Converted and nonconverted photons in the TPOL calorimeter

Measuring differences in data and comparison to GEANT expectations

> Blanka Sobloher POL2000 meeting, 26th February 2008

The case - converted and nonconverted photons

- Preradiator of 1X₀ of lead causes 54% of the Compton photons to convert
 - Conversion is necessary to get charged particles measurable by silicon planes
 - An eta-y (or average energy response) measured with combined silicon and calorimeter data is therefore representative for the case of some special converted photons

> Is there a difference between converted and nonconverted photons?

- Any difference should have a direct influence on the way we model our data
- This would include estimations of an Analyzing Power using some eta-y
- Induces need of extrapolation of a 'silicon eta-y' to a 'polarimeter eta-y'
- If so, can this difference be estimated and used for an extrapolation to the polarimeter case?

- Choosing different cuts
 - No clusters: enrich nonconverted photons
 - Many clusters: enrich converted photons
 - No cuts at all: full mixture of converted and nonconverted photons
 - Compton edges are moving!
- Fit of Compton edge
 - Convoluted Compton spectrum with resolution (only statistical term)

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}}$$

- Choosing different cuts
 - No clusters: enrich nonconverted photons
 - Many clusters: enrich converted photons
 - No cuts at all: full mixture of converted and nonconverted photons
 - Compton edges are moving!
- Fit of Compton edge
 - Convoluted Compton spectrum with resolution (only statistical term)

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}}$$

- Choosing different cuts
 - No clusters: enrich nonconverted photons
 - Many clusters: enrich converted photons
 - No cuts at all: full mixture of converted and nonconverted photons
 - Compton edges are moving!
- Fit of Compton edge
 - Convoluted Compton spectrum with resolution (only statistical term)

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}}$$

- Choosing different cuts
 - No clusters: enrich nonconverted photons
 - Many clusters: enrich converted photons
 - No cuts at all: full mixture of converted and nonconverted photons
 - Compton edges are moving!
- Fit of Compton edge
 - Convoluted Compton spectrum with resolution (only statistical term)

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}}$$

- Are the moving edges an artefact of the edge fit?
 - Compare silicon data with enriched converted and nonconverted photons
 - ➢ Not an artefact!

The edges are really moving!

- Comparing fits of Compton edges
 - No cuts on silicon data
 - Polarimeter data taken at the same time
- Compton edges in the polarimeter data
 - Applied the same conversion factor for ADC channels -> GeV as in Silicon data
 - Global scale difference of 1% observable
 - Might be due to different signal handling
 - Compton edges in the polarimeter data show the same structure as seen with the combined silicon-calorimeter data!
 - Energy resolutions in the fit are equivalent!

- Comparing fits of Compton edges
 - No cuts on silicon data
 - Polarimeter data taken at the same time
- Compton edges in the polarimeter data
 - Applied the same conversion factor for ADC channels -> GeV as in Silicon data
 - Global scale difference of 1% observable
 - Might be due to different signal handling
 - Compton edges in the polarimeter data show the same structure as seen with the combined silicon-calorimeter data!
 - Energy resolutions in the fit are equivalent!

A bit of shower theory - What could induce such a difference?

- 1st guess: preradiator represents dead material in front of the calo
 - Upon conversion some energy is lost in the preradiator
 - Fluctuations of the energy loss should contribute to the energy resolution
 - Converted photons should have on average less energy than nonconverted photons
 - Converted photons should have a worse energy resolution
 - \rightarrow Obviously not the case here...
- 2nd guess: energy leaking from the calorimeter

The TPOL calorimeter has finite lateral sizes and is only around 20X₀ deep

- Lateral there should be no difference between the sizes of showers of converted and nonconverted photons
- But showers induced by photons start on average 9/7 X₀ deeper inside the calorimeter than those of charged particles
 - Photon showers are less contained on the backplane
 - Longitudinal leakage is therefore larger for photons than for converted photons and its fluctuation should contribute to the energy resolution

 \rightarrow Looks better in both aspects...

Energy leakage - Illustration with Geant MC

- 2nd guess: energy leaking from the calorimeter
 - examples of showers in the Geant MC:

9GeV converted photon

Energy leakage - In the GEANT Monte Carlo

- Fractional mean energy leaking from the calorimeter
 - shows approx. log(E) behaviour as expected
 - leveling off at low energies possibly due to lateral leakage
 - And yes, photons lose more than converted ones!
- Fractional width of energy leaking from the calorimeter
 - Fluctuations are highly non-gaussian
 - show also approx. log(E) behaviour
 - And yes, photons fluctuate more than converted ones!
 - Fluctuations should contribute to the energy resolution, presumably via a constant term.

Energy leakage - Can it account for the observed differences?

- Compare silicon data samples with enriched converted and nonconverted photons
- Ratio shows a constant behaviour
 - overall energy response as function of y same for all types of events
 - especially lateral leakage doesn't change on that scale
- Measure relative difference
 - Enriched photon sample: Require no clusters at all in x- or y-plane
 - Complete mixture with given conversion fraction of 54%
 - Impurities by converted photons leaving no cluster and efficiency for uncorrelated hits > 0
 - Very low-energetic overlayed Bremsstrahlungs photons can be enriched: they convert with a lower fraction
 - Measured difference can be displayed as a function of one absolute value

Size of difference is very well in agreement with the expectations from the GEANT MC!

Resolution - In the GEANT Monte Carlo

- Different energy loss still visible after signal processing
 - Not the absolut height, but the differences are interesting: same as observed from leakages
- Resolution differs, photons have a worse resolution than converted ones
- Multiplication by sqrt(E) reveals there is more than just the statistical term!
 - Fitting with a constant term gave best results

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{a}{\sqrt{E}}\right)^2 + b^2$$

- Same statistical term: well within 1σ
- Constant terms differ, here:
 - nonconverted photons 3.14%, converted photons 2.11%
 - both together 2.70%, higher than expected from pure mixture (2.58%) → it's not only mixing two spectra with different resolutions but also different absolut scales!

Size of the constant terms are equivalent to the observed differences in resolutions of the edge fits!

Resolution - In the GEANT Monte Carlo

- Different energy loss still visible after signal processing
 - Not the absolut height, but the differences are interesting: same as observed from leakages
- Resolution differs, photons have a worse resolution than converted ones
- Multiplication by sqrt(E) reveals there is more than just the statistical term!
 - Fitting with a constant term gave best results

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{a}{\sqrt{E}}\right)^2 + b^2$$

- Same statistical term: well within 1σ
- Constant terms differ, here:
 - nonconverted photons 3.14%, converted photons 2.11%
 - both together 2.70%, higher than expected from pure mixture (2.58%) → it's not only mixing two spectra with different resolutions but also different absolut scales!

Size of the constant terms are equivalent to the observed differences in resolutions of the edge fits!

Effects on eta-y - given a specific shower modelling

- Retrospective: modelling eta-y means modelling the shower and taking also the effects of a calorimeter into account
 - 3 additive components: short core, long halo and an attenuation due to multiple particles at the beginning of either the long one or both
 - Hardware effects like gap or W-PB border...
- Two main shower components also related to the longitudinal shower development
 - Only the long one will leak and change the fraction of the energy shared between the components
 - But the induced difference is negligible! Also for an Online-Analyzing Power!
 - Expect more differences from the 3rd attenuation component itself → need extrapolation of 'silicon eta-y' to 'polarimeter eta-y'
- But impact on attempts modelling the complete spectrum possibly not negligible!
- Remember: given the preradiator the Compton spectrum we know is actually the superposition of two spectra with different energy resolutions, which have also different absolute scales of up to140MeV!

Effects on eta-y - given a specific shower modelling

- Retrospective: modelling eta-y means modelling the shower and taking also the effects of a calorimeter into account
 - 3 additive components: short core, long halo and an attenuation due to multiple particles at the beginning of either the long one or both
 - Hardware effects like gap or W-Pb border...
- Two main shower components also related to the longitudinal shower development
 - Only the long one will leak and change the fraction of the energy shared between the components
 - But the induced difference is negligible! Also for an Online-Analyzing Power!
 - Expect more differences from the 3rd attenuation component itself → need extrapolation of 'silicon eta-y' to 'polarimeter eta-y'
- But impact on attempts modelling the complete spectrum possibly not negligible!
- Remember: given the preradiator the Compton spectrum we know is actually the superposition of two spectra with different energy resolutions, which have also different absolute scales of up to140MeV!

