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Dominant contribution

Sizeable only at high y (y > ~0.6)
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NC cross section and structure functionsNC cross section and structure functions

• The proton structure functions in QPM:
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- sum of the (anti)quarks density distributions weighted 
with their electric charge squared

• In QCD:                 ~ gluon density  ),( 2QxFL
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Low QLow Q22 event in H1 detectorevent in H1 detector
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Backward Silicon TrackerBackward Silicon Tracker

• Consist of 8 planes and 16 sectors
• Acceptance: 164°<θe<178°
• Angular resolution: 0.1 mrad
• Hit resolution: ~20µm 
• Alignment accuracy: ~0.2 mrad
• Track reconstruction efficiency: ~95%
• Used for reconstruction of vertex and θe 
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Reconstruction of event kinematicsReconstruction of event kinematics
• ‘Electron method’- used for measurements at 0.1<y<0.8:

• ‘Sigma method’- used for 0.002<y<0.1 and also for low Q2 by 
accepting events with Initial State Radiation (ISR):
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Electron energy scale calibrationElectron energy scale calibration

• Use multi-step calibration. 
Correct for the gain difference 
of PMTs and for non-uniformities 
of SpaCal

• Use π0 events to calibrate low 
energy, correct for non-linearity 
and check intermediate range with 
J/ψ and QED Compton events

• The precision of energy calibration: 0.2% at 27.6 GeV to 1% at 2 GeV
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Control distributionsControl distributions

• Require a BST reconstructed  vertex, 
SpaCal cluster and BST track matching 
this cluster

• Good understanding of detector
acceptance and control of the γp
background
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σσrr at low Qat low Q22

• New H1-9900 results extend H1 
measurements to low Q2 and 
high x by using of ISR events

• Significant overlap between
H1-9900 data and previously
published results

• New (9900) data agree well with H1-97,
these are corrected by +3.4% due to 
luminosity tagger acceptance change

• The 95 SVX data are consistent within  
95 data normalisation uncertainty
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Combination of H1 dataCombination of H1 data

• Combine 95, 97, SVX and NVX data taking into account bin-to-bin 
correlated systematic uncertainties

• For Ep=820 GeV data, perform CME correction for y<0.35. Keep 
data separate for y≥0.35

• Systematic errors assumed to be uncorrelated between the different 
data sets

• Good agreement between H1 data: χ2/ndof=86/125

• The precision of the combined data set is high, up to 1.5% in the 
central Q2,x region of the measurement
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Combined reduced cross section [FCombined reduced cross section [F22--f(y)Ff(y)FLL]]

• Measured σr at low 0.2≤Q2≤12 GeV2

and 5•10-6<x<0.02

• Rise of F2 towards low x may be 
described by
for x<0.01

• Fit x-dependences of σr in Q2 bins 
and extract c(Q2), λ(Q2) and R(Q2): 

• Note: this extraction of R(Q2) relies 
on the simple model used for F2
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Fit resultsFit results

• λ~ln(Q2/Λ2) and c(Q2)~const.
for Q2>1 GeV2

• Around Q2=1 GeV2 λ deviates from 
linear ln(Q2/Λ2) dependence

H1 Collaboration, C. Adloff et al., 
Phys.Lett. B520(2001)183 [hep-ex/0108035]

• The value of average R obtained 
from this model is consistent with 
R=0.5, higher vs direct FL
measurements
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ModelsModels
• Fractal fit: based on the concept of self similarity. Structure function F2 parameterised 

using 4 parameters Q0, D0, D1, D3  with D2=1.08 :

• No Fractal parameterisation for FL, use                      with R as an additional parameter

• Colour Dipole Model (CDM) fits: 3 parameter fits. γ*p scattering via γ* splitting 
into dipole which scatters off the proton. In the GBW (Golec-Biernat & Wusthoff) model 
the dipole-proton cross section is given by

• r corresponds to transverse quark-antiquark separation. λ, x0 and σ0 are parameters of 
the model. For              GBW model predicts a saturation with a constant                     

• Another Dipole fit IIM (Iancu, Itakura & Munier) uses different model of cross section

• These two models are considered here as representative for a much larger variety of 
Dipole models
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σσrr and and Dipole modelsand and Dipole models
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• H1 cross section data are well 
described by GBW & IIM Dipole fits

• GBW fit yields a χ2/ndof = 183.1/(149-3)
and IIM a χ2/ndof = 178.2/(149-3)
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FF22 and modelsand models

• Restrict F2 extraction to y<0.6 where 
effect from FL is small

• Steeper rise of F2 from Fractal fit as 
compared to Dipole fits

• The Fractal fit describes data well with 
χ2/ndof = 155.3/(149-5)
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FF22 and Fand FLL from modelsfrom models

• F2 for Q2=1.2 GeV2 from the Fractal and Dipole fits to H1 data.  FL from Dipole fits and using F2 from 
Fractal fit assuming R=0.5

• Good agreement between 3 models in F2 apart from lowest x. Dipole models predict softer
F2 dependence for x < xs• The FL predictions of Dipole models are nearly half of the Fractal result 

• Formally allow FL in Dipole models to scale independently of F2

• BL= 0.54±0.15 (GBW) and BL= 0.17±0.14 (IIM), i.e. IIM model gives consistent description of data 
• Steeper F2 in lambda and Fractal fits lead to large R. Softer F2 of IIM allows to describe data with 

smaller FL
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• The analysis of the H1 low x and Q2 data from HERA-1 is submitted for 
publication [H1 Collaboration. DESY-08-171, Apr 2009. 90pp.  arXiv:0904.0929 [hep-ex]]

• A coherent data set is presented, combining data from dedicated running 
periods in 1995-2000

• The measurement of the reduced cross section reaches 1.5% precision

• The transition region from non-perturbative to deep inelastic behaviour is 
generally well described by the phenomenological models 

• In the deep inelastic region, the data are used as input for the new NLO 
QCD analysis of H1 [H1PDF2009, cf talk of J.Kretzschmar]

• A power law parameterisation of F2 leads to R, which is about twice larger 
compare to Dipole models and the direct measurements of FL [cf talk of 
A.Glazov]

ConclusionsConclusions


