<u>Photoproduction-DIS transition</u> (F_2 at very low Q^2)

Alexey Petrukhin, ITEP/DESY (on behalf of H1 and ZEUS collaborations)

DIFFRACTION 2008 La Londe-les-Maures, France

<u>Content</u>

- Introduction to HERA
- Deep Inelastic Scattering
- Structure function F_2
- Rise of F_2 at low x
- Conclusions

H1 and ZEUS at HERA

- HERA collider at DESY, Hamburg
- *ep* accelerator ring, 27.6 x 920 GeV, $\sqrt{s_{ep}} = 319$ GeV
- Circumference: 6.3km

Η1

• 4 experimantal halls, 2 collider experiments (collected data: 1992-2007)

HERA luminosity

- Luminosity upgrade: mid 2000 end 2001
- Improvement in machine performance
- Low energy running: March June 2007

Inclusive Deep Inelastic Scattering at

Neutral current

 $Q^{2} = -(k-k')^{2}$ - four momentum transfer squared in the reaction $x = \frac{Q^{2}}{2P(k-k')}$ - fraction of the proton momentum carried by the parton $y = Q^{2}/sx$ - inelasticity $s = 4E_{e}E_{p}$ - center-of-mass energy squared 5

<u>Cross section and structure functions</u>

NC Cross Section:

NC Reduced cross section: $\widetilde{\sigma}_{NC}(x, Q^2)$ $\frac{d^2 \sigma_{NC}(e^{\pm} p)}{dxd Q^2} = \frac{2\pi \alpha^2}{x Q^4} Y_+ \begin{bmatrix} \widetilde{F}_2 - \frac{y^2}{Y_+} \widetilde{F}_L \end{bmatrix}$ Dominant contribution $Y_+ = 1 + (1 - y)^2$ Sizeable only at high y (y>~0.6)

• The proton structure function in QPM:

$$F_2 = \sum_i e_i^2 x [q_i(x) + \overline{q}_i(x)]$$

- sum of the (anti)quarks density distributions weighted with their electric charge squared
- Structure function $F_L \sim$ gluon density g(x) in NLO QCD and 0 in QPM

Low Q² event in H1 detector

Kinematic plane coverage

- HERA extends kinematic plane coverage to lower x and higher Q² by 2 orders of magnitude
- H1 and ZEUS overlap with fixed target results in wide range of x and Q²
- H1 SVX, NVX: special runs with open triggers for inclusive DIS events
 - Nominal vertex data access high y region
 - Shifted vertex data access lowerst Q²

Reconstruction of event kinematics

e

ISR:

• 'Electron method'- used for measurements at 0.1<y<0.8:

Electron energy scale calibration

- $\begin{array}{c} & & & \\ &$
- Use multi-step calibration. Correct for the gain difference of PMTs and for non-uniformities of SpaCal
- Use π^0 events to calibrate low energy, correct for non-linearity and check intermediate range with J/ ψ and QED Compton events

• The precision of energy calibration: 0.2% at 27.6 GeV to 1% at 2 GeV

Control distributions

- Require a BST reconstructed vertex inside of the interaction region, SpaCal cluster and BST track matching this cluster
- Good understanding of detector acceptance and control of the γp background

<u>σ_r at very low Q²</u>

- New preliminary results extend H1 measurements to low Q² and high x by using of ISR events
- Significant overlap between H1-0099 prel. data and previously published results
- New prel. data agree well with H1-97 and a bit lower than H1-95 (within normalization uncertainty of 1995 data)

<u>Rise of F₂ towards low x</u>

- F_2 used to fit x-dependences in Q² bins for x<0.01 and W>12 GeV: $F_2=c(Q^2)\cdot x^{-\lambda(Q^2)}$
- $\lambda \sim \ln(Q^2/\Lambda^2)$ and $c(Q^2) \sim const.$ for $Q^2 > 1$ GeV²

• Around $Q^2=1$ GeV² λ deviates from log-dependence

$\underline{F_2}$ at very low Q^2

- F₂ rises towards low x for all measured Q² bins
- H1 prel. data agree with different theoretical models:
 - Fractal fit based on the concept of self similarity 5 parameter model
 - Dipole 3 parameter fits γ*p scattering via γ* splitting into dipole which scatters off the proton. Two different dipole proton cross section models: GBW (Golec-Biernat & Wusthoff) and IIM (Iancu, Itakura & Munier)
- New precision of H1 prel. data:1.5% for $Q^2 > 5GeV^2$

The very low Q² data

$$\sigma_{\gamma^* p}^{eff} = \sigma_T + [1 - f(y)]\sigma_L$$
$$f(y) = \frac{y^2}{[1 + (1 - y)^2]}$$
$$\sigma_{\gamma^* p}^{eff} = \frac{4\pi^2 \alpha}{Q^2 (1 - x)}\sigma_r$$

$$\sigma_{\gamma^* p}^{eff} \approx \sigma_{\gamma^* p}$$
 for W $\leq 200 \, \text{GeV}$

• H1 preliminary data cover the gap between published ZEUS results and agree with them in the regions of overlap

The very low Q² data

- Data from H1, ZEUS and NMC
- Fits to H1 97-00 prel. data only
- HERA data are described by phenomenological predictions

Conclusions

- HERA analyses enter final stage
- New precise low Q² and high x preliminary results are covering the gap at Q² ~1 GeV²
- They are consistent with other data in the regions of overlap
- Precision of ~2–3 % achieved for σ_r
- The HERA data is well described by Dipole and Fractal models