Polarisation Measurement at HERA II

DIS workshop 2002, Kraków

Jenny Böhme for the POL2000 group

- Introduction & Physics Motivation
- The Longitudinal Polarimeter
- The Transverse Polarimeter
- Summary & Outlook

Introduction

HERA I :

- HERMES: longitudinally polarised leptons, polarised protons
- H1, ZEUS: transversely polarised ("unpolarised") leptons, unpolarised protons

Physics Motivation: Charged Current

Charged current cross-section depends linearly polarisation:

- electrons: $\sigma_{CC}(P) = (1-P) \sigma_{CC}(0)$
- positrons: $\sigma_{CC}(P) = (1+P) \sigma_{CC}(0)$
- => precise knowledge of polarisation as important as of luminosity! In order to...
 - test SM cross-section,
 - extrapolate to $P=\pm 1$
 - search for right-handed charged currents
- ... we need $\delta P/P < 1\%$, otherwise dominant syst. error at high Q²!

Physics Motivation: Neutral Currents

- x-section polarisation dependent due to Z^0 exchange and 0.21 $Z^0 - \gamma$ -interference
- =>vector & axialvector couplings of Z^0 to u and d quarks: 0
 - ~250 pb⁻¹ for each lepton charge & polarisation sign
 - a_u, a_d also with P=0
 - P≥0.5 allows precise extraction of v_u, v_d
- ...highly sensitive to systematic polarisation deviations!

Compton Scattering

- Kinematics described by 2 variables:
 - polar angle $\theta \iff E_{\gamma}$ (photon energy)
 - azimutal angle $\phi => y$ (vert. coordinate)
- S1, S3: lin. & circ. laser polarisation
- **P_Y**,**P_Z**: transv. & long. e polarisation

 $\frac{d^2\sigma}{dEd\phi} = \Sigma_0(E) + S_1 \Sigma_1(E) \cos 2\phi + S_3 \left(\mathbf{P}_{\mathbf{Y}} \Sigma_{2\mathbf{Y}}(E) \sin \phi + \mathbf{P}_{\mathbf{Z}} \Sigma_{2\mathbf{Z}}(E) \right)$

- LPOL: needs only energy dependence
- TPOL: needs energy and y, i.e. full 2D cross section

Important: use asymmetry between $S_3 = +1$ and $S_3 = -1$

LPOL: Principle of Measurement

"Single Photon Mode": $n_{\gamma} \cong 0.001$

- can use single photon cross-section
- compton edge -> energy calibration
- but at LPOL location in HERA: Bremsstrahlung background to high s/b ≈ 0.2 => stat. error too large

"Multiphoton Mode": $n_{\gamma} \cong 1000$

- no background problem
- stat. error $\cong 0.01$ per minute
- but: need precise knowledge of energy response of calorimeter
- syst. error = \pm 1.6% (rel.)
- high power laser only at 100Hz (HERA bunch spacing ≅ 10MHz)

Upgrade of the LPOL

- Aim: "Few Photon Mode": $n_{\gamma} \ge 0.1 =$ overlay of up to 2 or 3 γ s
 - can still use single photon spectra to extract polarisation
 - => compton edge calibration, less syst. uncertainties
 - enough statistics to overcome background
- \Rightarrow expect $\delta P/P \cong 0.001 (!)$
- but: need 10kW cw laser!
- solution: use 1W cw laser + Fabry–Perot cavity with $Q \cong 10000$

TPOL: Principle of Measurement

main uncertainty:
 η-y-transformation

- depends on transverse shower shape in calorimeter
- up to now: known from testbeam only....

- have to measure E_{γ} and y!
- Calorimeter has upper and lower half:
 - $\bullet \ E_{\gamma} = \ E_{up} + E_{down}$
 - $y = y(\eta)$, $\eta = (E_{up} E_{down})/(E_{up} + E_{down})$
- use asymmetry w.r.t. laser helicity
 => less sensitive to systematics

TPOL upgrade: Silicon Strip Detector

 new SI strip detector in y and x in front of calo as calibration device

Compton Beam

Calibration Scintillating Fiber Driven by a Stepping Motor

- first in–situ measurements of η-y-transformation with new SI tracker done
- Studies in progress!

TPOL upgrade: Data Acquisition

- completely new DAQ: hardware, software, slowcontrols,...
- less noisy,
 eventwise pedestal subtraction
- much faster readout (100kHz)
 => bunch by bunch measurements
- first data (@I_e =3mA): $\delta P_{stat} = 0.015$ => @I_e = 60mA : $\delta P_{stat} = 0.0044$
- but what about δP_{syst} ?

reminder: aim for $\delta P_{tot}/P < 1\%$, otherwise dominant systematic error for H1 and ZEUS measurements at high Q²!

TPOL: Online Analysis

- integrate $d^2\sigma/dE_{\gamma}d\eta$ over most sensitive E_{γ} and η range
- form asymmetry w.r.t. to laser helicity:

$$\frac{(\sigma_{\mathrm{R}} - \sigma_{\mathrm{L}})}{(\sigma_{\mathrm{R}} + \sigma_{\mathrm{L}})} \cong 2 |S_3| \mathbf{P}_{\mathbf{Y}} \frac{\iint \Sigma_{2\mathrm{Y}} \, d\mathrm{E}_{\gamma} d\eta}{\iint \Sigma_{0} d\mathrm{E}_{\gamma} d\eta} \implies 2 |S_3| \mathbf{P}_{\mathbf{Y}} \Pi$$

 Π : "analysing power" taken from risetime calibration &MC

- fast & simple method
- BUT: only valid if ALL parameters are:
 - equal to MC values
 - and constant over time.
 - especially: η -y-transformation has to be "known" a priori!
- o.k. within ~3.4%...
 - ... probably not true down to subpercent level!

TPOL: Analysis Upgrade

- Idea: fit double differential x-section
 => no assumptions about:
 - linear laser polarisation
 - η–y–transformation
 - calibration, alignment, resolution ...

RIGHT+LEFT

RIGHT-LEFT

- First step : fit sum of spectra for laser both helicities => calibration
- Second step: fit difference => polarisation
- analysis not final yet
- no final systematic error yet

TPOL: Analysis Upgrade (cont'd)

Polarisation Measurement @ HERA II – 13

Summary & Outlook

- Longitudinal Polarimeter:
 - operational, no major changes w.r.t. HERA I
 - laser cavity upgrade to come!
- Transverse Polarimeter:
 - upgrade on
 - DAQ: mostly finished
 - Silicon strip detector: working
 - Analysis: in progress
 - understanding device down to < 1% seems feasible

The POL2000 group and the HERA experiments are looking forward to taking new data with polarised lepton beam!