
improvement of analysis
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e Preliminary systematic uncertainties

- From HERA: 0.70%
- From laser: 0.75%
- From detector: 0.1%

— Total (absolute): 6P ~ 1%
e All data has been analyzed by now

— Publication with final data analysis and
errors being prepared and expected this

year
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Conclusion and Outlook

e Combined efficiency of TPOL and LPOL polarimeters
- Around 99% over all years of HERA Il running (2001-2007)

e Concurrent running of either TPOL and LPOL or TPOL and Cavity LPOL
- As Cavity LPOL and LPOL shared the same detector location

e Polarization measurement with a high finesse Fabry-Perot cavity at HERA
has been established

- Successful operation of Cavity LPOL with increasing data taking frequency till the
end of HERA

e All three polarimeters work on finalization of their systematic uncertainties
- Current status: TPOL 2.9%
3.4%

AP LPOL 2.09
J2 .0%

Cavity 1.4 -2.5% (@ P = 40-500/0)

e Final polarization values and uncertainties expected this year

—> Combined systematic uncertainty is hoped to be reduced to at least <3%!
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