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Overview  - Polarization and Polarimetry at HERA

• HERA and lepton polarization

- HERA – Electron (positron) proton collider

- Physics case – Why longitudinal polarization?

- Sokolov-Ternov effect – Build-up of transverse polarization

- Spin rotators – Rotating transverse to longitudinal

- Polarization at HERA – Example for polarization build-up

- Compton scattering – Basis for all three polarimeters at HERA

• Three polarimeters

- Transverse polarimeter TPOL

• Experimental setup, apparatus, polarization measurement and systematic uncertainties

- Longitudinal polarimeter LPOL

• Experimental setup, apparatus, polarization measurement and systematic uncertainties

- Cavity longitudinal polarimeter 

• Experimental setup, apparatus, polarization measurement and systematic studies

• Conclusion and Outlook
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HERA  – Electron (Positron) Proton Collider

• e±p collider at DESY in Hamburg, 

Germany

• Operation 1992 – 2007

• Colliding experiments:

H1 and  ZEUS

• Fixed target experiments:  

HERMES, HERA-b (with p-beam)

pe±

27.5 GeV 820/920 GeV

√s = 300/318 GeV

e±

27.5 GeV

• e-beam polarized

• Longitudinal polarization delivered to

- HERMES since 1995 (HERA I)

- H1 and ZEUS since 2001 (HERA II)



Sept. 7th 2009Sept. 7th 2009 PST2009 Polarization and Polarimetry at HERA B. SobloherPST2009 Polarization and Polarimetry at HERA B. Sobloher 44

HERA  – Electron (Positron) Proton Collider

• e±p collider at DESY in Hamburg, 

Germany

• Operation 1992 – 2007

• Colliding experiments:

H1 and  ZEUS

• Fixed target experiments:  

HERMES, HERA-b (with p-beam)

pe±

27.5 GeV 820/920 GeV

√s = 300/318 GeV

e±

27.5 GeV

• e-beam polarized

• Longitudinal polarization delivered to

- HERMES since 1995 (HERA I)

- H1 and ZEUS since 2001 (HERA II)

• Integrated luminosity: ~0.5 fb-1

collected per colliding experiment
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∆Σ = ∆u+∆ū +∆d+∆d̄+∆s+∆s̄

1

2
=
1

2
∆Σ +∆G+ Lq +Lg

Physics Case  - Why longitudinal Polarization?

HERMES: Nucleon spin structure

• Determine the spin-dependent structure 

functions of nucleons

→ Spin-½ structure of the proton arises from 

its constituents:
Asymmetry ∝∝∝∝ ∆Σ∆Σ∆Σ∆Σ

e p
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σCC = (1− Pe)σ
L
CC + (1 +Pe)σ

R
CC

Physics Case  - Why longitudinal Polarization?

HERMES: Nucleon spin structure

• Determine the spin-dependent structure 

functions of nucleons

→ Spin-½ structure of the proton arises from 

its constituents

H1 and ZEUS:

• Chirality of charged current interactions

- Polarization dependence of CC DIS cross 

section

→ Linear dependence according to 

Standard Model for leptons in both 

helicities

- Search for right-handed W bosons (beyond 

the Standard Model)

• Upper limit on non-vanishing cross 

sections at  Pe = ±1

→ Set lower limit on WR mass

CC interactions: [Ant06,Gla09]
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σNC/σCC
(MW ,Mt)

sin2 θW = 1−M2
W /M

2
Z

Physics Case  - Why longitudinal Polarization?

HERMES: Nucleon spin structure

• Determine the spin-dependent structure 

functions of nucleons

→ Spin-½ structure of the proton arises from 

its constituents

H1 and ZEUS:

• Chirality of charged current interactions

• Electroweak parameters: W boson mass

- Ratio                     constrains W boson mass 

in                     plane.

→ Standard Model consistent if MW and 

Mt in agreement with other experiments

→ Test of electroweak universality

- Sensitivity to electroweak mixing angle

EW@HERA: [BER+96]

Prospects
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Physics Case  - Why longitudinal Polarization?

HERMES: Nucleon spin structure

• Determine the spin-dependent structure 

functions of nucleons

→ Spin-½ structure of the proton arises from 

its constituents

H1 and ZEUS:

• Chirality of charged current interactions

• Electroweak parameters: W boson mass

• Light quark (u,d) neutral current couplings 

and γZ0 interference structure functions F2

and xF3

- Detailed comparison of polarized NC and CC 

cross sections 

→ Measure all four u- and d-type vector 

and axial-vector couplings to the Z0

boson

Prospects

EW@HERA: [BER+96]
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e+Re−L

Physics Case  - Why longitudinal Polarization?

HERMES: Nucleon spin structure

• Determine the spin-dependent structure 

functions of nucleons

→ Spin-½ structure of the proton arises from 

its constituents

H1 and ZEUS:

• Chirality of charged current interactions

• Electroweak parameters: W boson mass

• Light quark (u,d) neutral current couplings 

and γZ0 interference structure functions F2

and xF3

• Leptoquarks and Supersymmetry, …

- NC DIS is main background to LQs, reduced 

by polarization

- E.g. R-parity violating squark production, 

where only       and        are involved

Prospects

EW@HERA: [BER+96]
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τHERA =O(40min)

Pmax < Pst

≈ 100s ·
ρ3

E5
·
GeV5

m3
τst =

1
ω↑↓+ω↓↑Pst =

ω↑↓−ω↓↑
ω↑↓+ω↓↑

≈ 92.4%

P (t) = Pst(1− e
−t/τ st )

P =
n↑−n↓
n↑+n↓

ω↑↓ �= ω↓↑

Sokolov-Ternov Effect  - Build-Up of transverse Polarization

• Storage ring: particles move perpendicular to 

B-field of bending dipoles

• Particles emit synchrotron radiation upon bending

→ Induces spin-flips

• Spin-flip transition probabilities differ:

→ Particle spins align (anti)parallel to 

B-field, defining polarization:

• Exponential build-up:

- With asymptotic polarization limit and build-up time:

• Depolarizing effects in real machine

- Stochastic kicks by emission of synchrotron radiation

� Induce oscillations of particles around the closed orbit

- Misalignments and field errors in dipoles and quadrupoles

� Induce spin diffusion weakening polarization build-up

→ Smaller maximal polarization P and build-up time τ

B

Sokolov-Ternov in storage rings: [ST64,B+94]
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Spin Rotators  - Rotating transverse to longitudinal

• Arcs of storage ring: 

→ Transverse polarization must be kept

• Straight sections with interaction points:

→ Longitudinal polarization, if surrounded 

by a pair of spin rotators

• Rotate natural transverse polarization to 
longitudinal (and back)

- By series of 6 alternating vertical and 

horizontal bends (dipoles)

- Symmetric scheme 

• Takes part in bending of the arcs 
(effective horizontal bending)

- Separation magnets inside experiments

• Needed for head-on collision scheme 

• Have effect on spin-rotation too

� Last rotator bend has to be weaker

• Both helicities possible

→ Well-defined helicities: eL and eR

Mini rotators: [BS86]

Spin 
rotators
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Polarization at HERA  - Example for Polarization Build-Up

• Typical values
- Pmax ≈ 40%

- Rise times τ ≈ 40 min

• Continuous monitoring
- Two fast, independent 

polarimeters

• Individual from fill to fill
- Machine tuning to optimize 

orbits and other machine 
parameters

• Beam-beam interactions cause 
beam tune shifts

- Colliding and non-colliding 
bunches have different 
polarization

- Size of difference is subject to 
machine tuning

• Complete HERA II running 
period covered

→ Over 99% of all physics fills 
had at least one polarimeter 
operational

Build-up: [B+94]



Sept. 7th 2009Sept. 7th 2009 PST2009 Polarization and Polarimetry at HERA B. SobloherPST2009 Polarization and Polarimetry at HERA B. Sobloher 1313

cosθ = Ee−Eγ(1+1/ki)
Ee−Eγ

Emaxγ = 2Ee

2+1/ki

A(y,Eγ ) =
σL(y,Eγ )− σR(y,Eγ)

σL(y,Eγ ) + σR(y,Eγ)

d2σ
dEdφ = Σ0(E) + S1Σ1(E) cos 2φ + S3PY Σ2Y (E) sinφ + S3PZΣ2Z (E)

Compton Scattering  - Basis for all three Polarimeters at HERA

• Backscatter low-energy photons off high-energy 

electrons or positrons

• Correlation between scattering angle θθθθ and 

photon energy Eγ

• Kinematical endpoint

Compton edge

• Cross section dependent on polarization of both particles

- S1, S3 : linear and circular components of laser beam polarization

- PY, PZ : transverse and longitudinal components of lepton beam polarization

→ Use asymmetry between S3 = +1 and S3 = -1 states for polarization 

measurement

Compton: [LT54a,LT54b]
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A(y) = ∆S1

∫
∆Eγ

Σ′1 dEγ∫
∆Eγ

Σ0 dEγ
+∆S3Py

∫
∆Eγ

Σ2y dEγ
∫
∆Eγ

Σ0 dEγ

Transverse Polarimeter  - Experimental Setup

• Measures transverse polarization in straight 

section West outside any spin rotators

• Operation 1993 - 2007

• Transverse polarization

→ Spatial asymmetry between 

left and right laser helicity states

• Single-photon Mode: nγ ≈ 0.01 per bunch crossing

- Bremsstrahlung‘s background separately measured 

with laser off and subtracted statistically

e

γ‘

γ

TPOL

IP TPOL

Calorimeter
65m

6cm

y
3,1mrad

y (mm)

E
γ

(G
eV

)

TPOL

Hall West

HERA-b
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Eγ = EUp +EDown

η =
EUp − EDown
EUp + EDown

Transverse Polarimeter  - Apparatus

• Laser
- Argon-Ion laser: green 514.5 nm 

(2.41 eV), 10 W cw

- Circular polarization by Pockels cell, 

switched at ≈80 Hz

- Light polarization monitored behind 

interaction point using Glan-prism

→ Measured circular polarization S3>0.99

• Compact electromagnetic calorimeter

- Scintillator-tungsten sampling calorimeter, 

~19X0 deep

- Read-out with wavelength-shifters from all 4 

sides: Up, Down, Left, Right

- Upper and lower half optically isolated

→ Impact position measurement by energy 

asymmetry

→ Photon energy measurement by energy sum

TPOL: [B+93,B+94]

η

y0γ

y
EU

ED

y (mm)
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Transverse Polarimeter  - Apparatus

• Single-photon mode: photon rate ~100kHz
- Absolute calibration using Compton edge

- Main background bremsstrahlung

� Statistical background subtraction using 
laser off data

- Separate measurements of colliding and 
non-colliding bunches

- Statistical uncertainty δP/P ≈ 2-3% per min
• Single-bunches δP/P ≈ 10% per 10 min

• Upgrade 2000/2001

- Fast DAQ enabling single-bunch 

measurement

- Added position sensitive detectors and 

preradiator of 1X0 in front of detector 

(readout frequency ~2 kHz)

→ In-situ measurement of ideal calorimeter 

response, i.e. ηηηη(y)-transformation and 
position dependent total response

TPOL: [B+93,B+94]

y0γ

y
EU

ED

Silicon strip detectors x & y

Moving FiberLead 1X0
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Transverse Polarimeter  - Apparatus

• Single-photon mode: photon rate ~100kHz
- Absolute calibration using Compton edge

- Main background bremsstrahlung

� Statistical background subtraction using 
laser off data

- Separate measurements of colliding and 
non-colliding bunches

- Statistical uncertainty δP/P ≈ 2-3% per min
• Single-bunches δP/P ≈ 10% per 10 min

• Upgrade 2000/2001

- Fast DAQ enabling single-bunch 

measurement

- Added position sensitive detectors and 

preradiator of 1X0 in front of detector 

(readout frequency ~2 kHz)

→ In-situ measurement of ideal calorimeter 

response, i.e. ηηηη(y)-transformation and 
position dependent total response

- Fit with analytical physical model using em 

shower description and detector effects

TPOL: [B+93,B+94]

y0γ

y
EU

ED

Silicon strip detectors x & y

Moving FiberLead 1X0
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Πη → Πη(σbeam ,DIP)

∆η̄ := η̄L − η̄R := ∆S3PyΠη

Transverse Polarimeter  - Polarization Measurement

• Polarization measurement using spatial 

asymmetry of energy asymmetry η, 
switching laser between left and right

- Polarization given by “shift of means“

• HERA I analyzing power Πη

- Using Monte Carlo and rise time 

measurements in flat machine

• HERA II analyzing power Πη

- Beam conditions and detector changed

• More variable beam size and divergence 
(focus) and Compton interaction distance to 
calorimeter

• Exchanged calorimeter and added dead 
material in front

→ Analyzing power became dependent on 

beam divergence and IP distance

- Determination of analyzing 

power dependencies for final 

polarization values still under 

study using Monte Carlo

→ Planned: improvement of 

absolute scale and 

dependencies based on 

measured η(y)-transformation

TPOL: [B+93,B+94]
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Transverse Polarimeter  - Systematic Uncertainties

• Dominant contribution: analyzing power Πη

- Dependence on intrinsic beam width and 
divergence (focus)

- Dependence on distance of Compton 
interaction to calorimeter (DIP)

- Absolute scale

• Focus dependence included 2004 as 
correction to analyzing power, but not for 
IP distance

• Current contribution from IP distance is 
estimated as upper limit from geometrical 
acceptance

• The three contributions are correlated

→ Need detailed realistic simulation of 
magnetic beam line (interaction vertex 
distribution) 

→ Need precise calorimeter response, i.e. 
η(y)-transformation and energy resolution 
for simulation

Systematics: [A+07b,CGOS04]

Focus correction ±1.0%

Absolute analyzing power scale ±1.7%
±2.1%

±2.9%

Interaction point distance 
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A(Eγ ) = ∆S3Pz
Σ2z
Σ0

• Measures longitudinal polarization 

in-between the HERMES spin rotators

• Operation 1997 - 2007

• Longitudinal polarization

→ Energy dependent asymmetry between 

left and right laser helicity states

• Multi-photon Mode: nγ ≈ 1000 per bunch crossing

- Bremsstrahlung‘s background from long straight 

section too high for single-photon mode

Longitudinal Polarimeter  - Experimental Setup

e

γ‘

γ

LPOL

IP LPOL

Calorimeter
54m

4.4cm

8.7mrad

HERMES
gas target

LPOL

Hall East

HERMES
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Longitudinal Polarimeter  - Apparatus

• Compact electromagnetic Čerenkov calorimeter

- 4 NaBi(WO4)2 crystals, ~19 X0 deep, with 4 PMTs

- Crystals optically isolated

→ Energy sharing allows positioning to < 1 mm

• Laser

- Frequency-doubled Nd:YAG laser: green 532 nm (2.33 eV) 

- Pulsed at 100 Hz, 3 ns long with 100 mJ per pulse 

- Synchronized with lepton bunches

- Trigger for read-out at 200Hz, every 2nd event is background event

- Circular polarization by Pockels cell, flipped every pulse

- Monitored using Glan-Thompson prism

→ Measured circular polarization S3 > 0.999

e

γ‘

γ

LPOL

IP LPOL

Calorimeter
54m

4.4cm

8.7mrad

HERMES
gas target
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Eminγ

A :=
IS3Pz<0 − IS3Pz>0
IS3Pz<0 + IS3Pz>0

= ∆S3PzΠz

Eminγ

r(Eγ )

IS3Pz :=

∫ Emax

γ

Emin
γ

r(Eγ )Eγ
dσC
dEγ

dEγ

Longitudinal Polarimeter  - Polarization Measurement

• Multi-photon mode: Detector signal corresponds to 
integral of energy-weighted cross-section

- = single-photon relative response function, 

constant for linear detector

- = energy threshold of detector

• Energy dependent asymmetry then becomes

- Analyzing power from test beam: Πz = 0.1929 ± 0.0017

- Energy-weighted cross section distributions differ most 

at Compton edge

→ Not strongly dependent on

• Calorimeter response is critical issue

→ Total energy in detector: E > 5 TeV !

• Statistical uncertainty δP/P ≈ 1-2% per minute

- Single-bunches: δP/P ≈ 6% per 5 minutes
LPOL: [B+02a]
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• Dominant uncertainty: analyzing power
- Determined from test beam 

measurements

- Cross-checked with data taken with a 
tungsten-scintillator sampling 
calorimeter

• Contributions to analyzing power
- Shape of single-photon response 

function
→ Measured in test beams

- Extrapolation single-photon to multi-
photon mode

→ Measured in tunnel using a NDF to 
attenuate signal over 3 orders of 
magnitude

• Replacement of crystals in 2004
- Performance cross-checked with 

sampling calorimeter, but not in test 
beams

→ Extra uncertainty as upper limit

→ Current best estimate
∆P

P
= 2.0%

Longitudinal Polarimeter  - Systematic Uncertainties

LPOL Systematics: [B+02a, A+05, A+07b]

≤ ±1.2%Extra uncertainty for new calorimeter

±2.0%

±1.2%Analyzing power
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∆P

P
= 2.0%

Longitudinal Polarimeter  - Systematic Uncertainties

• Dominant uncertainty: analyzing power
- Determined from test beam 

measurements

- Cross-checked with data taken with a 
tungsten-scintillator sampling 
calorimeter

• Contributions to analyzing power
- Shape of single-photon response 

function
→ Measured in test beams

- Extrapolation single-photon to multi-
photon mode

→ Measured in tunnel using a NDF to 
attenuate signal over 3 orders of 
magnitude

• Replacement of crystals in 2004
- Performance cross-checked with 

sampling calorimeter, but not in test 
beams

→ Extra uncertainty as upper limit

→ Current best estimate

LPOL Systematics: [B+02a, A+05, A+07b]

≤ ±1.2%Extra uncertainty for new calorimeter

±2.0%

±1.2%Analyzing power
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Cavity Longitudinal Polarimeter  - Motivation

• Why building a third polarimeter?

- Both transverse and longitudinal polarimeter are statistically limited

• TPOL needing scattering rate <100 kHz to maintain single-photon mode

• LPOL being limited by laser pulse frequency of 100 Hz

→ Statistical precision of groups of bunches on per minute level sufficient, but faster 
bunch-wise measurement desirable

- Both polarimeters have systematical uncertainties around 2% or higher

• Spatial asymmetries at TPOL are difficult to handle

• Energy asymmetries at LPOL easier, but self-calibrating properties by using markers in 
the energy distribution of single or few photons are unavailable

→ The combined results of H1 and ZEUS need a more precise polarization measurement 
in order not to be dominated by polarization

• Third polarimeter project employs a Fabry-Perot cavity to stock laser 
photons with a very high density at the Compton interaction point

- Works in continuous few-photon mode: nγ ≈ 1 per bunch crossing

• Very high statistics with scattering rates in O(MHz)

• Self-calibrating properties: Use Compton and Bremsstrahlung‘s edges for calibration

→ Very fast measurement with small systematics

→ Technically very challenging
Cavity LPOL: [Zha01, Zom03]
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Cavity Longitudinal Polarimeter  - Experimental Setup

• Measures longitudinal polarization in-between 

the HERMES spin rotators

- Fabry-Perot cavity installed spring 2003

- First Compton events observed in March 2005

- Much increased operation till end of HERA

• Over 450 hours of efficient data taken 

(Oct. 2006 – end)

• Continuous few-photon mode: nγ ≈ 1 per bunch crossing

→ Very high statistics, one measurement per bunch and helicity only ≈ 10 seconds

e γ

LPOL

IP LPOL

Calorimeter
44m

4.4cm

HERMES
gas target

cw laser

Cavity IP

3.3°

Cavity LPOL: [Zha01, Zom03]

Cavity

LPOL

Hall East

HERMES
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Cavity Longitudinal Polarimeter  - Apparatus

• Laser

- Infrared Nd:YAG laser: 1064nm, initial 

power 0.7W, cw

- Laser and all optical components on 

table in tunnel

- Circular polarization by rotating quarter 

wave plate, flipped every few seconds

- Monitored and measured behind cavity

• High finesse Fabry-Perot Cavity

- Length 2 m, crossing angle 3.3°

- Cavity mirrors inside vacuum vessel

- Finesse ≈30000

- Amplification of laser power by means 

of constructive interference, gain ≈5000

→ Laser power stored ≈3 kW

Cavity LPOL: [Zha01, Zom03]
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Cavity Longitudinal Polarimeter  - Polarization Measurement

• Measures longitudinal polarization 

by energy asymmetry from Compton 

cross section

• Overall fit to energy distributions for 
left and right laser helicity states

• Absolute calibration using Compton 
and Bremsstrahlung‘s edge positions

• Contributions included in description

- Synchrotron radiation peak

- Black body radiation

- Compton peak, rate and flux

- Bremsstrahlung‘s edge, rate and flux

- Detector resolution + non-linearity 

parameters

• Detailed Monte Carlo simulation of 

the calorimeter response

- E.g. description of the synchrotron 

radiation peak using MC input E (GeV)

Cavity LPOL: [Zha01, Zom03]
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Cavity Longitudinal Polarimeter  - Polarization Measurement

• Measures longitudinal polarization 

by energy asymmetry from Compton 

cross section

• Overall fit to energy distributions for 
left and right laser helicity states

• Absolute calibration using Compton 
and Bremsstrahlung‘s edge positions

• Contributions included in description

- Synchrotron radiation peak

- Black body radiation

- Compton peak, rate and flux

- Bremsstrahlung‘s edge, rate and flux

- Detector resolution + non-linearity 

parameters

• Detailed Monte Carlo simulation of 

the calorimeter response

- E.g. description of the synchrotron 

radiation peak using MC input

Syn. rad. peak

Brem. edgeCompton peak

B
la

ck b
o
d
y

Cavity LPOL: [Zha01, Zom03]
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Cavity Longitudinal Polarimeter  - Systematic Studies

• Statistical uncertainties

- δP/P ≈ 3% per bunch and 10 s doublet

→ Much higher statistical precision than 
other two polarimeters

• Systematical studies include
- Laser polarization uncertainty

- Laser circularity (MOCO position scan)

- Laser power variation

- Electronic noise

- Detector parameters

- Calorimeter position scan in x and y

- Synchrotron radiation cut

- Black body temperature

- Beam position scan

- E-beam energy uncertainty

• Preliminary errors conservatively 
estimated

• Some studies have common 
uncertainty sources

→ Further error reduction expected with 
improvement of analysis

• Preliminary systematic uncertainties

- From HERA:                   0.70%

- From laser:                     0.75%

- From detector:                0.1%

→ Total (absolute):   δP ~ 1% 

• All data has been analyzed by now

→ Publication with final data analysis and 

errors being prepared and expected this 

year

σ = 0.032
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∆P

P

Conclusion and Outlook

• Combined efficiency of TPOL and LPOL polarimeters

- Around 99% over all years of HERA II running (2001-2007)

• Concurrent running of either TPOL and LPOL or TPOL and Cavity LPOL

- As Cavity LPOL and LPOL shared the same detector location

• Polarization measurement with a high finesse Fabry-Perot cavity at HERA 
has been established

- Successful operation of Cavity LPOL with increasing data taking frequency till the 

end of HERA

• All three polarimeters work on finalization of their systematic uncertainties

- Current status: 

• Final polarization values and uncertainties expected this year

→ Combined systematic uncertainty is hoped to be reduced to at least <3%!

(@ P = 40-50%)1.4 - 2.5%Cavity

2.0%LPOL
3.4%

2.9%TPOL
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Literature  - HERA and Lepton Polarization

• Sokolov-Ternov effect

• Spin Rotators

• Compton Scattering

• Physics case
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Literature  - Three Polarimeters

• General

• Transverse Polarimeter

• Longitudinal Polarimeter

• Cavity longitudinal Polarimeter


