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1 Introduction 
In these notes, we set out some of the basic accelerator physics underlying the functions 
of linear collider damping rings.  Most of this is standard material for electron storage 
rings, but the emphasis here is appropriate to the special tasks for which damping rings 
are designed.  Thus, we start by deriving expressions for the damping times, and proceed 
to consider some of the effects of the long damping wiggler, lattice designs based on the 
Theoretical Minimum Emittance cell for very low emittance storage rings, and discuss 
the generation of vertical emittance and some alignment issues.  We assume that the 
reader is familiar with the basic structure of an electron storage ring, i.e. that a magnetic 
lattice consisting of dipoles and quadrupoles is used to contain the beam, and an RF 
cavity is used to replace the energy lost by synchrotron radiation.  We also assume that 
the reader is familiar with the lattice functions used to describe the transverse motion (i.e. 
the beta function and dispersion).  We try to derive everything from these fundamentals, 
though some results relating to the properties of the emitted radiation are quoted without 
derivation. 
 
There are a number of good texts on accelerator physics.  Much of the material in these 
notes draws heavily from 

• “Accelerator Physics”, S.Y. Lee, World Scientific, 1999. 
We use the TESLA and NLC damping rings (designs as at December 2002) to illustrate 
the application of the principles we discuss.  These designs are presently the most mature 
of the various linear collider proposals, and are described in 

• “TESLA Technical Design Report”, DESY 2001-11, March 2001. 
• “2001 Report on the Next Linear Collider”, SLAC-R-571. 

Further material may be found on the web sites 
• http://www.desy.de/~wdecking/dog/dogbone.html 
• http://awolski.lbl.gov/ 

Other useful references for damping rings include: 
• “Zeroth-Order Design Report for the NLC”, SLAC Report 474, May 1996. 
• “The Generation and Acceleration of Low Emittance Flat Beams for Future 

Linear Colliders”, T.O. Raubenheimer, SLAC-R-387, February 1992. 
• “A Systematic Approach to Damping Ring Design”, P. Emma and T. 

Raubenheimer, PhysRevSTAB, Volume 4, 021001 (2001).  
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2 Radiation Damping and Equilibrium Emittance 
Fundamental to the performance of a damping ring is the damping of the transverse and 
longitudinal emittances.  The emittance in any plane at a time t after injection is given by: 

( )ττ εεε tt -t 2
equ

2
inj e1e)( −− +=  (1) 

where injε  is the injected emittance, equε  is the equilibrium emittance, and τ  is the 

damping time.  The values of the equilibrium emittances and damping times depend on 
the plane under consideration, and on a range of parameters related to the lattice design, 
the ring energy and the alignment of the magnets.  Collective effects also need to be 
taken into account, though we shall neglect these for the present. 
 
Equation (1) is usually the starting point for the design of a damping ring for a linear 
collider, so we shall spend some time to understand it.  We deal with the synchrotron 
(longitudinal) motion first, and then tackle the betatron (transverse) motion. 

2.1 Synchrotron Motion 
Our aim will be to derive expressions for the equilibrium longitudinal emittance and the 
longitudinal damping time.  We shall proceed in three stages: 

• First, we consider the energy gain from the RF cavities and the energy loss from 
radiation in the classical limit, with the approximation that the energy loss is 
independent of the particle energy.  We find that particles perform stable 
harmonic oscillations in longitudinal phase space. 

• Second, we include the dependence of radiation energy loss on the particle 
energy.  This introduces an extra term in the equation of motion, that leads to 
damping of synchrotron oscillations, and we find the damping time. 

• Third, we include the fact that the radiation is not continuous, but energy is 
emitted in quanta.  This leads to the phenomenon of quantum excitation, and we 
find an expression for the equilibrium longitudinal emittance (specifically, the 
equilibrium bunch length and energy spread). 

 

2.1.1 Synchrotron Oscillations 
We use the longitudinal phase space co-ordinates τ  and δ .  τ  is the time separation 
between the particle and a nominal reference particle which always has the correct energy 
and zero betatron amplitude.  We use the convention that a positive τ  means that the 
particle is ahead of the reference particle1.  δ  is the energy deviation of the particle, 
given by: 

0

0

E

EE −=δ   

where E  is the particle energy, and 0E  the design energy of the lattice. 

 
                                                 
1 With this convention, ( )δτ ,  form a canonical pair, with δ  the conjugate momentum to the coordinate τ . 
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The closed orbit in a storage ring is a function of the particle’s energy.  The dispersion η  
is defined as the rate of change of the closed orbit with respect to the energy deviation, 
thus: 

ηδ=cox   

Note that the transverse co-ordinate x  of a particle is always with respect to the 
dispersive orbit. 
 
The change in total orbit length (or circumference, C ) is related to the energy deviation 
by the momentum compaction pα : 

δα pC

C =∆

0

  

The subscript 0 denotes the circumference is that of the design orbit.  pα  is a property of 

the lattice, and is given by: 

∫= s
Cp d
1

0 ρ
ηα   

 
Figure 1 

In a bending magnet, the reference trajectory is curved.  A 
particle following a dispersive trajectory has a different path 
length in the magnet.  Integrating the difference in path 
length per unit energy deviation through all the bending 
magnets in the lattice leads to the momentum compaction. 

 
For a relativistic particle, the orbital period T  is proportional to the circumference.  Thus, 

δα pC

C

T

T =∆=∆

00

  

It follows that the change in the time separation τ  from orbit n  to orbit 1+n  is given by: 
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δαττ 01 Tpnn −=−+   

or: 

δατ
pt

−=
d

d
 (2) 

 
The energy of a particle will change because of synchrotron radiation, and because of the 
RF power supplied through the RF cavities.  The change in energy deviation from one 
turn to the next is given by: 

( )
00

1 sin
E

U

E

eV
RFs

RF
nn −−=−+ τωφδδ   

where RFV  is the peak RF voltage, sφ  the RF phase on which our reference particle 

passes through the cavity (the synchronous phase), πω 2RF  is the RF frequency, and U  
the energy loss per turn of the particle of interest.  For the moment, we shall pretend that 
U  is a constant, and set it equal to 0U , the energy loss of a particle on the design orbit 

and with the correct energy.  In fact, the energy loss is a function of the particle energy: 
this phenomenon will lead to damping of the synchrotron oscillations, as we shall see 
below.  For now, we note that 

( ) 0sin UeV sRF =φ   

and observe that for 1<<τωRF  we can write: 

( ) τωφδ
RFs

RF

TE

eV

t
cos

d

d

00

−=  (3) 

Combining equations (2) and (3), we find: 

τωτ 2
2

2

d

d
st

−=   

where the synchrotron frequency sω  is given by: 

( )sp
RFRF

s TE

eV φαωω cos
00

2 −=  (4) 

For stable oscillations, we require 

02 >sω   

Since for most conventional lattices 0>pα , the synchronous phase must satisfy: 

2

3

2

πφπ << s   

The longitudinal phase space co-ordinates obey: 
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( )

( )ss
p

s

ss

t

t

θωτ
α
ωδ

θωττ

−=

−=

sinˆ

cosˆ

 (5) 

2.1.2 Radiation Damping of Synchrotron Oscillations 
In our treatment of synchrotron oscillations, we simplified matters by making the energy 
loss per turn a constant, independent of the energy deviation.  In fact, the energy loss 
depends on the particle energy for two reasons.  First, higher energy particles radiate 
more power per se.  Second, the closed orbit depends (through the dispersion) on the 
particle energy, so in a combined-function bending magnet, different energy particles will 
see different magnetic field strengths, and so will radiate different amounts of energy.  
We shall find that the dependence of energy loss on the particle’s energy will lead to 
damping of the synchrotron oscillations.  Our purpose is to find an expression that 
describes this phenomenon. 
 
To take account of the energy dependence (to first order), we write: 

δ00 WEUU +=   

where 

0
d

d

EEE

U
W

=

=   

Including the extra term, equation (3) becomes: 

( ) δτωφδ
000

cos
d

d

T

W

TE

eV

t RFs
RF −−=   

The longitudinal equation of motion is then: 

0
d

d
2

d

d 2
2

2

=++ δωδαδ
sE tt

  

with an identical expression for τ .  The solution (5) becomes: 

( )
( )ss

t

p

s

ss
t

t

t

E

E

θωτ
α
ωδ

θωττ
α

α

−=

−=

−

−

sine ˆ

cose ˆ

  

where the damping rate Eα  is given by: 

02T

W
E =α  (6) 
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Figure 2 

Longitudinal phase space damping in the NLC MDR.  The 
points show the longitudinal phase space co-ordinates on 
successive turns around the ring.  The synchrotron tune is 
0.0118, the momentum compaction factor is 1.4×10-3, the 
damping time is 2.2 ms, and the revolution period is 1 µs. 

 
To complete our analysis, we need to find an explicit expression for W , the dependence 
of the energy loss on the particle energy.  Remember that there are two effects to take 
into account: the direct dependence of radiated power on energy, and the dependence of 
radiated power on the magnetic field (which can vary with the orbit if the lattice uses 
combined-function bending magnets). 
 
The rate at which a relativistic particle radiates energy in a magnetic field is given by: 

2

4
22

32

22 ρππ
γγ

γ
EcC

BE
Cce

P ==  (7) 

where 

( )
5

42
0

2

10846.8
3

−×≈=
cm

e
C

eε
γ m/GeV3 

 

This is a classical expression.  There is no mention of Planck’s constant, and hence no 
account is taken of the fact that the radiation is emitted in discrete quanta (i.e. photons).  
When we come to include the effect of radiation of individual photons, we shall find that 
this leads to an excitation of the synchrotron amplitude (quantum excitation). 
 
In equation (7), we have made use of the relationship between the beam rigidity %  and 
the energy E for a relativistic particle: 
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ec

E

e

p
B ==ρ   

We shall continue to make frequent use of this relationship. 
 
The total radiated energy in one turn is: 

sP
c

tPU d1
1

d ∫∫ 





+==

ρ
ηδ

γγ   

Substituting for γP  from (7), and writing: 

ηδηδ 12
0

00 k
ec

E
B

x

B
BB +=

∂
∂+=   

where 1k  is the quadrupole strength in the bending magnets, we find after some 
manipulation: 

0

0

0
d

d

E

U

E

U
W E

EE

J==
=

 (8) 

where EJ  (the longitudinal damping partition number) is a function of the lattice, given 
by: 

2

42
I

I
E +=J   

and the second and fourth synchrotron radiation integrals are defined: 

skI

sI

d2
1

d
1

124

22

∫

∫






 +=

=

ρρ
η
ρ

  

Using equations (6) and (8), we can write the longitudinal damping time: 

0
0

02
T

U

E

E
E J

=τ  (9) 

Note that for a lattice that has no gradient in the bending magnets, 2≈EJ , and the 
longitudinal damping time is the time it would take a particle to lose all its energy, if the 
energy were to be lost at a constant rate. 
 
The damping time Eτ  is the exponential decay time for the amplitude of synchrotron 
oscillations.  From equations (5), we note that a particle follows an ellipse in longitudinal 
phase space.  If we define the longitudinal action as the area of this ellipse, we would 
write: 



 8

2ˆˆˆ τ
α
ωπτδπ

p

sJ ==   

Of course, the action is proportional to the square of the oscillation amplitude.  This 
means that the action will damp as: 

( ) EtJtJ τ2
0e

−=  (10) 

Remember that we have so far taken no account of quantum excitation.  In the classical 
case, described by equation (10), the longitudinal emittance damps to zero; each bunch in 
the storage ring would eventually have zero bunch length and zero energy spread! 

2.1.3 Quantum Excitation of Synchrotron Oscillations 
Consider a particle that emits a photon of energy u  when the synchrotron phase is 

θθω =− sst .  The phase space co-ordinates immediately before the emission are: 

( )

( )θδδ

θδ
ω
α

τ

sinˆ

cosˆ

=

=
s

p

  

 

 
Figure 3 

Change in longitudinal phase space co-ordinates 
of a particle with emission of a photon. 

 
And immediately after the photon emission: 

( ) ( )

( ) ( )
0

111

111

sinˆsinˆ

cosˆcosˆ

E

u
s

p

s

p

−==

==

θδθδδ

θδ
ω
α

θδ
ω
α

τ
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from which it follows: 

( )θδδδ sinˆ2ˆˆ
0

2
0

2
22

1 E

u

E

u −+=   

The rate of emission of photons depends on the local curvature of the orbit, which varies 
widely around the ring.  Since the damping time and the synchrotron period are generally 
long compared with the revolution period, we assume that we can average around the 
ring.  The last term on the right hand side in the above equation vanishes in this average, 
so we see that the net effect of the photon emission is an average growth in the 
synchrotron amplitude.  Including the effect of damping, and averaging the photon 
energy over the photon spectrum, gives the equation of motion: 

E

suN
CEt τ

δδ 2
2

0
2
0

2 ˆ
2d

1

d

ˆd −= ∫   

where N  is the number of photons emitted per unit time.  At equilibrium, we have 

∫= suN
CE

E d
2

ˆ 2

0
2
0

2 τδ   

Since the synchrotron oscillations are sinusoidal, and the phase distribution of particles in 
the beam is uniform, the equilibrium mean square energy deviation of the beam is given 
by: 

∫== suN
CE

E d
4

ˆ
2

1 2

0
2
0

22 τδσ δ  (11) 

 
To complete the analysis, we need another result from the synchrotron radiation theory.  
This is the second order moment of the photon energy at a point where the bending radius 
is ρ : 

( )
ρ

γ γP
ECuunuuN q 0

2

0

22 2d == ∫
∞

 (12) 

Here, ( )un  is the normalized number of photons in the energy range u  to uu d+  emitted 

per unit time.  The constant qC  is given by: 

1310832.3
332

55 −×≈=
cm

C
e

q

h
m  

In equation (11), we need the value of ργP  averaged around the ring.  Since 2BP ∝γ  

and ceEB 0=ρ  is a constant around the ring, we have: 

∫∫ ⋅= sP
CI

I
s

P

C
d

1
d

1

02

3

0
γ

γ

ρ
  

where the third synchrotron radiation integral 3I  is defined: 
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∫= sI d
1

33 ρ
  

Furthermore, for a particle following the design orbit, we can write the synchrotron 
radiation power averaged around the lattice as: 

EE

E
sP

C τγ J
0

0

2
d

1 =∫   

and hence we find: 

2

3
2
0

2
2

0

4d
1

I

IE
CsuN

C EE
q ⋅=∫ τ

γ
J

  

Substituting this into equation (11) gives for the square of the energy spread: 

2

322

I

I
C

E
q J
γσ δ =   

and for the bunch length: 

2

32

2

2

I

I
C

E
q

s

p

J
γ

ω
α

σ τ 





=   

 
We note that the energy spread is independent of the RF voltage and frequency, but 
increases linearly with the energy.  The bunch length, on the other hand, depends on both 
the RF voltage and RF frequency through the synchrotron frequency.  Explicitly: 

( ) 2

30
2

32

cos I

I

eV

Tcm
C

EsRFRF

ep
q Jφω

α
γσ τ −=   

2.2 Betatron Motion 
Particles in a storage ring perform transverse oscillations about the closed orbit.  At any 
point around the orbit, the phase space co-ordinates of the particle, i.e. its position and 
momentum with respect to the (closed) design orbit, determine its state.  Recall that the 
horizontal motion may be written: 

( )

( ) ( )[ ]φαφ
β

φβ

cossin
2

cos2

+−=′

=

J
x

Jx

 (13) 

and similarly for the vertical.  It is really the action J  (a constant around the ring) that 
defines the amplitude of the oscillation, since α  and β  are functions of the lattice.  Note 
that for fixed values of α  and β  (i.e. at a chosen observation point in the lattice), the 
phase space co-ordinates lie on an ellipse defined by: 
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22 22 xxxxJ ′+′+= βαγ  (14) 

where γ  is defined by: 

12 =−αβγ   

This is shown in Figure 4. 
 

 
Figure 4 

Phase space ellipse defined by equation (4).  The area 
RI�WKH�HOOLSVH�LV�� J, and the centroid is at O.  The line 
OA has slope αγ−  and OB has slope βα− . 

 
For an ensemble of particles all with different action, the following relations follow 
directly from (13): 

Jxx

Jx

Jx

α

γ

β

−=′

=′

=
2

2

  

It then follows that the emittance, defined as the determinant of the matrix of second 
order moments, is just the mean action: 

Jxxxx
xxx

xxx
=′−′=











′′
′

= 222
2

2

detε   

The emittance defined in this way is sometimes called the rms emittance of the beam. 
 
It is sometimes convenient to write the phase space co-ordinates in normalized form, 
using a symplectic transformation: 
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( )
( )





−

=





′

⋅









=





′ φ

φ
ββ

α
β

sin

cos
2

0
~

~ 1

J
x

x

x

x
  

In normalized co-ordinates, the transformation associated with any beamline may be 
written just as a rotation.  It then follows that the transformation between two points can 
be constructed from a transformation to normalized co-ordinates, a rotation, and a 
transformation out of normalized co-ordinates: 

( ) ( )
( ) ( ) 










⋅





∆∆
∆−∆

⋅










−
=







′

⋅=





′

1

1

1

2
21

1

1
21

2

2

1

1

1

22

2

0

cossin

sincos0

βφφ
φφβ

β
α
β

ββ
αM

M
x

x

x

x

  

 
Conventionally, we parameterize the particle motion using s , the distance along the 
design orbit, rather than the time t .  Note that where the design orbit is curved with 
radius ρ , the path length and the time are related by: 

s
x

c
t d1

1
d 





+=

ρ
  

 
For off-momentum particles, the co-ordinate x specifies the displacement of the particle 
from the dispersive orbit, i.e. the closed orbit for the appropriate momentum. 

2.2.1 Radiation Damping of Vertical Betatron Motion 
The vertical betatron motion is generally more straightforward than the horizontal, since 
lattices are usually designed with zero vertical dispersion2.  We shall treat the spurious 
vertical dispersion introduced by magnet misalignments separately. 
 
Synchrotron radiation is emitted within a cone of angle γ1  of the instantaneous path of 
the electron.  This opening angle actually places a fundamental lower limit on the vertical 
emittance, which we shall consider later.  But for now, we use the relativistic 
approximation that the emission of a photon changes neither the co-ordinate nor the angle 
of the betatron motion, and hence the amplitude of the betatron motion is not affected by 
the radiation.  In an RF cavity, however, there is a change in the longitudinal momentum 
that does change the transverse angle y′ : 

                                                 
2 This is not the case for the present design of the TESLA damping ring.  The long straight sections are 
designed to share the tunnel with the main linac, which follows the curvature of the earth.  However, the 
vertical dispersion introduced by this is small, and makes no significant contribution to the vertical 
emittance. 
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




 −′=




 −≈
+

=′

=

p

p
y

p

p

p

p

pp

p
y

yy

yy δδ
δ

111

1

 (15) 

For a particle with zero synchrotron amplitude, the RF cavity replaces the (on-orbit) 
energy loss 0U  from synchrotron radiation.  Thus: 

0

0

E

U

p

p =δ
  

Using equation (14), it is straightforward to show that the change in the action resulting 
from the kick (15) averaged over many turns (i.e. all betatron phases) is, to first order in 
the energy loss: 

J
E

U
J

0

0−=∆   

and hence: 

J
TE

U

t

J

00

0

d

d −=  (16) 

Thus, we find: 

( ) ytJtJ τ2
0e

−=   

where the vertical damping time is 

0
0

02 T
U

E
y =τ  (17) 

Note that we have introduced a factor 2 in the exponential for the decay of the vertical 
action.  This is so the damping time refers to the damping of the vertical betatron 
amplitude, with the action scaling as the square of the amplitude.  Recall the longitudinal 
damping time similarly referred to the damping of the synchrotron amplitude. 
 
Compare the vertical damping time (17) with the expression for the longitudinal damping 
time (9).  For a lattice with no gradient in the bends, the vertical damping time is twice 
the longitudinal damping time. 
 
It is clear from the above analysis that transverse damping occurs as a result of the 
combination of energy loss from radiation, and the restoration of the energy in the RF 
cavity.  Without an RF cavity, there is no damping.  Without synchrotron radiation, we 
can still damp the emittance, but only if we simultaneously accelerate the beam (adiabatic 
damping).  In this case, the normalized emittance γε  is constant. 

2.2.2 Radiation Damping of Horizontal Betatron Motion 
The horizontal motion is complicated by the fact that the orbit changes with the energy.  
As the particle radiates, the betatron amplitude changes because of the change of orbit.  
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This is still a classical effect: it can be described without any reference to Planck’s 
constant, and although it modifies the damping rate, the horizontal emittance would still 
damp to zero if no other effects were included.  Below, we shall see how quantum effects 
excite horizontal oscillations, and lead to a non-zero horizontal emittance.  But for now, 
we ignore the quantum excitation. 
 
When a particle radiates a small amount of energy u , the new phase space co-ordinates 
are given by: 

η

η

′+′=′

+=

0
1

0
1

E

u
xx

E

u
xx

  

Substituting into the standard expression (14) for the single-particle emittance, the change 
in action resulting from the radiation is, to first order in the energy loss: 

( )[ ]ηβηηαηγ ′′+′+′+=∆ xxxx
E

u
J

0

  

For the energy loss in time td  we write: 

( ) s
x

x
x

B

B
Pt

x

P
xPtxPu

x

d1
2

1dd 0

0

0 





+







∂
∂+=










∂
∂

+==
= ργ

γ
γγ   

This takes into account the variation in field strength with horizontal co-ordinate (recall 
that 2BP ∝γ ).  We then find for the change in emittance in the path length sd : 

( )[ ] s
x

x
x

B

B
xxxx

cE

P
J d1

2
1

0

0







+







∂
∂+′′+′+′+=∆

ρ
ηβηηαηγγ   

At a given point in the lattice, the particle will be at a different betatron phase on each 
turn through the ring.  Since the damping time is much larger than the revolution period, 
we can average over all betatron phases: 

( ) skP
cE

JJ d
1

2
1

21
2

0
0















+=∆

ρρ
ηργ   

Integrating over the lattice, and including the damping from the RF cavities (16), we find: 

J
TE

U
J

TE

U

I

I

t

J
x

00

0

00

0

2

41
d

d
J−=





−−=   

xJ  is the horizontal damping partition number: 

2

41
I

I
x −=J   
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For a lattice without a gradient in the bending magnets, 1≈xJ .  The horizontal action 

evolves as: 

( ) xtJtJ τ2
0e

−=   

where the horizontal damping time is 

0
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02 T
U

E

x
x J

=τ  (18) 

 
Note that the damping partition numbers satisfy some simple relationships: 
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where we have defined (for symmetry!) 1=yJ . 

2.2.3 Quantum Excitation of Betatron Motion 
The combination of the energy loss from (classical) radiation with the energy gain from 
the RF cavities in a storage ring leads to damping of the betatron oscillations.  In the case 
of the horizontal motion, the variation of the closed orbit with energy leads to some 
excitation of the oscillations that reduces the damping rate.  This is still a classical effect.  
Consideration of only these phenomena leads to formulae that suggest the transverse 
beam size damps eventually to zero.  In the case of synchrotron motion, inclusion of the 
quantum effects resulting from the emission of photons led to a non-zero equilibrium 
longitudinal emittance.  We shall show in this section that similar effects lead to non-zero 
transverse emittances where there is dispersion in the bend magnets (which is always the 
case in the horizontal plane).  Our treatment is valid for both horizontal and vertical 
planes – it does not matter whether the dispersion occurs by design, or is generated by 
misalignment of the magnets. 
 
It is easy to show that the change in the single-particle emittance resulting from the 
emission of a photon of energy u  at a single point in the lattice is given by: 

H
2

02
1







=∆

E

u
J   

where the H -function is defined by: 
22 2 ηβηαηγη ′+′+=H   

Note that we have (as usual) averaged over all betatron phases, making the assumption 
that any excitation or damping is slow compared to the revolution period.  We then have 
the rate of change of the transverse single-particle emittance, including both quantum 
excitation and damping: 
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Using equation (12) and equations following, and noting that yyxxEE τττ JJJ == , we 

find: 
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Where the fifth synchrotron radiation integral is defined by: 

∫= sI d35 ρ
H

  

Hence, the equilibrium action is given by: 

2

52

I

I
CJ qequ J

γ=   

The transverse emittance of the beam is defined as the action averaged taken over all 
particles in the beam.  We have not taken into account betatron coupling, which will 
exchange emittance between the two transverse planes.  In the simple linear theory, the 
sum of the two emittances is a constant, the natural emittance 0ε  of the lattice.  From 

consideration of the uncoupled case, where the vertical emittance is zero, we have: 

2

52
0 I

I
C

x
q J
γε =   

2.2.4 Radiation Limited Emittance 
We noted above that the non-zero opening angle of the radiation led to an excitation of 
the betatron oscillations.  Our analysis in the previous sections ignored this effect, and for 
most storage rings it is negligible.  However, damping rings for a future linear collider 
will need to operate with lower vertical emittances than have so far been achieved, and 
the contribution to the vertical emittance from the opening angle of the radiation is not 
quite negligible.  For completeness, we quote the result: 
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2.3 Evolution of Transverse and Longitudinal Emittances 
From the analysis of the previous sections, we observe that the time evolution of the 
emittance in transverse and longitudinal planes can be written in the general form: 

ε
τ

ε
τ

ε 22

d

d −= equt
 (20) 
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The first term on the right comes from quantum excitation, i.e. the effect of emitting 
radiation in photons.  The second term on the right is the damping term, and comes from 
a classical treatment of the radiation.  In the longitudinal motion, damping comes from 
the fact that higher energy particles radiate more quickly.  In the transverse motion, the 
damping comes from the fact that radiation occurs in a narrow cone about the direction of 
the instantaneous motion of the particle, whereas the energy gain from the RF cavities 
always leads to an increase in longitudinal momentum. 
 
The general solution to equation (20) is equation (1): 

( )ττ εεε tt -t 2
equ

2
inj e1e)( −− +=  (1) 

and we can now give explicit expressions for the damping times and equilibrium 
emittances: 
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The synchrotron radiation integrals are defined: 
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3 The Theoretical Minimum Emittance (TME) Lattice 
A linear collider will achieve high luminosity by compressing the transverse beam size at 
the interaction point.  Although a very small vertical emittance is essential, a small 
horizontal emittance is also required.  We saw in section 2.2.3 that the natural emittance 
of the lattice is given by: 

2

52
0 I

I
C

x
q J
γε =   

With very low coupling (of the order 0.5% or less) this is essentially the same as the 
horizontal emittance.  In the simple case of a lattice without a magnetic gradient in the 
dipoles and without a wiggler, 1≈xJ  and ρπ22 =I .  Assuming a fixed bending radius 

in the dipoles, the only control we then have over the emittance is through 5I .  In this 

section, we shall see that under these conditions, there is a minimum emittance that can 
be achieved, and that this requires specific values for the dispersion and horizontal beta 
function in the dipoles. 
 
An isomagnetic lattice is one where every bending magnet has the same field, and bends 
in the same direction.  For such a lattice, the fifth synchrotron radiation integral can be 
written: 

3

dipoles
5 ρ

H
=I   

Where the average is taken only over the dipoles.  Writing out an explicit expression for 
the evolution of H through a dipole and then minimizing the average with respect to the 
lattice functions is a fairly straightforward procedure if one knows how the lattice 
functions themselves evolve through the dipole.  We do not write out the complete 
analysis (which is not very enlightening), but give the expressions needed as the starting 
point of the calculation and then quote the final results. 
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The dispersion obeys the inhomogeneous equation: 

( ) ( ) 12
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kKsKs +==+′′

ρρ
ηη  (21) 

The general solution can be written in terms of the same transfer matrix that applies to the 
phase space co-ordinates: 
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where M  is the transfer matrix from 0 to s .  The evolution of the Twiss parameters may 
be found from: 
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The transfer matrix for a dipole (which generalizes to a drift space and a quadrupole) is: 
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After some lengthy and not very enlightening algebra, it is possible to use these results to 
show that with minimum lattice functions at the center of the dipole, the values required 
to minimize H  (and hence minimize the natural emittance) are: 

( ) ( )4
min,0

3
min,0 24152

θθηθβ OO +=+= LL
  

and the minimum emittance itself is: 
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x
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In these equations, θ  is the total bending angle of a single dipole.  We have written the 
final expression including the horizontal damping partition, even though in our 
isomagnetic lattice, this is close to unity.  It is possible, by including a gradient in the 
dipole, to raise the horizontal damping partition, thus reducing the horizontal damping 
time and the natural emittance.  If the gradient is small, the above expressions for the 
optimal lattice functions and the minimum emittance are still valid.  In a practical 
damping ring the wiggler reduces any advantages of the gradient, and the only significant 
benefit in including a gradient in the dipole comes from the extra flexibility in matching 
the lattice functions through the arc cell. 
 
For reference, in a dipole where the beta function and dispersion reach a minimum at the 
center of the dipole the mean value of the H  function is given by: 
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A Theoretical Minimum Emittance (TME) lattice is one aiming to achieve the minimum 
possible emittance through control of the lattice functions in the dipoles.  The TESLA 
Damping Ring and NLC Main Damping Ring (MDR) lattices are both based on arcs 
using TME cells, although the cells look very different.  The lattice functions for the 
TESLA ring are shown in Figure 5, and those for the NLC are shown in Figure 6.  Some 
relevant parameters are given in Table 1. 

Table 1 

Some parameters for the TESLA and NLC damping rings. 
 TESLA NLC MDR 
Beam Energy /GeV 5.00 1.98 
Circumference /m 17000 300 
Dipole Field /T 0.1941 1.201 
Dipole Length /m 9.00 0.96 
Gradient in Dipole /m-2 0 -1.00 

xβ  at Center of Dipole /m 2.342 0.3436 

xη  at Center of Dipole /m 0.1576 8.410×10-3 

 
Why do the TME cells for the TESLA and NLC damping rings look so different from 
each other?  A lot of the answer has to do with the bunch train that the rings are required 
to damp.  In the case of TESLA, this drives the circumference of the damping ring to 17 
km.  Note that the natural emittance scales as the inverse third power of the number of 
cells; in the TESLA damping ring there is plenty of room for any number of cells.  
Furthermore, since the TESLA ring requires a very long wiggler to achieve the necessary 
damping rate irrespective of the dipole field, the design team has opted for a long dipole 
with a low field, to give a relatively large momentum compaction.  A larger momentum 
compaction increases the bunch length, which helps reduce the impact of a variety of 
collective effects.  By contrast, the NLC has bunch trains about 80 m long.  A ring of this 
circumference cannot accommodate the required number of cells for meeting the target 
natural emittance, so the design allows for storing three bunch trains (with gaps for firing 
the injection/extraction kickers).  The circumference still needs to be kept as short as 
possible, to reduce the damping time and thus minimize the length of damping wiggler 
needed.  Using strong dipoles increases the energy loss from the dipoles, and further 
reduces the length of the wiggler.  The strong dipoles have the disadvantage of giving a 
low value for the momentum compaction, which gives a short bunch length, and makes 
the beam vulnerable to a range of collective effects. 
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Figure 5 

Lattice functions in a single TME arc cell in the TESLA Damping Ring. 
 

 
Figure 6 

Lattice functions in a single TME arc cell in the NLC Main Damping Ring. 
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4 Damping Wiggler 
It is difficult to achieve the required damping times for a future linear collider damping 
ring without use of a damping wiggler.  The damping time (in any plane) is: 

0
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where the energy loss per turn is 
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It clearly helps to keep the circumference (and hence T0) as short as possible consistent 
with the length of a bunch train.  Beyond that, there are only two ways to reduce the 
damping time: 

• increase the energy of the beam; 
• increase the integrated magnetic field seen by the beam. 

Increasing the energy also helps reduce the vulnerability to various collective effects.  
However, it has the undesirable effect of increasing the natural emittance (which scales as 
the square of the energy), so more cells are needed in the lattice, which drives up the 
circumference.  Also, there is an impact on systems upstream and downstream of the 
damping ring.  The favored method of achieving the short damping times required, 
therefore, is generally to use a damping wiggler. 
 
By introducing extra bending, the wiggler has an effect on the values of all the 
synchrotron radiation integrals.  In particular, if the wiggler is placed in a location where 
the dispersion is large, there is a significant growth in the emittance.  The physical reason 
for this is clear: the quantum excitation rate depends on the dispersion through the 
+ function.  A large dispersion where there are large quantities of synchrotron radiation 
being produced therefore gives a rapid excitation, and a large equilibrium emittance.  It is 
therefore desirable to place the wiggler in a section where the dispersion is nominally 
zero, although the wiggler itself generates some dispersion through bending the beam.  
With a proper lattice design, the increased damping rate from the energy loss in the 
wiggler dominates over the quantum excitation from the small amount of dispersion 
produced by the wiggler, and the natural emittance of the lattice is reduced to below the 
value found without the wiggler. 
 
The vertical field component in a wiggler is generally approximated by a sine function: 

( )zkBB wwy sin=   

wB  is the peak field in the wiggler, wwk λπ2=  where wλ  is the wiggler period, and z  is 

the distance along the wiggler axis.  Note that z  is distinct from s , the path length of the 
beam, since the beam trajectory does not follow the wiggler axis.  The difference between 
the two variables, however, is generally small.  It is easy to show that the amplitude of 
the orbit with respect to the wiggler axis is: 
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For reasonable damping ring parameters, 1<<wwka , and the path length along the orbit 

through one wiggler period can then be approximated by: 
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We shall neglect this small difference, and proceed as though the path length through one 
wiggler period were the same as the wiggler period. 
 
We should like to calculate the contributions to the synchrotron radiation integrals from 
the wiggler.  wI2  and wI3  are straightforward, since they do not involve the dispersion.  

For example, we can immediately write down the energy loss from the wiggler (assumed 
to consist of a whole number of periods) as: 
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To evaluate the other synchrotron radiation integrals we need to know the dispersion 
generated by the wiggler.  This is straightforward, if we use equation (21) and make some 
approximations.  The dispersion in the wiggler satisfies: 
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If we assume that 1<<wρη , we can drop the second term on the left, and write the 

solution: 
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This solution is valid if 1>>wwk ρ . 

 
We can now write down the following expressions for the synchrotron radiation integrals 
in the wiggler: 
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Note that in the fifth integral, the horizontal beta function is averaged over the length of 
the wiggler.  In deriving these expressions, we have treated the wiggler as a continuous 
sinusoidal magnetic field, with a whole number of periods.  We have assumed that the 
field has no gradient, i.e. is independent of the transverse co-ordinates.  For the cases of 
interest, the above expressions are generally good approximations.  Since each 
synchrotron radiation integral is calculated by integrating around the entire circumference 
of the ring, it is possible to evaluate any synchrotron radiation integral simply by taking 
the sum of the contributions from the dipoles with the contribution from the wiggler. 
 
Some parameters for the damping wiggler in the NLC Main Damping Ring and in the 
TESLA Positron Damping Ring are given in Table 2. 

Table 2 

Some parameters for the TESLA and NLC damping rings. 
 TESLA e+ DR NLC MDR 
Period /m 0.40 0.27 
Peak Field /T 1.6 2.15 
Total Length /m 473 46.3 
Mean Beta Function xβ  /m 11 6 

5 Chromaticity, RF Voltage and Acceptance Issues 
The average beam power injected into the damping rings is 55 kW for NLC, and 225 kW 
for TESLA.  The injection efficiency may be defined as the fraction of particles lost 
within a few damping times after injection, and is limited by both physical and dynamic 
apertures.  Injection efficiencies close to 100% have been achieved at machines such as 
the KEK-ATF, although third generation light sources typically do not suffer 
performance limitations if the injection efficiency is very much poorer.  Because of the 
high average injected beam power, an injection efficiency that is not very close to 100% 
will lead to an unacceptable radiation load on components in the ring.  The injection 
efficiency is limited by the physical apertures and by limits on the range of dynamic 
stability of the particles in the beam.  Since the injection efficiency obtained in practice is 
usually significantly less than that predicted in simulations, it is necessary to design the 
damping rings with considerable margin in the physical and dynamic apertures. 
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The physical apertures are reasonably straightforward.  Knowing the range of energy and 
betatron amplitude on the injected beam, and the beta functions and dispersion around the 
lattice, one can perform symplectic six-dimensional tracking of particles at the maximum 
injection amplitudes to determine the physical aperture requirements.  The dynamic 
aperture is rather more complicated, since the dynamic stability of particles depends on 
details of the nonlinear magnetic fields present in the lattice.  Since particles may appear 
to be stable over many hundreds of turns before being lost, it is necessary to perform 
symplectic tracking through at least this many turns, and preferably several damping 
times. 
 
Where do the nonlinear magnetic fields come from?  We must consider at least three 
significant sources: 

• Sextupoles are needed to correct the chromaticity of the lattice. 
• All magnets have higher-order multipole components arising from systematic and 

random errors. 
• The damping wiggler has potentially strong nonlinear components intrinsic to the 

three-dimensional nature of its magnetic field. 
We shall discuss only the first of these in any detail, since the sextupole scheme is a 
significant issue for the lattice design.  Tolerances on the magnets and specification on 
the wiggler field are usually determined when the lattice design is nearing completion, 
and there is little that can be done to improve the situation beyond working harder on the 
designs of those components themselves. 
 
In our treatment of synchrotron oscillations, we made a linear approximation for the time 
variation of the RF voltage.  A more thorough treatment, using the correct sinusoidal 
variation, gives a definite stability limit on the energy deviation.  This limit is the RF 
acceptance, and is an additional limit to the physical apertures and the dynamic aperture 
resulting from nonlinear magnetic fields.  Since the RF acceptance is important for a 
number of reasons, we shall include a discussion of this in the present section. 

5.1 Chromaticity and Chromatic Correction 
The betatron tune is a function of the energy of the particle.  The linear chromaticity is 
the first derivative of the tune with respect to the energy deviation: 

0=∂
∂=

δδ
νξ   

The chromaticity is a problem for two reasons.  First, particles with significant energy 
deviations may experience a tune shift that puts them on an integer resonance, where they 
will not be dynamically stable.  Second, some collective phenomena (notably the head-
tail instability) are sensitive to the chromaticity, and zero or slightly positive chromaticity 
is needed to minimize the adverse effects.  As we shall see, a lattice consisting of only 
dipoles and quadrupoles always has large negative chromaticity.  We therefore begin by 
deriving an expression for the chromaticity of a lattice, and then proceed to work out how 
to correct the chromatic effects using sextupoles. 
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5.1.1 An Expression for the Chromaticity 
Consider first the horizontal plane.  The single-turn map of a lattice with total phase 
advance xx πνµ 2= , at a location where the Twiss parameters are xα , xβ , xγ , can be 

written: 
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A focusing error at this location will modify the single-turn matrix as follows: 
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Multiplying out the matrices, and finding the new tune xx µµ ∆+  of the lattice gives to 

first order in the focusing error: 
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Let us suppose that the focusing error comes from the variation in quadrupole focusing 
with the energy deviation of the particle: 
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and hence: 
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Every quadrupole contributes to the tune shift, so to find the total tune shift, we must 
integrate around the lattice.  Thus we find that the horizontal chromaticity is given by: 
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Quadrupoles that are horizontally focusing will contribute negative chromaticity, while 
horizontally defocusing quadrupoles will contribute positive chromaticity.  However, the 
beta function is inevitably largest in horizontally focusing quadrupoles; hence the 
negative chromaticity wins out. 
 
The same arguments apply in the vertical plane, except that the focusing occurs with the 
opposite sign.  The vertical chromaticity is given by: 
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The vertical beta function is largest at quadrupoles with negative 1k , so the natural 
vertical chromaticity is also negative. 
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Some values for quadrupole strengths and lattice functions in arc cells of the NLC and 
TESLA damping rings (from which the chromaticities may be calculated) are given in 
Table 3.  Note that the chromaticity of the full lattice includes the straight sections. 

Table 3 

Quadrupole parameters for arc cells of the TESLA and NLC damping rings.  Note that the TESLA cell 
includes two horizontally focusing (QF) quadrupoles, and two horizontally defocusing (QD) quadrupoles, 
while the NLC cell includes two horizontally focusing quadrupoles, and just one horizontally defocusing 
quadrupole. 

TESLA e+ DR NLC MDR  

lk1 /m-1 
xβ /m yβ /m xη /m lk1 /m-1 

xβ /m yβ /m xη /m 

QF 0.254 34.3 16.2 0.455 1.41 4.15 1.78 0.0833 
QD -0.209 17.6 26.6 0.352 -0.945 0.911 10.33 0.0548 
Dipole 0 - - - -0.96 0.746 2.99 0.0158 

5.1.2 Chromatic Correction Using Sextupoles 
A pure sextupole has only a second field derivative on the closed orbit: 
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Thus, a particle with some horizontal offset in its closed orbit through the sextupole sees 
a focusing (or defocusing) field: 
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The horizontal offset may arise from a combination of dispersion with an energy 
deviation of the particle, ηδ=cox .  In this case, the sextupole will contribute its own 

chromaticity to the lattice, and the expression for the horizontal chromaticity becomes: 
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and for the vertical chromaticity: 
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Thus sextupoles with a positive 2k  compensate the horizontal chromaticity, and 

sextupoles with a negative 2k  compensate the vertical chromaticity.  By placing positive 

2k  sextupoles at locations where yx ββ > , and negative 2k  sextupoles where xy ββ > , it 

is possible to compensate simultaneously both horizontal and vertical chromaticities. 
 
The drawback to this use of sextupoles is that geometric aberrations are introduced, i.e. 
the betatron oscillations become nonlinear, and possibly unstable, for particles with zero 
or non-zero energy deviation.  The dynamic aperture is the range of betatron amplitudes 
over which the oscillations are stable.  A large dynamic aperture is necessary for good 
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injection efficiency.  Optimization of the dynamic aperture while maintaining chromatic 
correction is a challenging task.  Some general guidelines include the following: 

• The magnitude of the natural chromaticity should be as small as possible in both 
planes.  Generally, one aims for a normalized chromaticity (the chromaticity 
divided by the tune) of less than 3.  This is achieved by keeping the beta functions 
small, and controlling the phase advance over different parts of the lattice. 

• Locations for efficient use of sextupoles should be provided.  These locations will 
have good separation of the beta functions, and large dispersion (see Figure 5 and 
Figure 6, for example).  Note that the need for large dispersion is in conflict with 
the need for low dispersion to keep the emittance small. 

• The phase advance between the sextupoles should be controlled to try and 
minimize the generation of terms driving betatron resonances. 

• The tunes of the lattice should be as far as possible from resonance. 
 
Although it is possible to correct the linear chromaticity with an appropriate sextupole 
scheme, there exist higher-order chromaticities (the higher order derivatives of tune with 
respect to energy deviation) that can be difficult to control, and can lead to large 
variations in tune for off-energy particles.  We do not discuss the effects of higher-order 
chromaticity here. 

5.2 RF Acceptance 
In section 2.1.1, we showed that the longitudinal equations of motion (including energy 
gain from the RF cavities and energy loss from the dipoles and wiggler) are: 
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These may be derived from the Hamiltonian: 
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using Hamilton’s equations: 
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The Hamiltonian is a constant of the motion, so in longitudinal phase space the trajectory 
of a particle appears as a line of constant H .  The longitudinal phase space for the NLC 
MDR is shown in Figure 7.  Note the separatrix passing through the unstable fixed point 
at ≈τ 340 ps; the existence of this fixed point is directly related to the sinusoidal shape of 
the RF voltage.  Trajectories outside this separatrix are unstable.  This means that there 
exists a maximum energy deviation, RFδ , beyond which particles are lost because they 
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are outside the RF bucket height.  This maximum energy deviation is the RF acceptance, 
and it is given by: 
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Figure 7 

Longitudinal phase space portrait for the NLC MDR. 
 
The RF voltage must be set so that the energy range on the injected beam is within the RF 
bucket height, with some margin.  Usually, the energy acceptance is limited not by the 
RF voltage, but because the transverse dynamic aperture collapses as the energy 
deviation increases. 

5.3 A Note on Injection Schemes for Damping Rings 
Third-generation light sources generally use off-axis injection schemes.  In off-axis 
injection, kicker magnets are used to give a local distortion to the closed orbit, so that the 
beam is brought close to the septum blade, in the zero-field region of the septum.  At the 
same time, particles are injected into the ring through the region of the septum carrying a 
magnetic field, so that they arrive parallel to the stored beam, but with some horizontal 
offset.  The kickers are turned off over several turns, but because of the betatron 
oscillations, the newly injected particles avoid collision with the septum blade.  The 
kickers remain off during several damping times, while the trajectory of the newly 
injected particles damps down to the closed orbit.  The kickers can then be turned on 
again with losing any particles.  The advantage of this scheme is that it allows beam to be 
“stacked” in the storage ring, with particles being added to RF buckets already containing 
numbers of particles. 
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Unfortunately, this off-axis injection scheme cannot be used to stack current in a damping 
ring for a linear collider, since several damping times are required between each injection 
of current.  This would limit the repetition rate of the collider, and allow only a fraction 
of the potential luminosity to be achieved.  Instead, damping rings are designed with on-
axis injection, where the kickers are used so that particles arriving close to, but at some 
angle to the closed orbit at the entrance to the kicker, are following the closed orbit at the 
exit.  If there are any particles already in the buckets to be filled, the kicker will kick 
them out of the ring, so stacking current is not possible.  Instead, the buckets must be 
filled in one shot, with the kickers turning on and off in the gap between bunches 
(TESLA) or bunch trains (NLC).  The shortest rise/fall time that can be achieved with 
kicker technology (consistent with the required amplitude and stability) determines the 
length of the TESLA damping ring. 
 

 
Figure 8 

On-axis injection.  The incoming beam is initially at a large angle to the 
closed orbit, and is deflected by the static field in the septum to be almost 
parallel to the closed orbit.  Particles already on the closed orbit see no field 
from the septum.  The small deflection from the kicker removes the 
remaining angle from the injected beam such that particles are on the 
closed orbit and parallel to it at the exit of the kicker.  Any particles already 
on the closed orbit would be kicked out of the ring by the kicker, so 
stacking current is not possible. 

The difference between the injection/extraction schemes in NLC and TESLA arises from 
the fact that the bunch train must be compressed in the TESLA damping ring.  Figure 9 
shows the scheme used in the NLC damping ring, where three trains are stored at any one 
time, and the injection and extraction kickers fire in the gap between two trains.  The 
TESLA scheme is straightforward, and simply requires the injection/extraction of 
individual bunches. 
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(a) (b) (c) 

Figure 9 

Injection/extraction scheme for the NLC damping rings.  The ring stores three trains of 192 bunches 
(the figure shows just three bunches for clarity).  (a) All bunch trains are damping, kickers are 
turned off.  (b) The extraction kicker turns on in the gap between two bunch trains, and the train 
that has been damping for longest is extracted.  (c)  Less than one turn later, the injected train enters 
the ring, and is brought onto the closed orbit by the injection kicker, filling exactly the gap left by the 
bunch train that has just been extracted.  The RF cavities follow the injection point, and are unaware 
that an injection/extraction event has taken place. 

6 Alignment and Stability 
The luminosity of a linear collider depends crucially on the vertical emittance extracted 
from the damping ring (and preserved through the rest of the machine).  Both TESLA and 
NLC specify extracted normalized vertical emittances of 0.02 µm.  In the case of the 
NLC, this requires an equilibrium geometric vertical emittance of 3.4 pm, and for 
TESLA, 1.4 pm.  The lowest vertical emittances that have been achieved in any storage 
ring so far are of the order 10 pm.  Calculation of the lower vertical emittance limit 
arising from the vertical opening angle of the synchrotron radiation gives values an order 
of magnitude below those required in the damping rings.  So why are very small vertical 
emittances difficult to achieve?  Essentially, there are three reasons: 

• Horizontal betatron oscillations are coupled into the vertical plane in skew fields, 
that come (for example) from rotated quadrupoles or vertically offset sextupoles. 

• Horizontal dispersion is coupled into the vertical plane by skew fields.  This leads 
to a non-zero value for the vertical H -function, resulting in vertical quantum 
excitation by the same process that gives horizontal quantum excitation. 

• Collective effects can act in such a way as to drive vertical oscillations. 
In this section, we shall concern ourselves with the first two phenomena, which are both 
related to alignment and orbit correction issues.  We shall consider collective effects 
later.  Generally collective effects reduce if the bunch charge is reduced, whereas the 
emittance growth from coupling (or vertical dispersion) is a single-particle effect.  In this 
section, we are really referring to the vertical emittance in the limit of zero bunch charge. 

6.1 Betatron Coupling 
It is easy to understand where betatron coupling comes from, but rather more difficult to 
quantify its effects in any but the simplest cases.  Let us start by considering a single 
skew quadrupole in an otherwise “ideal” (i.e. coupling-free) lattice.  The relevant feature 
of a skew quadrupole is that it gives a particle a vertical kick depending on its horizontal 
position.  For a thin skew quadrupole, we can write: 
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xlky s ⋅−=′∆  (23) 

where: 
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and the integral is over the length (approaching zero) of the skew quadrupole.  We see at 
once that a particle initially performing only horizontal betatron oscillations will, after 
passing through the skew quadrupole, be performing both horizontal and vertical betatron 
oscillations.  Note that in consequence of Maxwell’s equations, we must also have: 
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To see the equilibrium effect of a distribution of skew fields around a storage ring, we 
need to add up the skew kicks, taking the phase advance between them into account, and 
do some averaging.  This is where it can get tricky.  The approach we shall follow here 
uses Hamiltonian mechanics to construct the equations of motion expressed in action-
angle variables.  It is easy to see that the skew quadrupole kicks given above, may be 
derived from Hamilton’s equations: 
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using the Hamiltonian: 

xykH s=   

We define action-angle variables xJ , xφ , by: 
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and similarly for the vertical plane.  Since this transformation is canonical, we may 
express the equations of motion directly in terms of the action-angle variables using the 
Hamiltonian: 
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We now make our first approximation.  We shall be interested only in the effects of the 
term involving the difference of the angle variables: this is the first-order difference 
resonance.  The other term, the sum resonance, we shall not consider further. 
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The Hamiltonian for our system (a particle moving through a magnetic lattice) is a 
function of the independent variable s .  This creates difficulties that the theory of 
accelerator optics (beta functions etc.) has been designed to solve.  For our present 
discussion of coupling, we shall sweep these difficulties aside, and look for some 
“averaged” Hamiltonian that can be used to determine global properties of the beam.  
Thus, we shall find a ratio of the equilibrium emittances, assumed to be the same 
throughout the lattice, whereas in reality this quantity is a function of the position in the 
lattice. 
 
In the simple case of uncoupled linear betatron motion, the change in the angle variable 
between any two points of the lattice is simply equal to the betatron phase advance.  
Thus, we can construct a Hamiltonian describing the dynamics in the storage ring: 
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where the betatron tunes are xν  and yν , and ( )sκ  is given by: 
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Our aim is to “average” the Hamiltonian so that it does not depend explicitly on the 
independent variable s .  We can then simply construct the equations of motion, and 
investigate their solutions.  To proceed, we note that ( )sκ  is periodic, with period 0C , the 

circumference of the lattice.  We may then write ( )sκ  as a sum over Fourier modes, with 

an appropriate phase function ( )snχ : 
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What is an appropriate form for the phase function?  There are three conditions that an 
appropriate function should satisfy: 

• The coupling effects of skew quadrupoles should add coherently, depending on 
the phase advance between them.  More explicitly, two skew quadrupoles will 
clearly add in phase if the phase advances horizontally and vertically satisfy 

0=− yx µµ .   

• ( )sκ  is periodic in s , so ( )snχ  must also be periodic (modulus 2 ). 

• The modes should be orthonormal. 
A suitable form for the phase function is: 
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Let us suppose a single Fourier mode dominates over the others.  Then we drop all except 
a single term in the summation in (24), and the Hamiltonian becomes: 

( )yxyxnyyxx JJJJH
C φφκνν
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−++= cos~
2

0  (25) 

By selecting a single Fourier mode driving the resonance, we have eliminated the explicit 
dependence of the Hamiltonian on the independent variable s .  From now on, we drop 
the subscript n that indicates the selected Fourier mode.  In action-angle variables, 
Hamilton’s equations are: 
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and similarly for the vertical variables.  It is then easy to write down the equations of 
motion: 
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Don’t panic, things are not as bad as they might appear.  First, we notice straight away 
that the sum of the actions in the two planes is conserved: 
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Second, we find that there are fixed points, occurring at: 
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where the tune split is given by: 
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The emittance ratio (sometimes loosely referred to as the coupling) is, for ∆<<κ~ : 
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Finally, we notice that in the presence of the coupling term, the tunes are now: 
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where 
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The most important equation is the second of equations (26).  This tells us that to achieve 
a low vertical emittance, we need to maintain both a large tune split (i.e. stay away from 
the coupling resonance), and minimize the sources of coupling in the ring.  In practice, 
this means correcting quadrupole rotations and vertical misalignments of sextupoles.  
Equation (27) is also important, since it provides a way for diagnosing the strength of the 
coupling that exists in the ring.  The procedure is straightforward.  One simply adjusts the 
betatron tunes to move across the coupling resonance, recording the tunes measured (for 
example) by the response to a beam shaker.  The coupling strength is given simply by the 
closest approach of the measured tunes.  Figure 10 shows the characteristic variation in 
coupled tunes as the uncoupled tune split is changed, in a lattice close to the coupling 
resonance, with some skew quadrupole at a location of zero dispersion.  Figure 11 shows 
the corresponding changes in vertical emittance.  The effect of the coupling resonance is 
clear.  The width of the resonance peak is determined by the strength of the skew term(s) 
driving the coupling. 
 
 

 
Figure 10 

Measured tunes as a function of the uncoupled tune split.  The lines 
show the expected variation from equation (27), while the points show 
the results from the beamline simulation code MERLIN.  The lattice 
used was a modification of the NLC Main Damping Ring, with the 
wiggler omitted, and a single skew quadrupole inserted at a zero-
dispersion location.  The uncoupled tunes were controlled by making 
small adjustments to the focusing and defocusing quadrupoles in the 
arc cells. 
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Figure 11 

Variation of vertical emittance (normalized to the natural emittance) as 
a function of the uncoupled tune split, under the same conditions as the 
results shown in Figure 10.  The line shows the expected variation from 
the second of equations (26). 

In practice, one frequently finds that vertical sextupole misalignments dominate the 
coupling over quadrupole rotations.  The Hamiltonian approach provides a simple way to 
find the strengths of the couplings introduced.  The Hamiltonian for a quadrupole is: 
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Rotating the quadrupole through an angle θ  is equivalent to rotating the co-ordinates in 
the potential terms of the Hamiltonian through θ− .  The result is: 
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Thus, rotating a quadrupole through angle θ  introduces a skew component with strength 
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Similarly, we can write the Hamiltonian for a sextupole: 
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If the sextupole is displace vertically y∆ , this is equivalent to the transformation 
yyy ∆−→  in the Hamiltonian.  Thus, the Hamiltonian is transformed to first order in 
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Displacing a sextupole vertically by y∆  introduces a skew component with strength 

ykks ∆= 2   
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6.2 Vertical Dispersion 
The analysis of the vertical emittance generated by vertical dispersion is more 
straightforward than the analysis of betatron coupling.  It is also not difficult to measure 
the vertical dispersion in an operating machine: one simply measures the change in orbit 
as the energy of the beam is varied.  Usually, one controls the energy through the RF 
frequency.  In practice, there are a number of technical details that limit the accuracy with 
which the dispersion may be measured, not the least of which is the BPM resolution.  
These considerations are important for damping rings, where, as we shall see, careful 
correction of the vertical dispersion is needed. 
 
Vertical dispersion comes from two sources in a storage ring: 

• Vertical quadrupole misalignments and dipole tilts generate horizontal magnetic 
fields that steer the beam vertically. 

• Skew fields, for example from rotated quadrupoles or vertically misplaced 
sextupoles, can couple horizontal dispersion into the vertical plane. 

Before we proceed to estimate the vertical emittance generated by vertical dispersion, let 
us consider each of these sources, and estimate how much dispersion we expect to find. 

6.2.1 Vertical Dispersion from Vertical Steering 
Let us start by understanding the closed orbit distortion and the dispersion resulting from 
a localized kick.  We can then use linear superposition to write down general expressions 
for the result of a distribution of kicks around the ring. 
 
If the single-turn transfer matrix at some point 0s  in the ring is M , then the closed orbit 

condition is simply: 
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If we introduce a magnet error at this point in the ring such that the beam is kicked by an 
angle θ , then the closed orbit condition becomes: 
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The kick at one location in the lattice leads to a cusp in the closed orbit (Figure 12). 
 

 
Figure 12 

Orbit distortion from a kick through angle θ at one location in the lattice. 

Using the general expression (22) for the single-turn transfer matrix in terms of the Twiss 
parameters, we find that the change in the closed orbit at the location of the kick is: 
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The invariant action associated with this orbit distortion is found to be: 
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Hence, at a point 1s  in the lattice where the betatron phase is yφ , the orbit is: 
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For consistency, we must fix the phase at 0s  to ( ) yy s πνφ −=0 .  If we choose instead the 

phase ( ) 00 ==syφ , we must write: 
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where the modulus signs are required to ensure that the closed orbit is periodic: 
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A distribution of kicks around the ring will give a closed orbit that is just the linear 
superposition of the orbits generated by the individual kicks.  Hence, we have for the 
general case: 
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Now let us consider the dispersion associated with an orbit distortion.  We start with 
Hill’s equation for the vertical orbit: 
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where 1k  is the horizontal focusing: 
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Taking the derivative of equation (30) with respect to the energy deviation gives: 
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In other words, the dispersion obeys the same equation of motion as the orbit itself, 
namely equation (30), but with a modified driving term on the right hand side.  Thus, 
looking at equation (29) we can immediately write down the solution: 
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6.2.2 Dispersion Coupling 
We should also consider vertical dispersion that comes from the coupling of horizontal 
dispersion into the vertical plane.  Using equation (23) with δηxx = , an off-momentum 

particle receives a vertical kick in a skew quadrupole of integrated strength lks , given by: 

δη xslky −=′∆   

This is readily included as a driving term in equation (31), as is the skew quadrupole seen 
by a particle passing through a sextupole with some vertical offset.  If we assume that the 
sextupole is correctly aligned with respect to the design orbit, then the vertical offset of 
the particle simply corresponds to the orbit distortion at the sextupole location: 
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Including all these terms gives for the vertical dispersion: 
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6.2.3 Some Simple Sensitivity Indicators 
In general, a lattice will include random misalignments of all components.  It is important 
to understand the effects that errors within certain limits will have on the performance of 
the damping ring, and to devise algorithms for effective compensation of the errors.  
Rigorous studies require detailed simulations, but with the preceding analysis we are in a 
position to determine a variety of “sensitivity indicators” which will allow comparison 
with operating facilities with the aim of deciding whether the performance targets of the 
damping rings are realistic.  Starting from the expressions for the closed orbit distortion 
(29) and vertical dispersion (32), and assuming that the errors are random and 
uncorrelated, we can write simple expressions relating the orbit and dispersion to errors 
in the lattice. 
 
First, the closed orbit is related to vertical misalignments of the quadrupoles by: 
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where  indicates an average around the lattice, 2
qY  is the mean square vertical 

misalignment of the quadrupoles, and the summation extends over all the quadrupoles in 
the lattice. 
 
Second, the vertical dispersion is related to the rotations of the quadrupoles by: 
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2
qΘ  is the mean square rotation of the quadrupoles, and the summation again extends 

over all the quadrupoles in the lattice. 
 
Finally, the vertical dispersion is related to the vertical misalignments of the sextupoles 
by: 
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2
sY  is the mean square vertical displacement of the sextupoles, and the summation 

extends over all the sextupoles in the lattice. 
 
Each of the three above expressions includes a summation over lattice functions, which is 
readily evaluated from the lattice design.  Large beta functions and strong magnets tend 
to increase the sensitivity to errors.  It is also clear that from this perspective, the ideal 
vertical tune is a half integer. 

6.2.4 Vertical Dispersion and Vertical Emittance 
The effect with which we are most concerned at present, is the growth in vertical 
emittance from vertical dispersion.  Now that we have expressions for estimating the 
vertical dispersion from alignment errors in a given lattice, we need to make the final step 
and relate the vertical emittance to the vertical dispersion.  This is reasonably 
straightforward.  We begin by writing the general expression for the equilibrium vertical 
emittance generated by the balance between quantum excitation and radiation damping: 
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Assuming that the dispersion is generated by random errors, there is nothing special 
about the vertical dispersion in the horizontal bending magnets (where the radiation is 
produced).  Thus, we can write: 
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and so: 
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Next, we note that the H -function plays a similar role for the dispersion, as the invariant 
action does for the orbit.  Specifically, where there is no driving term for the vertical 
dispersion, we can write: 

( )yyy φβη cosyH=   

For a large lattice with random errors, we can take an average around the ring: 
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and thus we find: 
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6.3 Some Comments on Alignment and Emittance Tuning 
The sensitivity of a damping ring is such that magnet misalignments of the order of a few 
microns (for the quadrupoles) or tens of microns (for the sextupoles) are sufficient to 
blow up the vertical emittance to above the required value.  Modern survey techniques 
are capable of aligning magnets to the design orbit to within a few tens of microns over 
several meters.  Fortunately, we do not need to rely on the initial alignment survey to 
achieve the desired performance of the damping ring.  Instead, we design the ring with a 
correction system to compensate for the fact that none of the magnets are exactly where 
we desire them to be. 
 
Generally, the emittance tuning system performs its task in three stages. 

• The vertical orbit is determined from the BPM readings.  Beam based alignment 
(BBA) techniques can be used to determine the offsets between the BPMs and the 
magnets, leading to the construction of a “golden orbit” passing through the 
center of each quadrupole.  Orbit correction is achieved using steering magnets, or 
quadrupole movers. 

• Vertical dispersion is measured by changing the energy of the beam (by adjusting 
the RF frequency) and measuring the corresponding change in orbit.  Correction 
of the vertical dispersion is achieved by a combination of steering the beam and 
coupling at locations of horizontal dispersion. 

• Betatron coupling is measured by kicking the beam horizontally, and measuring 
the corresponding change in the vertical orbit.  Correction is achieved using skew 
quadrupoles. 

There are many possible tuning algorithms using variations and combinations of the 
above stages.  For example, steering is often applied with the aim of simultaneously 
minimizing the orbit distortion and the vertical dispersion.  Tuning algorithms have been 
developed for both the NLC and TESLA damping rings that perform well in simulations.  
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It is possible to include a wide variety of errors, nonetheless it is not possible to 
reproduce the full operational conditions that may be expected in a control room.  For this 
reason, there is great interest in the experience of storage rings already in operation.  The 
machines closest to the damping rings are the KEK-ATF, and the third generation light 
sources.  A number of machines have demonstrated a vertical emittance approaching that 
required for the damping rings.  Unfortunately for damping ring research, third 
generation light sources prefer to operate with much larger vertical emittance, providing a 
compromise between photon beam brightness and electron beam lifetime.  Thus, there is 
little direct motivation for existing facilities to pursue an experimental program in this 
area. 
 
It is important to note that after successfully tuning a lattice for low emittance, significant 
errors may remain apparently uncorrected.  For example, in simulations of the TESLA 
damping ring the beam offset through the sextupoles after correcting the vertical 
emittance below the operational limit is typically several hundred microns.  If the errors 
are assumed to be uncorrelated, then with this magnitude offset in the sextupoles, the 
expected betatron coupling approaching 100%.  This apparent contradiction is easily 
resolved by the observation that after tuning the lattice, the beam offsets in the magnets 
are in fact highly correlated.  If one calculates the betatron coupling using the known 
beam offset in each sextupole from the simulation after successful tuning, then a value is 
always found consistent with an emittance ratio below 0.5%. 
 
For practical calculations, one needs to know the magnet strength and lattice functions for 
the particular lattice design.  Some values for the NLC and TESLA damping rings that 
will allow some sensitivity estimates to be made are given in Table 4 and Table 5. 

Table 4 

Some parameters for arc cells of the TESLA and NLC damping rings.  Note that the TESLA cell includes 
two horizontally focusing (QF) quadrupoles, and two horizontally defocusing (QD) quadrupoles, while the 
NLC cell includes two horizontally focusing quadrupoles, and just one horizontally defocusing quadrupole.  
The TESLA cell includes a single SF sextupoles, and two SD sextupoles; the NLC cell includes two of 
each type of sextupole. 

TESLA e+ DR NLC MDR  

lkn /m-1 
xβ /m yβ /m xη /m lkn /m-1 

xβ /m yβ /m xη /m 

QF 0.254 34.3 16.2 0.455 1.41 4.15 1.78 0.0833 
QD -0.209 17.6 26.6 0.352 -0.945 0.911 10.33 0.0548 
SF 2.55 35.1 15.8 0.500 23.6 4.00 2.22 0.0857 
SD -1.54 23.2 22.6 0.405 -18.1 1.09 8.99 0.0585 

Table 5 

Tunes of the NLC and TESLA damping rings. 
 TESLA e+ DR NLC MDR 

xν  76.32 27.26 

yν  41.19 11.14 
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7 Collective Effects 
The high charge density associated with the large bunch current and low emittance, 
makes the beams in linear collider damping rings susceptible to a wide variety of 
collective phenomena that threaten operational performance.  Effects that need to be 
considered include the following. 

• The (broad band) impedance of the vacuum chamber leads to the growth of high 
frequency modes within individual bunches, that decohere in the presence of 
nonlinearities, leading to an increase in emittance.  This is the microwave 
instability. 

• Higher order modes in the RF cavities and the resistive wall impedance of the 
vacuum chamber couple the oscillations of different bunches.  This may lead to 
emittance growth, or a limit on the stored beam current. 

• Touschek scattering limits the lifetime of the beam, since some of the high 
transverse momentum of the particles may be transferred into the longitudinal 
plane through their interaction within a bunch.  Particles given a large energy 
deviation in this way may be outside the momentum acceptance of the ring, and 
are quickly lost.  Although the limited lifetime itself is not significant for 
operation (the beams are only stored for milliseconds, whereas even a short 
Touschek lifetime is measured in minutes) it is a consideration for commissioning 
and tuning of the ring. 

• Intra-beam scattering (IBS) is similar to the Touschek effect, in that it involves 
scattering of particles within the bunch.  The difference is that the Touschek effect 
consider “large-angle” scattering, in which there is a significant exchange of 
momentum from transverse degrees of freedom to the longitudinal, whereas IBS 
considers “small-angle” scattering that does not lead to particles being kicked 
outside the momentum acceptance.  The momentum exchange that does occur in 
IBS leads to emittance growth in much the same way as quantum excitation from 
synchrotron radiation. 

• The space-charge of the bunch leads to a variation of the betatron tune with 
betatron amplitude and longitudinal position in the bunch.  With a large tune 
spread, the oscillations of numbers of particles within the bunch may become 
unstable.  Particles may be lost, or the emittance of the entire bunch may be 
increased to a point where the space-charge tune spread is reduced sufficiently for 
the oscillations to be stabilized. 

• In the positron rings, energy can be transferred to electrons produced by 
synchrotron radiation striking the vacuum chamber walls, or by gas ionization.  
High-energy electrons hitting the vacuum chamber can lead to a shower of 
electrons, resulting in a high electron charge density in the chamber, that 
destabilizes the beam.  This is the electron cloud effect. 

• In the electron rings, positive ions produced by gas ionization can be trapped in 
the beam, leading to instability of the beam.  Ions can build up over several turns 
(the well-known “ion trapping” phenomenon) or within the passage of a single 
bunch train (the “fast ion” instability). 

• Variation in beam loading in the RF cavities from gaps between bunch trains can 
lead to “phase transients” along the bunch train.  Phase transients have 
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implications for the operation of systems downstream of the damping rings, 
particularly the bunch compressors and main linac. 

• Coherent synchrotron radiation can, in certain regimes, produce significantly 
higher radiated power than the incoherent radiation considered in the discussion 
of radiation damping.  The radiation produced can interact with the beam, driving 
a longitudinal instability. 

 
Detailed analysis of these effects and discussion of preventive measures is outside the 
scope of these notes.  In some cases, the phenomena are not fully understood, or there is 
limited experimental data with which to verify the theoretical models.  Some discussion 
may be found in the references given in the Introduction.  Estimates of the possible 
impact of some of the above effects have been made for the NLC Main Damping Ring 
(“Estimates of Collective Effects in the NLC Main Damping Rings”, A. Wolski and S. de 
Santis, LCC-0080, May 2002). 
 

8 Problems for the Student 
 
1. Show that (in the context of quantum excitation of synchrotron oscillations): 
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2. Show that the betatron action induced by a particle emitting a photon of energy u is 

given by: 
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3. Refer to equation (19), for the rate of change of betatron action in the presence of 

damping and quantum excitation.  Show that: 
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4. Show that for 01 =ρ , H is a constant (i.e. independent of s). 
 
5. Suppose that the NLC and TESLA damping rings were composed entirely of arc 

cells, with parameters as given in Table 1.  Assume the lattices are circular, with the 
circumferences given in Table 1.  For each lattice, calculate: 
a) the synchrotron radiation integrals; 
b) the damping times; 
c) the equilibrium energy spread; 
d) the natural emittance. 
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Compare the natural emittance that you find for each lattice, with the minimum 
theoretically possible for a lattice with the given energy and dipole bending angle.  
Explain why the lattice might be designed with a much larger natural emittance than 
the minimum. 

 
6. Using the wiggler parameters given in Table 2, calculate the contributions from the 

wigglers to the synchrotron radiation integrals in the NLC and TESLA damping 
rings.  Hence estimate for the full rings (including the wiggler): 
a) the damping times; 
b) the equilibrium energy spread; 
c) the natural emittance. 
 
Using your result for the damping times, and assuming an injected normalized 
transverse emittance of 150 µm for the NLC and 0.01 m for TESLA, estimate the 
equilibrium vertical emittance necessary to achieve the extracted vertical emittance of 
0.02 µm for both machines. 

 
7. a) Using values given in Table 3, calculate the chromaticities of the arc cells in the 

 NLC and TESLA damping rings. 
b) Assuming that the sextupoles are superposed onto the quadrupoles, calculate the 

sextupole strengths required to correct the chromaticity to zero in the cell. 
c) Explain why stronger sextupoles than you calculated in (b) will be needed to 

correct the chromaticity in the full lattice. 
 

8. Show that the RF acceptance of a storage ring is given by: 
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9. a) Calculate the RF voltage required to give an RF acceptance of ±1.5% in the NLC 

 and TESLA damping rings. 
 b) Using your values from (a) calculate: 

i) the synchrotron frequency; 
ii) the equilibrium bunch length. 

 
10. Show that the fixed points of the dynamical system with Hamiltonian given by (25) 

occur at the values for the action given by (26). 
 
11. Show that for a beam in a coupled lattice, the tunes observed in the control room are 

given by both values of equation (27). 
 
12. Assuming an otherwise perfect lattice, estimate the uncorrelated sextupole vertical 

alignment error in the NLC and TESLA damping rings that will lead to a betatron 
coupling at the respective operational limit of each machine. 

 
13. Estimate the rms vertical dispersion in the NLC and TESLA damping rings that will 

lead to an equilibrium vertical emittance at the respective operational limit of each 
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machine.  Hence, estimate the quadrupole vertical misalignment, quadrupole rotation 
and sextupole vertical misalignment that will (separately) give the vertical emittance 
limit.  

 
14. It has been proposed to raise the repetition rate of the NLC from 120 Hz to 180 Hz.  

This would allow higher luminosity to be delivered to a single interaction point, or 
simultaneous luminosity to be delivered to two separate interaction points.  Produce 
an outline design for a damping ring suitable for a version of the NLC to be operated 
at 180 Hz.  Assume that the injected normalized transverse emittances are 150 µm, to 
be damped down to 3 µm and 0.02 µm horizontally and vertically respectively, at 
extraction.  The injected energy spread is 1%, to be damped down to 0.1% or lower, 
at extraction.  The bunch train consists of 192 bunches, with a spacing of 1.4 ns.  You 
should consider all the principle parameters, including: 
• energy; 
• circumference; 
• number of cells; 
• dipole field; 
• wiggler length; 
• RF voltage. 

 
 
 


