TPOL Calorimeter inspected

Summary report

Blanka Sobloher POL2000 meeting, 10th February 2010

The TPOL Calorimeter - The socalled 'spare'

- Details known about the calorimeter
 - → According to internal paper by Ruh et.al. calorimeter should be identical to the original one
 - Old one described in NIMA-329(1993)79
- Supposed composition
 - → 12 layers of tungsten/scintillator layers
 - → Scintillators: SCSN-38
 - 120x50x2.6mm³, two plates optically decoupled on top of each other
 - \blacktriangleright ρ =1.06g/cm³, R₀=41.31cm, R_M=9.41cm
 - \rightarrow Absorbers: Tungsten alloy (Densimet17)
 - ➢ 60x55x6.2mm³
 - > ρ =17.16g/cm³ (...manufactures dates)
 - > 90.5% W, 6.5% Ni, 3.0% Fe (Densimet D170)
 - ➢ R₀=0.413cm, R_M=1.016cm
 - \rightarrow Absorbers set into Lead frames
 - ➢ 120x100x6.2mm³
 - $\succ \rho$ =11.35g/cm³, R₀=0.561cm, R_M=1.602cm
 - → Scintillators wrapped with Mylar foil and placed in air spaces
 - ➢ Mylar 10µm thick
 - $\succ\,$ Spacers 3mm thick $\,\rightarrow$ 0.4mm air per layer

- Composition is thus
 - $\rightarrow \rho$ =11.86g/cm³ per layer
 - \rightarrow R₀=0.583cm, R_M=1.380cm
 - \rightarrow 1.58 R₀ per layer, 18.9 R₀ over 12 layers
- Inside Lead frames
 - $\rightarrow \rho$ =7.95g/cm³ per layer
 - \rightarrow R₀=0.828cm, R_M=2.219cm
 - \rightarrow 1.09 R₀ per layer, 13.0 R₀ over 12 layers

The TPOL Calorimeter - Opening for Inspection

- Questions arose based on comparisons of data with Geant simulation, if this composition is actually true
- Opening of the calorimeter on 25th January 2010 with inspection of the first two absorber layers
 - \rightarrow Front screws glued to the rods, stack fixed with screws from back
 - Took out the rods and inserted them again from behind
 - → Nylon filaments were glued to the aluminum front plate
 - > Cut the glue to loosen the filaments
 - \rightarrow Lead and aluminum front plate were ,caked'
 - Cut with scalpel at upper left edge
 - \rightarrow Scintillators wrapped in foil
 - Unwrapped scintillators of first layer for inspection

The TPOL Calorimeter - A Look at its Entrails

- Measured sizes and thicknesses of first two
 absorber layers
- Absorbers
 - → 59.9x54.9mm² (± 0.02mm)
 - \rightarrow 6.2mm (± 0.01mm) thick
 - \rightarrow weight 349 g (± 2g) both plates
 - \blacktriangleright ρ =17.1g/cm³ (ca ± 0.2g/cm³)
 - consistent with Densimet
- Lead frames
 - \rightarrow weight 633g and 626g (± 2g)
 - $> \rho = 11.25 g/cm^3 (ca \pm 0.4 g/cm^3)$
 - > consistent with pure lead
 - \rightarrow the two inspected frames differ a bit
 - inner height is different
 - in first frame absorber is decentral with 0.5mm shift upwards, in second it is central
- Scintillator stacking
 - → No visible gap between the two plates, Mylar foil neatly folded

The TPOL Calorimeter - A Look at its Entrails

- Measured sizes and thicknesses of first two absorber layers
- Scintillators
 - \rightarrow 119.9x49.9mm²
 - \rightarrow 2.5mm thick --- this is thinner!
 - \rightarrow weight of two plates = 32g (± 2g)
 - > consistent with polystyrene density
 - $\rightarrow\,$ Measurements with and without Mylar foil
 - consistent with 10µm thickness
 - $\rightarrow\,$ Color clear, shiny, light blue
 - no coloring, no yellowing, not even in the center where the beamspot was during running
 - from optical inspection no hint to any radiation damage

Many thanks to Jan for his help during the inspection!