Università degli Studi di Firenze Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica

Ricerca di risonanze nelle collisioni e^-p col rivelatore ZEUS ad HERA

Laureando: Andrea Parenti

Relatore: Dott. Giuseppe Barbagli

Correlatore: Prof. Piero Spillantini

Anno Accademico 1999-2000

Schema dell'esposizione

- Descrizione dell'apparato sperimentale (HERA, ZEUS)
- Selezione degli eventi
- Ricerca di risonanze (Leptoquark)
- Conclusioni

Il collider HERA

Luminosità Integrata (raccolta da ZEUS)

$$L = \int \mathcal{L} dt, \ \# \text{ eventi} = \epsilon \ L \ \sigma$$

Nel 1998-99: $L = 16.71 \text{ pb}^{-1}$; ho partecipato alla presa dati

Processi di diffusione profondamente anelastica (DIS) - Corrente neutra (NC)

 $Q^2 =$ - quadri-impulso scambiato al quadrato

 $x = x_{Bj} =$ frazione di quadri-impulso del protone trasportata dal quark colpito

 $y=\mbox{Nel}$ riferimento del pa riposo, frazione di energia ceduta dall'elettrone

Solo due invarianti indipendenti: $Q^2 = sxy$

Distanza sondata dall'interazione: $d \sim 1/\sqrt{Q^2}$

Sezione d'urto:

$$\frac{d^2 \sigma^{NC}(e^- p)}{dx \ dQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left[xy^2 F_1(x, Q^2) + (1-y)F_2(x, Q^2) + \left(y - \frac{y^2}{2}\right) xF_3(x, Q^2) \right]$$

 $F_1, F_2, F_3 =$ Funzioni di struttura del protone $F_2(x, Q^2) = \sum_q e_q^2 x q(x, Q^2)$ descrive la struttura del protone

Motivazioni dell'analisi

Eccesso di eventi ad alto Q^2 (rispetto alle previsioni del Modello Standard per NC DIS) nei dati e^+p di ZEUS ed H1 (1994-97):

ZEUS:

$$N^{oss.}(Q^2 > 35000 \text{ GeV}^2) = 2$$

 $N^{MS}(Q^2 > 35000 \text{ GeV}^2) = 0.145 \pm 0.013$
[J. Breitweg *et al.*, Z Phys. C74, 207 (1997)]

H1:

 $N^{oss.}(Q^2 > 15000 \text{ GeV}^2) = 12$ $N^{MS}(Q^2 > 15000 \text{ GeV}^2) = 4.71 \pm 0.76$ [C. Adloff *et al.*, Z Phys. C74, 191 (1997)]

Possibili cause dell'eccesso:

- Fenomeni dovuti a nuova fisica
- Incertezze sul Modello Standard
- Fluttuazione statistica

Per gli eventi in eccesso:

massa invariante del sistema e-jet centrata attorno ai 200 GeV

 \Rightarrow possibile esistenza di una nuova particella

Analisi dei dati e^-p del 1998-99 alla ricercadi un eccesso analogo

Con $e^- \ {\rm ed} \ e^+$ si ha sensibilità a tipi diversi di risonanze

Oltre il Modello Standard: Leptoquark (LQ)

Il LQ ha numeri quantici barionico e leptonico ⇒ HERA è l'acceleratore con maggiori potenzialità nella sua ricerca

Massa invariante

La massa invariante del sistema e^- -jet è definita da:

$$m_{ej}^2 = (k' + q')^2 = (k + x \ p)^2 = x \ s$$

Fondo dal DIS + picco di risonanza dal LQ:

Leptoquark

- Previsti da numerose estensioni al Modello Standard (GUT, modelli compositi, etc.)
- Spin J = 0, 1
- Numero leptonico (L) e barionico (B) simultaneamente diversi da zero
- Carica elettrica Q frazionaria
- Viene definito il numero fermionico $F = L + 3B = 0, \pm 2$

L'analisi si limita ai LQ che si accoppiano a leptoni e quark di prima generazione (e, ν_e , u, d)

Sezione d'urto di produzione:

$$\sigma(ep \to LQ \to eq) = (J+1)\frac{\pi\lambda^2}{4s}q\left(x = \frac{m_{LQ}^2}{s}, m_{LQ}^2\right)\beta$$

J =Spin del LQ

 $\lambda = \text{Costante di accoppiamento}$ $q(x,Q^2) = \text{densità del quark } q \text{ all'interno del protone}$ $\beta = \text{Frazione di decadimento del LQ in } eq$

Larghezza della risonanza:

$$\Gamma = (J+1)\frac{\lambda^2}{16\pi}m_{LQ}$$

 $\Gamma \sim {\bf keV} \ll {\textbf Risoluzione}$ sperimentale dell'apparato

Classificazione dei LQ

[W. Buchmüller, R. Rückl e D. Wyler, Phys. Lett. B191, 442 (1991)]

LQ	Q	Accoppiamento	eta	F
$S_{1/2}^{L}$	-5/3	$\lambda_L(e_L^-ar u)$	1	0
$S_{1/2}^{R}$	-5/3	$\lambda_R(e_R^-ar u)$	1	0
,	-2/3	$-\lambda_R(e_R^- ar d)$	1	0
$\tilde{S}_{1/2}^L$	-2/3	$\lambda_L(e_L^- ar d)$	1	0
V_0^{L}	-2/3	$\lambda_L(e_L^-ar d)$, $\lambda_L(u_ear u)$	1/2	0
V_0^R	-2/3	$\lambda_R(e_R^-ar{d})$	1	0
$ ilde{V}^R_0$	-5/3	$\lambda_R(e_R^-ar u)$	1	0
V_1^L	-5/3	$\sqrt{2}\lambda_L(e_L^-\bar{u})$	1	0
-	-2/3	$-\lambda_L(e_L^-ar{d})$, $ar{\lambda}_L(u_ear{u})$	1/2	0
$\begin{array}{c}S_0^L\\S_0^R\\\tilde{S}_0^R\\S_1^L\end{array}$	-1/3 -1/3 -4/3 -1/3 -4/3	$\lambda_L(e_L^-u), -\lambda_L(\nu_e d)$ $\lambda_R(e_R^-u)$ $\lambda_R(e_R^-d)$ $-\lambda_L(e_L^-u), -\lambda_L(\nu_e d)$ $-\sqrt{2}\lambda_L(e_L^-d)$	1/2 1 1 1/2 1	2 2 2 2 2 2
$V_{1/2}^{L}$	-4/3	$\lambda_L(e_L^-d)$	1	2
$V_{1/2}^{R}$	-4/3	$\lambda_R(e_R^-d)$	1	2
1/2	-1/3	$\lambda_{R}(e_{R}^{-}u)$	1	2
$\tilde{V}_{1/2}^L$	-1/3	$\lambda_L(e_L^-u)$	1	2

Selezione degli eventi $e^{-(k^{\mu})}$ $e^{-(k'^{\mu})}$ $q(xp^{\mu})$ $q(q'^{\mu})$ $e^{-(k^{\mu})}$ LQ $e^{-(k'^{\mu})}$ $q(xp^{\mu})$ $q(q'^{\mu})$

Topologia del LQ indistinguibile da quella del DIS

Criteri di selezione:

- Elettrone isolato, ad alta energia
- Alta energia trasversa totale
- Vertice "vicino" a quello nominale
- $Q^2 > 1000 \ \mathrm{GeV}^2$

\rightarrow 3102 eventi dopo la selezione

 \rightarrow Efficienza riscontrata del 69% per simulazioni di LQ con massa 200 ${\rm GeV}$

I dati sono in accordo con le simulazioni Monte Carlo del Modello Standard

Metodi di ricostruzione della massa

$$\begin{split} m_{ej}^2 &= (k'+q')^2 = 2k' \cdot q' = \\ &= 2(E'_e E'_q - \mathbf{k}' \cdot \mathbf{q}') = 2E'_e E'_q (1 - \frac{\mathbf{k}' \cdot \mathbf{q}'}{|\mathbf{k}'| |\mathbf{q}'|}) \end{split}$$

- $m_{DA}^{2} = (k' + q')^{2} = (k + q)^{2} = (k + x_{DA}p)^{2} = 2x_{DA} k \cdot p = x_{DA} s$
- $$\begin{split} m_3^2 &= (E'_e + E'_q)^2 (\mathbf{k}'_e + \mathbf{k}'_q)^2 = (E'_e + E'_q)^2 (\mathbf{k}'_e + \mathbf{k}'_q)^2_z = \\ &= (E^{TOT} p_z^{TOT})(E^{TOT} + p_z^{TOT}) = 2E_e(E^{TOT} + p_z^{TOT}) \end{split}$$

Distribuzioni di massa

Distribuzioni di massa

Tagli	No. eventi	No. eventi
applicati	nei dati	nel DIS MC
selezione	3102	3018
selezione		
$\&\ m_3>200\ GeV$	47	47.1
selezione		
$\&\ m_{DA}>200\ GeV$	123	133.4
selezione		
$\&~m_{ej}>200~GeV$	39	38.4

Nessuna evidenza di un eccesso di eventi

Incertezze sistematiche

Incertezze considerate:

- Scala di energia del calorimetro (2%)
- Isolamento dell'elettrone
- Ricostruzione dell'angolo dei *jet*
- Modello usato per la frammentazione
- Incertezza teorica sulle densità partoniche dei quark all'interno del protone

Effetto delle incertezze:

Eventi con $m_3 > 200 \text{ GeV}$: $N_{Dati} = 47$ $N_{MC} = 47.1^{+8.7}_{-7.0}$

Limiti su sezione d'urto, costanti d'accoppiamento e masse dei LQ

Nessun eccesso di eventi

 \rightarrow Limiti sulla sezione d'urto di produzione di LQ.

(Derivati per $m_{LQ} = 140 \div 290 \,\, {
m GeV}$, a passi di 2 ${
m GeV}$)

Metodo

(1) Taglio di ottimizzazione in $m \in Q^2$; conteggio eventi nei dati (x) e DIS MC (μ_B):

(2) Limite superiore μ_S^{lim} sugli eventi di LQ, con CL = 95%:

$$0.05 = e^{-\mu_S^{lim}} \frac{\sum_{k=0}^x (\mu_S^{lim} + \mu_B)^k / k!}{\sum_{k=0}^x \mu_B^k / k!}$$

(3) Limite sulle sezioni d'urto:

$$\sigma_{lim}^{0.95} = \frac{\mu_S^{lim}}{\epsilon L}$$

 $\epsilon = ext{efficienza} \text{ per i LQ}$ $L = ext{luminosità} ext{integrata} ext{dei dati}$

(a) Massa ricostruita con il metodo m_3 (b) Massa ricostruita con il metodo m_{ej}

LQ scalari: $\sigma_{lim}^{0.95} \approx 0.3 \div 3 \text{ pb}$ LQ vettoriali: $\sigma_{lim}^{0.95} \approx 0.5 \div 5 \text{ pb}$ (4) Limiti sulle costanti di accoppiamento:

(5) Limiti inferiori sulle masse dei LQ:

ottenuti fissando $\lambda = \sqrt{4\pi\alpha} \approx 0.3$ $m_{LQ}^{lim} \approx 220 \text{ GeV} \quad (F = 0)$ $m_{LQ}^{lim} \approx 280 \text{ GeV} \quad (F = 2)$

Per F = 2 migliori di quanto pubblicato da ZEUS ed H1

Confronto con LEP e Tevatron

Produzione di LQ a LEP

Produzione di LQ a Tevatron

Conclusioni

- Analizzati 16.54 pb^{-1} di collisioni e^-p rivelate da ZEUS nel 1998-99, con $\sqrt{s} = 318 \text{ GeV}$
- Confrontate le distribuzioni per i dati con le previsioni del Modello Standard (DIS), alla ricerca di risonanze (LQ)
- Nessuna evidenza di un eccesso di eventi rispetto alle simulazioni del DIS
- Derivati i limiti su sezione d'urto di produzione, costante di accoppiamento, massa dei LQ
- Confrontati i limiti con quelli da altri esperimenti
- I risultati saranno oggetto di una pubblicazione da parte di ZEUS