Status of the TPOL Simulation

TPOL Geant Simulation
in Comparison to Data
and
Parametrized Calorimeter Response

Blanka Sobloher
POL2000 meeting, 10th February 2010



TPOL Geant Monte Carlo - status as of first large MC prod.

e First large scale Monte Carlo production last year,
which is the status as of November (PRC)

— Relied on the general tuning status as traditioned by
several ,tuners‘ over ~3years

— Apparently Analysing power of the shift of means
method is way too far off to be correct

— Additionaly the energy resolution of this setup is too
bad

— Need to tune the MC better

e The reason for this large difference in AP
— Energy asymmetry function np(y) (UP/DOWN)
— Energy resolution
— Beam size (emittance of beam)
— Calibration and centering

— .7

e Right: n(y) of converted photons of Geant MC in
comparison to the measurement using the
combined silicon calorimeter data including a
model fit
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Silicon Calorimeter Data - Working Horse and Guinea Pig

e Combined silicon calorimeter data

— Mainly table scans taken at the end of june 2007, but
comparing to scans and other data taken throughout

Energy asymmetry n fit
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Silicon Calorimeter Data - Working Horse and Guinea Pig

. - . Energy sum fit
e Combined silicon calorimeter data 4 03 prr—r—f—r—r—r—rr .g.’f[ e
. . = " | DATA: conv (si cluster, ncy=1) { DATA: nonconv (ncy+nex=p)
— Mainly table scans taken at the end of june 2007, but S - DATA: conv (ney+nex>0) | | | DATA: all :
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resolution and edges with y (e.g. inside/outside E res. term a A Compton edges (GeV)
gap, etc)
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Tuning of Geant MC - A never-ending Story

e Variations and checks to improve the response

— Geometry: materials, stacking (Densimet, lead frames, scintillators,
air), sizes, thicknesses, position and thickness of preradiator and
silicon planes
— Obvious things like beam size (by emittance), optics, etc...
— Took out any additional smearing to simulate photon statistics
— Performed variations with particle gun (same beam spot, fixed
energies 1-30GeV):
» Preradiator thickness
» Gap width
» Parameters of the simulation: ILOSS, EPSIL, DRCUT in
various combinations
» Scintillator thickness/density
> Absorber/Lead thickness, Absorber density A’
» Blinding deliberately the first scintillator layer (rad. damage) ;
— Check, if derived resolution terms differ from those obtained by £

fitting Compton edges in Compton setups.... Yes, mostly
e Most variations allow to change obvious things
— e.g. preradiator thickness <> conversion factor

— But most worsen the resolution (like too thick prerad, too large
gap,etc)

— But most of them do not influence the relative behaviour of leakage
of photon classes, i.e. the difference between the Compton edges

— Most of them do not help in improving the resolution or the distance
of the resolution terms of both classes...
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Tuning of Geant MC - Variations and Checks
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e Variations and checks to improve the response
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Tuning of Geant MC - Variations and Checks

Variations and checks to improve the response

— What about blinding of the first scintillator layer?

The first layer sees a very small/dense spray of particles with high

energies

— In that region the scintillators are more likely to be damaged than in
other regions or layers deeper inside of the calorimeter

Radiation damage would make the scintillator yellow

— decrease of transmission of scintillator light

— decrease of generation of scintillator light

Simple model: add an inefficiency, gaussian shape with
approximate beam sizes in the center of the first layer

— simulates the loss of generated and transmitted light output of that

region

— does not affect the transmission of light through this region but
generated at different places

— noticeable improvement in n(y), but behaviour of edges and
resolution in blinded region contradicts data!

—Not the right track!
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Tuning of Geant MC - Summary

e What has been learned from these variations?
Energy asymmetry 1 fit

LA [N R N L L L L L B B B L L L B

Calorimeter centre |

— Tuning Geant is VERY consuming: (wo)man time(!), CPU
time, disk space, my and my colleagues patience... -to be
compared to improvements achieved

e |.e. 8 weeks later, ~1600 ntuples, ~15000 CPUh and
~1TB disk space

— FLC has used currently 96% resource share on the BIRD 0.8
farm (should be only about 6%...) — we are sharing with -

{ Silicon + calorimeter data
(table scan June 2007)
— Model fit to data
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should still be a problem (didn‘t check that explicitly due to -20 -10 0 10 20

time/computing power/etc) Silicon y-position (mm)
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Tuning of Geant MC - Summary

e What has been learned from these variations?
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Parametrized Calorimeter Response - An Offer

e A parametrized modeling of the calorimeter response e Nonconverted photon
— Implemented into the MC (in cvs), block ,calopara’ — No conversion width folded into the single
— Incorporates the extensive model used to fit the silicon particle shower distribution

calorimeter data » change corresponding length=0

— Can be run in addition to the Geant MC (takes conversion

decision from Geant), and allows to switch off the Geant — Different energy loss due to leakage at the

calorimeter part (makes it some 2-4 orders of magnitude backplane
faster, and allows thus for much higher statistics) > mainly the second shower
> Event generation rate on standard computers as of component, the socalled halo, is
today: 1.3k evts/min with higher drcut, some 600 leaking

evts/min for smaller dreut » adapt relative leakage factor for halo

» Compare this to a 3% statistical error if we generate to fit to data: eloss = 0.991 (total

~3M events per pOInt.” relatlve IOSS = Enonconverted/Econverted)

» Last large MC production: 870 points with 1M each,
untuned (even faster) MC, took about 2weeks
computing time on bird (on ~170CPU's on average)

. . . Energy asymmetry fit
e Parametrized response is a faster solution = 0.03 T |gy & — L —
. ) - | GEANT: noncony - conv (all) | Calorimeter centre ]
- nUD(y)1 EUD(y) are most important for the AP ‘g 0.02 E_ GEANT: nonconv - conv (si) ~ { _E
— Model is fitted to converted photons £ 0.01 ¢ :
— As a physical model it prescribes how to extrapolate to > 0 e ;
nonconverted photons — handles those too 5001 E :
= - t,v""'i E
e But there is more: we have also the LR channels and 2002 F S 3
. . . - — Model prediction for ! L= TY) 2
what about the horizontal direction? PRI P i i i e i RS PR
_ _ 15 .10 -5 0 5 10 15
— Also ng(Y), E r(y) and if one allows for a horizontal Silicon y-position (mm)

dependence (i.e. not entirely flat), then we have four more
functions(x)! Assuming that the problem factorizes in x and y
for all...
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Silicon Calorimeter Data - LR Channels

e Combined silicon calorimeter data for the LR channels

— Same table scan of june 2007 as for the UD curves, but this

: . 0.05
time showing 1, x(y) and Ex(y) = 0.04
. : 35 0.03
e Expect to first order a flat behaviour from n x(y) E 0.02
0.01
— Wiggle in center can be explained with tilt of beam ellipse z 0
-
— Left hand side not understood ?:g'g;
2-0.
o E .(y) also affected 5 v
— by e.g. a gap in the center, but less from light attenuation (L 005
and R see the same scintillator areas, attenuation thus cancels
to first order)
— Expect a larger effect of a geometric light collection factor
attenuating the signal in the center and to the sides -
— Gap appears to be larger, effect of Lead frames (sampling 315.75
fraction and Moliere Radius change are diminished ;;désig
— Energy response can be partly understood and by heuristic ::114 ;g
change of parameters even o o 2 1o 302007 o1t 2 145
fairly modelled (approx.), g RO R g E14.5
though no explicit modelling £ ., © 14
applied for this channels s ] 13.75
E 02
ot M 2 01
[ o = 02
s -0.3
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Silicon Calorimeter Data -

LR Channels

e Combined silicon calorimeter data for the LR channels

— Same table scan of june 2007 as for the UD curves, but this

: . 0.05
time showing n x(y) and E g(y) . 0.04
. : 35 0.03
e Expect to first order a flat behaviour from n x(y) E 0.02
0.01
— Wiggle in center can be explained with tilt of beam ellipse 2
-
— Left hand side not understood ?:g'g;
2-0.
e E ;(y) also affected = :3:33
— by e.g. a gap in the center, but less from light attenuation (L 005
and R see the same scintillator areas, attenuation thus cancels
to first order)
— Expect a larger effect of a geometric light collection factor
attenuating the signal in the center and to the sides -
— Gap appears to be larger, effect of Lead frames (sampling 315-75
fraction and Moliere Radius change are diminished ‘;;désig
— Energy response can be partly understood and by heuristic ::114 ;g
change of parameters even o R 2138 o 302007 o119 2 145
fairly modelled (approx.), g RO R g E14.5
though no explicit modelling £ ; L
applied for this channels b ] 13.75
E 02
40 “ :1:0 E 0
wbie i & -02
<% 04
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Silicon Calorimeter Data - Horizontal Response

e Combined silicon calorimeter data

— Horizontal table scans of june 2007 15.5 Eieres s I
— ot = 1 1 L L} I L L 1 L} I T T L} T | 1 L 1 L I L} T T T [ T 1 L L -
N Expecting to first order flat EUD(X) 315.25 ;— { DATA: conv (si cluster, ncy=1) { DATA: noncony (ncymcx:l}}_;
] ) -, 15 3 t DATA: conv (ncy+nex>0) t DATA: all 3
> Wiggle is not understood £14.75 E | Caliehmister cénties -
» What to do with it? Ignore it, or take some heurisitic EI;"Z'E 3 : : 5
wiggly function? Is it important? *é, 14 _ ; | . ”513;‘* 4
i ' i $13.75 £ ! e -
— Expecting symmetric E, x(X), symmetric around center SHis A —— 5 1}
> Centered around ~10mm on right side and even 1305 Edam(Gblpscan Jue 00 L i e e e e T e o
then asymmetric? -30 -20 -10 0 10 20 30
. . Silicon x-position (mm)
— Nup(X) and n g(x) still missing
» Didn‘t manage to look into this up to now (not trivial,
needs reinterpretation because of change from LR
silicon y to x clusters) o T IIEnergylsumfitII
= = ) 3 =
. - . | DATA: ' (si cluster, ney=1) 1 DATA: 7 =0) 3
e Behaviour of Geant MC concerning LR or x 3 ‘612 | DATA:cnv(aepsners®) | ADATA:AN
dependencies not checked & oo b ot cate E
. o S O F ; i
— Nothing expected there, as only exponential light £ 15 F -
attenuation is implemented, but no x dependencies or ‘% 145 F ! i ' E
asymmetric responses, no geometrical factors (naive S u 2 tagy, s i =
calculations are too large, when compared to data, don‘t 13.5 [ Silicon + calorimeter i E
E data (table scan June 2007) =
Work) 13 1 1 1 1 F 1 1 1 1 L L L L | 1 1 1 1 I 1 L L L [ L 1 1 1
R _ -30 -20 -10 0 10 20 30
— LR modelling is fair, as there a geometrical factor should be Silicon x-position (mm)

much more important than for UD and any x-dependency
would essentially point to a geometrical factor...

» So, the Geant response still has some more things it
doesn‘t reproduce...

e Easier to tune the parametrized response to data
though...
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Summary - Conclusions so far

¢ Quite extensive Geant tuning not entirely successfull

—> Many parameters tuned to data, many paramters studied
— Sitill the main issues of UD response not solved
— Prediction power of this MC concerning an AP is fair
» derived correction functions are not independent of the absolute scale
— This tuning has to come to an end

e Parametrized calorimeter response seems to be more promising

—> Model is successfully fitted to silicon calorimeter data
— Incorporates shower related and many detector related effects
— Can be used for a parametrized modelling of the calorimeter response

» Would reproduce data better
» Allows for much higher statistics and more iterations in systematic studies

» BUT: How to incorporate digitization / cross talk of cables, etc?

— Basic implementation is ready, tuning of final parameters under way
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Outlook - A very personal View

e A possible way to proceed
— Tune the parameters to have energy resolution, E (y) and ngy(y) as close to data as possible + some
approximate functions and parameters to get the other dependencies (LR and horizontal)
— Rerun MC production with caloparam, e.g with optics for 2005
— Large statistics possible: O(108) events per point feasible
— Fill no ntuples, fill immediately into histograms instead, calculate moments online
> Need to take care of calibration and centering prior to production
— Add linear light S; production for the same set of ,MC points’
— Incorporate S, for given values S,, S, in correction function for RMSs and the shift of means function (i.e. the AP)
— Then try a glance at data — with S;, S, and moments on ntuple basis
» New binning and linear light numbers should be available by then
» First possibility to have a look at the correction functions, the new analysis procedure and (hopefully) get a
glimpse at the polarization scale
— Study systematic errors, set the focus on largest (main) errors
» |IP distance and focus as given by procedure
» Table centering
» Photomultiplier gain difference, role of pedestal shifts
» S, systematic error
— Need to study digitization effects, cross talk of cables, etc
» How to incorporate such, if the response is already tuned to data? Digitization module?
— How to incorporate peculiarities of data, e.g. arising from the pilot, the way we were calibrating, centering, etc?
— How to get this stuff through ,the data software chain*?

» E.g. finish the correction functions without them and then generate MC with them and study the systematic
influence? Only feasible, if influences are small...

— What else?...
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