Data Taking

- First usable data 26 July 2006
- Efficient running during about 450 hours (from 6 oct 2006 to end)
- Brems : 2 Tera
- Comptons: 900 Giga
- Left and Right laser polarization differ by 60 Giga
- Systematics dominated

Measurement example

Measurement principle

Leak effect

Leak effect and it origin

Hera Beam moves

Histoset ratios For Brem For Compton

1% error in description for gammas>5

саут

Analysis method

Simulation

Cross section: (Brem,Compton,Black) or Energy (synchrotron peak) Calo simulation: Rad peak $\sigma_r^2 = aE$ photon $\sigma_{\gamma}^2 = aE+bE^2$ Or $E=\alpha x^{\mu}$ x following a χ^2 distribution E to ADC conversion: five alternate models such as A=cE/(1+d/E+E*s) Electronic noise: Gaussian

- Likelihood to compare simulation and histogram
 Obtain Erads Brem Black Compton polar (and histo ratios)
- Calo optimization

Considered points

- Detector fitting
- Laser power
- Laser polarisation (moco)
- Hera beam at interaction
- Calorimeter position
- Leak effect
- LPOL and TPOL comparaison

Errors induced by detector determination

- Produce all the doublets
- Subdivide whole sample in ~80 sub periods
- Discriminate on rads brem compton and Tpol flatness
- For each potential systematic error source choose a smaller sub sample (10,6,2) and vary conditions
- Run detector parameter measurements every 25 doublets
- Run polarization measurements
- Make plots comparison
- THEN
- Make full production with best detector ansatz
- Redo full production in reduced space 8 -> 5

Polarisation scan analysis principle of the method

laser power, moco, calo positions, beam position

systematics at prob(50%)moco positionslines: 5syst: 0.0065calorimeter x positionlines: 6 syst: 0.00873calorimeter y positionlines: 10 syst: 0.01137laser powerlines: 4 syst: 0.00644beam positionlines: 12 syst: 0.01035

TOTAL

syst: 0.00922

Leak effect study

- According to the leak model, Energy measured by the adc systemis E_b - A*E_{b-1}. Theoretical hisograms are modified sequentially according to that formula starting from the previous=16 bunch 1.
- To estimate A_{best} LPOLARGATE is run with three different values of A : 0.050 0.055 and 0.060
- For each pola and wlik are summed for each doublet
- Parabola adjustement give the best A and the best pola
- Comparaison with non A pola gives the correction

Statistical uncertainties

- Pola error per bunch and for 10s : 3%
- From detector parameters (*): 0.5 % (fully bunches and doublet correlated during 6mn)

Systematic uncertainties

- From Hera : 0.70%
- From Laser : 0.75%
- From detector: 0.10%
- Total 1. %

END

