

Polarization and Polarimetry at HERA

Blanka Sobloher for the POL2000 collaboration

PST2009 September 7th 2009 Ferrara, Italy

Overview - Polarization and Polarimetry at HERA

- HERA and lepton polarization
 - HERA
 - Physics case
 - Sokolov-Ternov effect
 - Spin rotators
 - Polarization at HERA
 - Compton scattering

- Electron (positron) proton collider
- Why longitudinal polarization?
- Build-up of transverse polarization
- Rotating transverse to longitudinal
- Example for polarization build-up
- Basis for all three polarimeters at HERA

- Three polarimeters
 - Transverse polarimeter TPOL
 - Experimental setup, apparatus, polarization measurement and systematic uncertainties
 - Longitudinal polarimeter LPOL
 - Experimental setup, apparatus, polarization measurement and systematic uncertainties
 - Cavity longitudinal polarimeter
 - Experimental setup, apparatus, polarization measurement and systematic studies
- Conclusion and Outlook

HERA – Electron (Positron) Proton Collider

- *e*[±]*p* collider at DESY in Hamburg, Germany
- Operation 1992 2007
- Colliding experiments:

• Fixed target experiments:

HERMES, HERA-b (with *p*-beam)

- *e*-beam polarized
- Longitudinal polarization delivered to
 - HERMES since 1995 (HERA I)
 - H1 and ZEUS since 2001 (HERA II)

HERA – Electron (Positron) Proton Collider

- *e*[±]*p* collider at DESY in Hamburg, Germany
- Operation 1992 2007
- Colliding experiments:

• Fixed target experiments:

HERMES, HERA-b (with *p*-beam)

- *e*-beam polarized
- Longitudinal polarization delivered to
 - HERMES since 1995 (HERA I)
 - H1 and ZEUS since 2001 (HERA II)
- Integrated luminosity: ~0.5 fb⁻¹ collected per colliding experiment

HERMES: Nucleon spin structure

- Determine the spin-dependent structure functions of nucleons
 - \rightarrow Spin-1/2 structure of the proton arises from its constituents:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

HERMES: Nucleon spin structure

- Determine the spin-dependent structure functions of nucleons
 - → Spin-1/2 structure of the proton arises from its constituents

H1 and ZEUS:

- Chirality of charged current interactions
 - Polarization dependence of CC DIS cross section
 - → Linear dependence according to Standard Model for leptons in both helicities
 - Search for right-handed *W* bosons (beyond the Standard Model)
 - Upper limit on non-vanishing cross sections at $P_e = \pm 1$
 - \rightarrow Set lower limit on W_R mass

HERMES: Nucleon spin structure

- Determine the spin-dependent structure functions of nucleons
 - → Spin-1/2 structure of the proton arises from its constituents

H1 and ZEUS:

- Chirality of charged current interactions
- Electroweak parameters: W boson mass
 - Ratio $\sigma_{\rm NC}/\sigma_{\rm CC}$ constrains *W* boson mass in (M_W, M_t) plane.
 - \rightarrow Standard Model consistent if M_W and M_t in agreement with other experiments
 - \rightarrow Test of electroweak universality
 - Sensitivity to electroweak mixing angle

$$\sin^2 \theta_W = 1 - M_W^2 / M_Z^2$$

EW@HERA: [BER+96]

HERMES: Nucleon spin structure

- Determine the spin-dependent structure functions of nucleons
 - → Spin-1/2 structure of the proton arises from its constituents

H1 and ZEUS:

- Chirality of charged current interactions
- Electroweak parameters: W boson mass
- Light quark (u,d) neutral current couplings and γZ⁰ interference structure functions F₂ and xF₃
 - Detailed comparison of polarized NC and CC cross sections
 - \rightarrow Measure all four *u* and *d*-type vector and axial-vector couplings to the Z^0 boson

EW@HERA: [BER+96]

HERMES: Nucleon spin structure

- Determine the spin-dependent structure functions of nucleons
 - → Spin-1/2 structure of the proton arises from its constituents

H1 and ZEUS:

- Chirality of charged current interactions
- Electroweak parameters: W boson mass
- Light quark (u,d) neutral current couplings and γZ⁰ interference structure functions F₂ and xF₃
- Leptoquarks and Supersymmetry, ...
 - NC DIS is main background to LQs, reduced by polarization
 - E.g. R-parity violating squark production, where only e_L^- and e_R^+ are involved

EW@HERA: [BER+96]

Sokolov-Ternov Effect - Build-Up of transverse Polarization

- Storage ring: particles move perpendicular to B-field of bending dipoles
- Particles emit synchrotron radiation upon bending
 - \rightarrow Induces spin-flips
- Spin-flip transition probabilities differ: $\omega_{\uparrow\downarrow} \neq \omega_{\downarrow\uparrow}$
 - → Particle spins align (anti)parallel to B-field, defining polarization:
- Exponential build-up:

Sept. 7th 2009

$$P(t) = P_{\rm st}(1 - e^{-t/\tau_{\rm st}})$$

 $P = \frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}}$

- With asymptotic polarization limit and build-up time:

$$P_{\rm st} = \frac{\omega_{\uparrow\downarrow} - \omega_{\downarrow\uparrow}}{\omega_{\uparrow\downarrow} + \omega_{\downarrow\uparrow}} \approx 92.4\% \qquad \qquad \tau_{\rm st} = \frac{1}{\omega_{\uparrow\downarrow} + \omega_{\downarrow\uparrow}} \approx 100 {\rm s} \cdot \frac{\rho^3}{E^5} \cdot \frac{{\rm GeV}^3}{{\rm m}^3}$$

• Depolarizing effects in real machine

PST2009

- Stochastic kicks by emission of synchrotron radiation
 - Induce oscillations of particles around the closed orbit
- Misalignments and field errors in dipoles and quadrupoles
 - Induce spin diffusion weakening polarization build-up
- \rightarrow Smaller maximal polarization P and build-up time τ

$$P_{\rm max} < P_{\rm st}$$

0

$$au_{ ext{HERA}} = \mathcal{O}(40 ext{min})$$

	Sokolov-Ternov in storage rings: [ST64,B+94]	
Polarization and Polarimetry at HERA	B. Sobloher	10

 α τ τ 5

Spin Rotators - Rotating transverse to longitudinal

• Arcs of storage ring:

 \rightarrow Transverse polarization must be kept

- Straight sections with interaction points:
 - \rightarrow Longitudinal polarization, if surrounded by a pair of spin rotators
- Rotate natural transverse polarization to longitudinal (and back)
 - By series of 6 alternating vertical and horizontal bends (dipoles)
 - Symmetric scheme
 - Takes part in bending of the arcs (effective horizontal bending)
 - Separation magnets inside experiments
 - Needed for head-on collision scheme
 - Have effect on spin-rotation too
 - Last rotator bend has to be weaker
- Both helicities possible
 - \rightarrow Well-defined helicities: e_L and e_R

11

Polarization at HERA - Example for Polarization Build-Up

- Typical values
 - $P_{\text{max}} \approx 40\%$
 - Rise times $\tau \approx 40$ min
- Continuous monitoring
 - Two fast, independent polarimeters
- Individual from fill to fill
 - Machine tuning to optimize orbits and other machine parameters
- Beam-beam interactions cause beam tune shifts
 - Colliding and non-colliding bunches have different polarization
 - Size of difference is subject to machine tuning
- Complete HERA II running period covered
 - → Over 99% of all physics fills had at least one polarimeter operational

Build-up: [B+94]

Polarization and Polarimetry at HERA

Compton Scattering - Basis for all three Polarimeters at HERA

- Backscatter low-energy photons off high-energy electrons or positrons
- Correlation between scattering angle θ and photon energy E_{γ} $\cos \theta = \frac{E_e - E_{\gamma}(1 + 1/k_i)}{E_e - E_{\gamma}}$
- Kinematical endpoint

Compton edge $E_{\gamma}^{\max} = \frac{2E_e}{2+1/k_i}$

• Cross section dependent on polarization of both particles

$$\frac{d^2\sigma}{dE\,d\phi} = \Sigma_0(E) + S_1\Sigma_1(E)\cos 2\phi + S_3P_Y\Sigma_{2Y}(E)\sin\phi + S_3P_Z\Sigma_{2Z}(E)$$

- S_1 , S_3 : linear and circular components of laser beam polarization
- P_{γ} , P_{Z} : transverse and longitudinal components of lepton beam polarization
- \rightarrow Use asymmetry between $S_3 = +1$ and $S_3 = -1$ states for polarization measurement

$$\mathcal{A}(y, E_{\gamma}) = \frac{\sigma_L(y, E_{\gamma}) - \sigma_R(y, E_{\gamma})}{\sigma_L(y, E_{\gamma}) + \sigma_R(y, E_{\gamma})}$$

Transverse Polarimeter - Experimental Setup

- Measures transverse polarization in straight section West outside any spin rotators
- Operation 1993 2007
- Transverse polarization
 - → Spatial asymmetry between left and right laser helicity states

$$\mathcal{A}(y) = \Delta S_1 \frac{\int_{\Delta E_{\gamma}} \Sigma_1' \, dE_{\gamma}}{\int_{\Delta E_{\gamma}} \Sigma_0 \, dE_{\gamma}} + \Delta S_3 P_y \frac{\int_{\Delta E_{\gamma}} \Sigma_{2y} \, dE_{\gamma}}{\int_{\Delta E_{\gamma}} \Sigma_0 \, dE_{\gamma}}$$

- Single-photon Mode: $n\gamma \approx 0.01$ per bunch crossing
 - Bremsstrahlung's background separately measured with laser off and subtracted statistically

Transverse Polarimeter - Apparatus

- Laser
 - Argon-Ion laser: green 514.5 nm (2.41 eV), 10 W cw
 - Circular polarization by Pockels cell, switched at ≈80 Hz
 - Light polarization monitored behind interaction point using Glan-prism
 - \rightarrow Measured circular polarization S_3 >0.99
- Compact electromagnetic calorimeter
 - Scintillator-tungsten sampling calorimeter, $\sim 19X_0$ deep
 - Read-out with wavelength-shifters from all 4 sides: *Up, Down, Left, Right*
 - Upper and lower half optically isolated

 - \rightarrow Photon energy measurement by energy sum

$$E_{\gamma} = E_{\rm Up} + E_{\rm Down}$$

TPOL: [B+93,B+94]

Polarization and Polarimetry at HERA

Transverse Polarimeter - Apparatus

- Single-photon mode: photon rate ~100kHz
 - Absolute calibration using Compton edge
 - Main background bremsstrahlung
 - Statistical background subtraction using laser off data
 - Separate measurements of colliding and non-colliding bunches
 - Statistical uncertainty $\delta P/P \approx 2-3\%$ per min
 - Single-bunches $\delta P/P \approx 10\%$ per 10 min
- Upgrade 2000/2001
 - Fast DAQ enabling single-bunch measurement
 - Added position sensitive detectors and preradiator of 1X₀ in front of detector (readout frequency ~2 kHz)
 - \rightarrow In-situ measurement of ideal calorimeter response, i.e. $\eta(y)$ -transformation and position dependent total response

TPOL: [B+93,B+94]

Transverse Polarimeter - Apparatus

- Single-photon mode: photon rate ~100kHz
 - Absolute calibration using Compton edge
 - Main background bremsstrahlung
 - Statistical background subtraction using laser off data
 - Separate measurements of colliding and non-colliding bunches
 - Statistical uncertainty $\delta P/P \approx 2-3\%$ per min
 - Single-bunches $\delta P/P \approx 10\%$ per 10 min
- Upgrade 2000/2001
 - Fast DAQ enabling single-bunch measurement
 - Added position sensitive detectors and preradiator of 1X₀ in front of detector (readout frequency ~2 kHz)
 - \rightarrow In-situ measurement of ideal calorimeter response, i.e. $\eta(y)$ -transformation and position dependent total response
 - Fit with analytical physical model using em shower description and detector effects

TPOL: [B+93,B+94]

Transverse Polarimeter - Polarization Measurement

- Polarization measurement using spatial asymmetry of energy asymmetry η, switching laser between left and right
 - Polarization given by "shift of means"

 $\Delta \bar{\eta} := \bar{\eta}_{\mathrm{L}} - \bar{\eta}_{\mathrm{R}} := \Delta S_3 P_y \Pi_{\eta}$

- HERA I analyzing power Π_η
 - Using Monte Carlo and rise time measurements in flat machine
- HERA II analyzing power Π_η
 - Beam conditions and detector changed
 - More variable beam size and divergence (focus) and Compton interaction distance to calorimeter
 - Exchanged calorimeter and added dead material in front
 - → Analyzing power became dependent on beam divergence and IP distance

 $\Pi_{\eta} \to \Pi_{\eta}(\sigma_{\rm beam}, D_{\rm IP})$

- Determination of analyzing power dependencies for final polarization values still under study using Monte Carlo
- → Planned: improvement of absolute scale and dependencies based on measured $\eta(y)$ -transformation

TPOL: [B+93,B+94]

Transverse Polarimeter - Systematic Uncertainties

- Dominant contribution: analyzing power Π_n
 - Dependence on intrinsic beam width and divergence (focus)
 - Dependence on distance of Compton interaction to calorimeter (D_{IP})
 - Absolute scale
- Focus dependence included 2004 as correction to analyzing power, but not for IP distance
- Current contribution from IP distance is estimated as upper limit from geometrical acceptance
- The three contributions are correlated
 - → Need detailed realistic simulation of magnetic beam line (interaction vertex distribution)
 - \rightarrow Need precise calorimeter response, i.e. $\eta(y)$ -transformation and energy resolution for simulation

Source of systematic uncertainty	$\Delta P/P$
Electronic noise	$<\pm 0.1\%$
Calorimeter calibration	$< \pm 0.1 \%$
Background subtraction	$< \pm 0.1 \%$
Laser light polarisation	$\pm 0.1\%$
Compton beam centering	$\pm 0.4\%$
Focus correction	$\pm 1.0\%$
Interaction point region	$\pm 0.3\%$
Interaction point distance	$\pm 2.1\%$
Absolute analyzing power scale	$\pm 1.7\%$
Total systematic uncertainty	$\pm 2.9\%$

Systematics: [A+07b,CGOS04]

Longitudinal Polarimeter - Experimental Setup

- Measures longitudinal polarization in-between the HERMES spin rotators
- Operation 1997 2007
- Longitudinal polarization
 - → Energy dependent asymmetry between left and right laser helicity states

$$\mathcal{A}(E_{\gamma}) = \Delta S_3 P_z \frac{\Sigma_{2z}}{\Sigma_0}$$

- Multi-photon Mode: $n_{\gamma} \approx 1000$ per bunch crossing
 - Bremsstrahlung's background from long straight section too high for single-photon mode

Hall North

HERA

ZEUS

Hall West HERA–B

80

70 60

50 40

30

20 10

 $d\sigma_{c}/dE_{\gamma}$ (mb/GeV)

Hall East

HERMES

LPOL

Longitudinal Polarimeter - Apparatus

- Compact electromagnetic Čerenkov calorimeter
 - 4 NaBi(WO₄)₂ crystals, ~19 X_0 deep, with 4 PMTs
 - Crystals optically isolated
 - \rightarrow Energy sharing allows positioning to < 1 mm
- Laser
 - Frequency-doubled Nd:YAG laser: green 532 nm (2.33 eV)
 - Pulsed at 100 Hz, 3 ns long with 100 mJ per pulse
 - Synchronized with lepton bunches
 - Trigger for read-out at 200Hz, every 2nd event is background event
 - Circular polarization by Pockels cell, flipped every pulse
 - Monitored using Glan-Thompson prism
 - \rightarrow Measured circular polarization $S_3 > 0.999$

Longitudinal Polarimeter - Polarization Measurement

• Multi-photon mode: Detector signal corresponds to integral of energy-weighted cross-section

$$I_{S_3 P_z} := \int_{E_{\gamma}^{\min}}^{E_{\gamma}^{\max}} r(E_{\gamma}) E_{\gamma} \frac{d\sigma_{\mathrm{C}}}{dE_{\gamma}} dE_{\gamma}$$

- $r(E_{\gamma})$ = single-photon relative response function, constant for linear detector
- E_{γ}^{\min} = energy threshold of detector
- Energy dependent asymmetry then becomes

$$\mathcal{A} := \frac{I_{S_3 P_z < 0} - I_{S_3 P_z > 0}}{I_{S_3 P_z < 0} + I_{S_3 P_z > 0}} = \Delta S_3 P_z \Pi_z$$

- Analyzing power from test beam: $\Pi_{z} = 0.1929 \pm 0.0017$
- Energy-weighted cross section distributions differ most at Compton edge

 \rightarrow Not strongly dependent on E_{γ}^{\min}

Calorimeter response is critical issue

 \rightarrow Total energy in detector: E > 5 TeV !

- Statistical uncertainty $\delta P/P \approx 1-2\%$ per minute
 - Single-bunches: $\delta P/P \approx 6\%$ per 5 minutes

22

Longitudinal Polarimeter - Systematic Uncertainties

- Dominant uncertainty: analyzing power
 - Determined from test beam measurements
 - Cross-checked with data taken with a tungsten-scintillator sampling calorimeter
- Contributions to analyzing power
 - Shape of single-photon response function
 - \rightarrow Measured in test beams
 - Extrapolation single-photon to multiphoton mode
 - → Measured in tunnel using a NDF to attenuate signal over 3 orders of magnitude
- Replacement of crystals in 2004
 - Performance cross-checked with sampling calorimeter, but not in test beams
 - \rightarrow Extra uncertainty as upper limit

$$\rightarrow$$
 Current best estimate $\frac{\Delta P}{P} = 2.0\%$

Source of systematic uncertainty	$\Delta P/P$
Analyzing power	$\pm 1.2\%$
Response function from test beam	$\pm 0.9\%$
Extrapolation single- to multi-photon	$\pm 0.8\%$
Analyzing power long-term stability	$\pm 0.5\%$
Gain matching	$\pm 0.3\%$
Laser light polarization	$\pm 0.2\%$
Helicity dependent luminosity	$\pm 0.4\%$
Interaction region stability	$\pm 0.8\%$
Total (HERA I)	$\pm 1.6\%$
Extra uncertainty for new calorimeter	$\leq \pm 1.2\%$
Total (HERA II)	$\pm 2.0\%$

LPOL Systematics: [*B*⁺02a, *A*⁺05, *A*⁺07b]

Longitudinal Polarimeter - Systematic Uncertainties

- Dominant uncertainty: analyzing power
 - Determined from test beam measurements
 - Cross-checked with data taken with a tungsten-scintillator sampling calorimeter
- Contributions to analyzing power
 - Shape of single-photon response function
 - \rightarrow Measured in test beams
 - Extrapolation single-photon to multiphoton mode
 - → Measured in tunnel using a NDF to attenuate signal over 3 orders of magnitude
- Replacement of crystals in 2004
 - Performance cross-checked with sampling calorimeter, but not in test beams
 - \rightarrow Extra uncertainty as upper limit

$$\rightarrow$$
 Current best estimate $\frac{\Delta P}{P} = 2.0\%$

Source of systematic uncertainty	$\Delta P/P$
Analyzing power	$\pm 1.2\%$
Response function from test beam	$\pm 0.9\%$
Extrapolation single- to multi-photon	$\pm 0.8\%$
Analyzing power long-term stability	$\pm 0.5\%$
Gain matching	$\pm 0.3\%$
Laser light polarization	$\pm 0.2\%$
Helicity dependent luminosity	$\pm 0.4\%$
Interaction region stability	$\pm 0.8\%$
Total (HERA I)	$\pm 1.6\%$
Extra uncertainty for new calorimeter	$\leq \pm 1.2\%$
Total (HERA II)	$\pm 2.0\%$

Cavity Longitudinal Polarimeter - Motivation

- Why building a third polarimeter?
 - Both transverse and longitudinal polarimeter are statistically limited
 - TPOL needing scattering rate <100 kHz to maintain single-photon mode
 - LPOL being limited by laser pulse frequency of 100 Hz
 - → Statistical precision of groups of bunches on per minute level sufficient, but faster bunch-wise measurement desirable
 - Both polarimeters have systematical uncertainties around 2% or higher
 - Spatial asymmetries at TPOL are difficult to handle
 - Energy asymmetries at LPOL easier, but self-calibrating properties by using markers in the energy distribution of single or few photons are unavailable
 - → The combined results of H1 and ZEUS need a more precise polarization measurement in order not to be dominated by polarization
- Third polarimeter project employs a Fabry-Perot cavity to stock laser photons with a very high density at the Compton interaction point
 - Works in continuous few-photon mode: $n\gamma \approx 1$ per bunch crossing
 - Very high statistics with scattering rates in O(MHz)
 - Self-calibrating properties: Use Compton and Bremsstrahlung's edges for calibration
 - \rightarrow Very fast measurement with small systematics
 - \rightarrow Technically very challenging

Cavity LPOL: [Zha01, Zom03]

Cavity Longitudinal Polarimeter - Experimental Setup

- Measures longitudinal polarization in-between the HERMES spin rotators
 - Fabry-Perot cavity installed spring 2003
 - First Compton events observed in March 2005
 - Much increased operation till end of HERA
 - Over 450 hours of efficient data taken (Oct. 2006 – end)

• Continuous few-photon mode: $n\gamma \approx 1$ per bunch crossing

 \rightarrow Very high statistics, one measurement per bunch and helicity only \approx 10 seconds

Cavity Longitudinal Polarimeter - Apparatus

• Laser

- Infrared Nd:YAG laser: 1064nm, initial power 0.7W, cw
- Laser and all optical components on table in tunnel
- Circular polarization by rotating quarter wave plate, flipped every few seconds
- Monitored and measured behind cavity
- High finesse Fabry-Perot Cavity
 - Length 2 m, crossing angle 3.3°
 - Cavity mirrors inside vacuum vessel
 - Finesse ≈30000
 - Amplification of laser power by means of constructive interference, gain ≈5000
 - \rightarrow Laser power stored \approx 3 kW

Cavity LPOL: [Zha01, Zom03]

Cavity Longitudinal Polarimeter - Polarization Measurement

- Measures longitudinal polarization by energy asymmetry from Compton cross section
- Overall fit to energy distributions for left and right laser helicity states
- Absolute calibration using Compton and Bremsstrahlung's edge positions
- Contributions included in description
 - Synchrotron radiation peak
 - Black body radiation
 - Compton peak, rate and flux
 - Bremsstrahlung's edge, rate and flux
 - Detector resolution + non-linearity parameters
- Detailed Monte Carlo simulation of the calorimeter response
 - E.g. description of the synchrotron radiation peak using MC input

Cavity Longitudinal Polarimeter - Polarization Measurement

- Measures longitudinal polarization by energy asymmetry from Compton cross section
- Overall fit to energy distributions for left and right laser helicity states
- Absolute calibration using Compton and Bremsstrahlung's edge positions
- Contributions included in description
 - Synchrotron radiation peak
 - Black body radiation
 - Compton peak, rate and flux
 - Bremsstrahlung's edge, rate and flux
 - Detector resolution + non-linearity parameters
- Detailed Monte Carlo simulation of the calorimeter response
 - E.g. description of the synchrotron radiation peak using MC input

Cavity LPOL: [Zha01, Zom03]

Cavity Longitudinal Polarimeter - Systematic Studies

- Statistical uncertainties
 - $\delta P/P \approx 3\%$ per bunch and 10 s doublet
 - \rightarrow Much higher statistical precision than other two polarimeters
- Systematical studies include
 - Laser polarization uncertainty
 - Laser circularity (MOCO position scan)
 - Laser power variation
 - Electronic noise
 - Detector parameters
 - Calorimeter position scan in x and y
 - Synchrotron radiation cut
 - Black body temperature
 - Beam position scan
 - E-beam energy uncertainty
- Preliminary errors conservatively estimated
- Some studies have common uncertainty sources
 - → Further error reduction expected with improvement of analysis

- Preliminary systematic uncertainties
 - From HERA: 0.70%
 - From laser: 0.75%
 - From detector: 0.1%
 - \rightarrow Total (absolute): $\delta P \sim 1\%$
- All data has been analyzed by now
- → Publication with final data analysis and errors being prepared and expected this year

Conclusion and Outlook

- Combined efficiency of TPOL and LPOL polarimeters
 - Around 99% over all years of HERA II running (2001-2007)
- Concurrent running of either TPOL and LPOL or TPOL and Cavity LPOL
 - As Cavity LPOL and LPOL shared the same detector location
- Polarization measurement with a high finesse Fabry-Perot cavity at HERA has been established
 - Successful operation of Cavity LPOL with increasing data taking frequency till the end of HERA
- All three polarimeters work on finalization of their systematic uncertainties

- Current status:

$$\begin{array}{c}
\Delta P \\
\hline
P
\end{array}$$
TPOL
2.9%
3.4%
$$\begin{array}{c}
\Delta P \\
\hline
P
\end{array}$$
Cavity
1.4 - 2.5%
(@ P = 40-50%)

• Final polarization values and uncertainties expected this year

 \rightarrow Combined systematic uncertainty is hoped to be reduced to at least <3%!

Literature - HERA and Lepton Polarization

• Sokolov-Ternov effect

[ST64] A. A. Sokolov and I. M. Ternov, On polarization and spin effects in the theory of synchrotron radiation, Phys. Dokl. 8(1964) 1203

• Spin Rotators

[BS86] J. Buon and K. Steffen, *HERA variable energy 'mini' spin rotator and headon e p* collision scheme with choice of electron helicity, Nucl. Instr. Meth. **A245**(1986) 248

Compton Scattering

- [LT54a] F. Lipps and H. A. Tolhoek, *Polarization phenomena of electrons and photons*. I General method and applicaton to compton scattering, Physica **20**(1954) 85.
- [LT54b] F. Lipps and H. A. Tolhoek, Polarization phenomena of electrons and photons. II Results from compton scattering, Physica 20(1954) 385.

• Physics case

- [Ant06] H1Collaboration, В. Antunovic, Charged current interactions HERA longitudinally scattering withpolarised inepatelec-H1prelim-06-041. URL (2006).presented at DIS 2006.trons http://www-h1.desy.de/h1/www/publications/conf/conf_list.html.
- [BER⁺96] R. Beyer, E. Elsen, S. Riess, F. Zetsche, and H. Spiesberger, *Electroweak precision tests with deep inelastic scattering at HERA* (1996), Prepared for Workshop on Future Physics at HERA (Preceded by meetings 25-26 Sep 1995 and 7-9 Feb 1996 at DESY), Hamburg, Germany, 30-31 May 1996.
- [Gla09] S. Glazov, *Proton Structure* (2009), Prepared for XXIV International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, Germany, 16-22 August 2009.

Literature - Three Polarimeters

General

[A⁺07b] A. Airapetian et al., Using the HERA Polarization Measurements - Recommendations for the Summer 2007 Conferences (2007), POL2000-2007-001, URL http://www.desy.de/~pol2000/documents.html.

• Transverse Polarimeter

- [B⁺93] D. P. Barber *et al.*, *The HERA polarimeter and the first observation of electron* spin polarization at HERA, Nucl. Instrum. Meth. **A329**(1993) 79
- [B⁺94] D. P. Barber *et al.*, *High spin polarization at the HERA electron storage ring*, Nucl. Instrum. Meth. **A338**(1994) 166
- [CGOS04] F. Corriveau, V. Garibyan, O. Ota, and S. Schmitt, A Calibration of the HERA Transverse Polarimeter for the 2003/2004 Data, internal note (2004), URL http://www.desy.de/~pol2000/documents.html.

• Longitudinal Polarimeter

- [A⁺05] A. Airapetian *et al.*, Overview on systematic Studies of the HERMES Longitudinal Polarimeter during the 2005 HERA Running Period (2005), HERMES
- [B⁺02a] M. Beckmann *et al.*, *The Longitudinal Polarimeter at HERA*, Nucl. Instrum. Meth. **A479**(2002) 334, DESY-00-106, [physics/0009047]

Cavity longitudinal Polarimeter

- [Zha01] Z. Zhang, Electron polarization measurement using a Fabry-Pérot cavity at HERA (2001), LAL-01-87, PRHEP-HEP2001-261, Talk given at International Europhysics Conference on High-Energy Physics (HEP 2001), Budapest, Hungary, 12-18 Jul 2001. Published in *Budapest 2001, High energy physics* hep2001/261, [hep-ex/0201033]
- [Zom03] F. Zomer, A high power Fabry-Perot resonator for precision Compton Polarimetry with the longitudinally polarised lepton beams at HERA, Habilitation thesis, Université de Paris-Sud XI, Laboratoire de l'Accélérateur Linéaire d'Orsay, Orsay, France (2003), LAL 03-12.