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The Energy Frontier 

 
Moving off the line! 

Why  a Linear Collider 
One can reasonably ask the question “why not just build a bigger storage ring? Why 
do we need a linear machine that  – on the face of it –  seems much more complex?” 
The concept of a linear collider is not particularly new, and was in fact first proposed 
by M. Tigner in 1965 in a paper entitled “A Possible Apparatus for Electron Clashing-
Experiments1”: 
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“While the storage ring concept for providing clashing-beam 
experiments is very elegant in concept it seems worth-while at the 
present juncture to investigate other methods which, while less elegant 
and superficially more complex may prove more tractable.” 
 

So even over thirty years ago it was clear (to some) that the storage ring concept was 
limited in its energy reach. The reason is due to synchrotron radiation effects and the 
cost scaling of such facilities. 
 
The LEP collider operated until very recently at CERN in Switzerland is generally 
considered to be the last energy frontier electron-positron storage ring collider. For a 
given centre of mass energy, the circumference and cost of the machine is (optimally) 
defined by the energy loss per turn of the electrons and positrons due to synchrotron 
radiation. The average power radiated by a single electron (or positron) of energy E 
for a ring with an average bend field B is 
 

 
2 2

2 2

2
e c

P C E Bγ γπ
= , (1) 

 
where e is the electronic charge, c the velocity of light, and 

5 -3 -18.85 10 GeV mCγ
−≈ × .  Taking into account the revolution time ( 2 / cπρ , where ρ 

is the average ring radius) and the fact that /( )B E ecρ= , we arrive at 
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The energy lost per turn has to be replaced by the RF system of the ring, which is a 
major cost factor for the collider. From equation (2) we see that the cost of the RF 
system (proportional to the required voltage) is proportional to the fourth power of the 
energy, and inversely proportional to the radius (circumference) of the ring. The other 
costs of the collider (vacuum system, magnets, tunnel etc.) scale more or less linearly 
with the circumference. Thus we have: 
 

• RF costs: 4$ /RF E ρ∝  
• linear costs: $lin ρ∝  
• optimum when  $ $RF lin=  

• optimum cost ( ) 2$ $RF lin E+ ∝  
 
As an example of the cost and circumference scaling, let us take the LEP-II machine 
as our base, and look at two hypothetical machines: a super-LEP with a center of 
mass energy of 500 GeV, and a hyper-LEP at 2 TeV. Table 1 shows the relevant 
parameters. 
 
 
 
 



 
  LEP-II Super-LEP Hyper-LEP 
Ecm GeV 180 500 2000 
L km 27 200 3200 

turnE∆  GeV 1.5 12 240 
$tot 109 SF 2 15 240 

Table 1: Cost and circumference scaling based on the LEP-II storage ring. 

It should be clear that – even at 500 GeV centre of mass – a storage ring with a 
circumference 200 km and a cost of 15 billion SF is unrealistic, and alternatives must 
be sought.  
 
The main problem is of course that E4 dependence of the radiated power  as we force 
our electron and positron beams to go around the ring. The answer would seem to be 
not to bend the beams, but keep them in a straight line, which is exactly the concept of 
a linear collider. Unfortunately, in abandoning our storage ring concept in favour of a 
linear collider, we immediately arrive at some problems: 
 

• because we cannot store the beams as in a storage ring, a linear collider is a 
one-pass device where the beams must be accelerated (effectively from rest) to 
the required energy on each pulse of the machine; 

• since we cannot take advantage of the stored beam to slowly ramp the energy 
up, we must provide several kilometres of linac (RF structures) to achieve the 
energy in a single-pass. 

 
Hence a linear collider swaps dipole magnets for RF. The typical linac technologies 
being discussed are on the order of 10 km long, and contain many thousands of RF 
structures driven by hundreds to thousands of klystrons. Given that we started this 
discussion by trying to keep the RF costs at an optimum, we might well raise our 
eyebrows at the linear collider proposals and ask if this is really more cost effective. 
Indeed, the majority of the linear collider R&D over the last fifteen years has been 
focused on providing a cost effective technology for the linac. As of writing, the cost 
advantage over a super-LEP at 500 GeV is estimated at about a factor of two to three, 
although the tunnel length is considerably less at 20-30 km. Bearing in mind that – 
unlike the storage ring – the cost scaling for a linear collider is linear with centre of 
mass energy (you just build more linac), it is very clear that a linear collider is the 
only option for an e+e− machine above the TeV range. 
 
   SLC FLC 
centre of mass energy Ecm GeV 100 500-1000 

   
beam power Pbeam MW 0.04 5-20 

     vertical beam size at the 
interaction point 

*
yσ  nm 500 (502) 1-5 

     relative beamstrahlung 
energy loss 

/BSE Eδ  % 0.03 ~3-10 

                                                
2 50 nm was the focused beam size achieved at the Final Focus Test Beam (FFTB) at SLAC. 



   
Luminosity L 1034 cm-2s-1 0.0003 ~3 

Table 2: key parameters for the SLC compared the proposed machines 

 

Current state of linear collider R&D 
The Stanford Linear Collider (SLC) was operated at SLAC from 1986 until 1996 and 
is generally considered a ‘proof of principle’ of the linear collider concept. The SLC 
was not, however, a true linear collider since it used a single linac to accelerate both 
electron and positron bunches, which were separated at the linac exit and then brought 
into head-on collision by the so-called arcs3. However, many of the problems facing 
the next generation machine were first encountered and solved at the SLC. Table 2 
gives a comparison of some key SLC parameters compared to the proposed machines. 
Clearly what we are currently proposing is major step up from a ‘proof of principle’ 
machine, especially the four orders of magnitude in luminosity, which – next to 
achieving the centre of mass energy – is the most ambitious and challenging goal of 
linear collider designs. The beam powers are also extremely high and must be dealt 
with cautiously. Last (but by no means least), achieving and colliding nanometer 
beams at the interaction point (IP) has been the subject of many man years of on-
going R&D. 
 
During and since the SLC there has been much active research on the next generation 
of linear collider, with a centre of mass energy goal in the range of 0.5-1 TeV (and 
beyond). To support the R&D activities, several test facilities have been operated at 
the key laboratories involved in linear collider R&D (CERN, DESY, KEK and 
SLAC); table 3 summaries these facilities. Together they represent over fifteen years 
on R&D towards the realisation of a linear collider. 
 
SLC SLAC, USA 1988-1998 Z factory, proof of LC 

principle. 
Final Focus Test 
Beam (FFTB) 

SLAC, USA 1992-1997 demonstrated required 
demagnification, 
achieving 50nm vertical 
beam size 

Next Linear Collider 
Test Accelerator 
(NLCTA) 

SLAC, USA 1997- 11.4 GHz linac 
technology test 
accelerator.  

SBAND test facility DESY, 
Germany 

1994-1998 2.8 GHz S-band test 
accelerator 

TESLA test facility DESY, 
Germany 

1994- superconducting 1.3 GHz 
linac technology test 
facility and linac. Also 
includes SASE FEL 

Accelerator Test 
Facility (ATF) 

KEK, Japan 1997- injector and damping ring 
test facility 

                                                
3 the SLC was designed to operate at the Z-pole, and hence the beam energy was about 47 GeV, 
sufficiently low to allow relatively strong bending magnets. 



CLIC Test Facilities 
(I,II,III) 

CERM, CH 1994- two-beam 30 GHz 
accelerator test facilities 

Table 3: Linear collider R&D test facilities 

  

The Luminosity Issue 
There are two critical and key parameters for a high-energy physics collider 
experiment: centre of mass energy and luminosity. Centre of mass energy is clearly 
important for the discovery potential of the experiment (new physics), and is 
generally the first parameter discussed when proposing a new machine (we always 
tend to refer to being at the ‘energy frontier’ with these machines). However, the 
energy reach of the machine is useless unless we can simultaneously deliver a high 
enough luminosity. The cross-section for physics events generally reduces with the 
square of the centre of mass energy; consequently we arrive at the following rule-of-
thumb  for a collider: 
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cmL E∝ . (3) 
 
Scaling the achieved LEP luminosity gives us a required luminosity for a 500 GeV 
centre of mass machine of approximately 1034 cm-2s-1. Achieving these high 
luminosities actually dictates many of the fundamental parameters for a linear 
collider. In the following we will derive a luminosity scaling law and in so doing 
introduce the fundamental linear collider parameters. 
 
For any colliding beams facility, the luminosity is given by 
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where fc is the (mean) bunch collision frequency, Nb are the number of particles per 
bunch (assumed equal in both beams) and A is the (effective) overlap area of collision 
at the IP. For a linear collider, trains of nb bunches are collided at a given repetition 
frequency frep, so that c b repf n f= . Assuming bunches with Gaussian distributions in 
both horizontal (x) and vertical (y) planes, we can express equation (4) as 
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where *

,x yσ  are the RMS transverse beam sizes at the IP (assumed equal for both 
beams), and HD is the pinch enhancement factor, which allows for the self-focusing 
(pinch) of the intense beams during collisions (it has the typical value of ~2). 
Equation (5) is the usual linear collider luminosity formula quoted in the literature. 
We will now use it as the basis of our scaling law by introducing the important linear 
collider parameters. 
 



Centre of mass energy (Ecm) and beam power (Pbeam) 
 
The average beam power is given by 
 
 2 beam b b cm repP n N E f=  (6) 
 
Combining equation (6) with equation (5) yields 
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(The reason for the grouping of the remaining parameters will be made clear shortly.) 
From equation (7) we can see that a higher luminosity can always be achieved by 
‘cranking up the power’. However higher beam powers are generally constrained by 
both the available electrical power (including environmental considerations), and the 
need to deal with the high beam powers within the machine (machine protection and 
final beam dump issues). Some typical numbers are given below: 
 
 Nb 1010 
 nb 100 
 Ecm 500 GeV 
 frep 100 Hz 
 
This power has to be supplied continuously in order to accelerate each bunch train 
from rest. The wall-plug power required by the RF is generally much higher than the 
beam power due to the (in-)efficiency of the RF power sources. We generally write 
 
 beam RF beam RFP Pη →=  (8) 
 
where RF beamη →  is the RF to beam power conversion efficiency, which is typically in 
the range of 20-60% depending on the choice of linac technology. There is a further 
loss of efficiency in converting the AC (or wall-plug) power to RF power (efficiencies 
in the various components: modulators, klystrons, etc.) . Again these efficiencies tend 
to be in the 28-40% range. Combining the two efficiencies we arrive at an AC to beam 
power conversion efficiency (which we will refer to simple as η) of 6-24%: hence we 
need a wall-plug power of >100 MW just to accelerate the beams to the required 
energy.  
 
Before leaving the beam-power issue, let us introduce the AC power (PAC) and the 
overall efficiency into our luminosity equation (7): 
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2Pbeam = 8 MW 



Intense beams at the IP 
 
In the last section we discussed the power needed to accelerate the beams to the 
required centre of mass energy. A consequence of the one-pass nature of a ‘straight 
machine’ is that must generally have a much lower collision rate than in a storage 
ring. In LEP – with a 27 km circumference and 4 bunches – the collision rate (per 
experiment) was 44 kHz; this already represents a factor of ~400 loss in luminosity 
for a 100 Hz linear collider compared to LEP. Having a large (>100) number of 
bunches per bunch train gains most of this loss back (at the expense of a high power 
bill), but we still need at least two orders of magnitude more luminosity at 500 GeV 
centre of mass. In a linear collider, we achieve this by pushing very hard on the 
transverse beam sizes at the IP ( *

,x yσ  in equation (9)): 
 

  

LEP 130×6 µm2  
LC (200-500) ×(3-5) nm2 

 
This represents over a 106 reduction in beam cross-section at the IP. The required tiny 
beam sizes in a linear collider have the following (immediate) consequences: 
 

• We now require a very strong focusing (demagnification) of the beam at the 
IP, which in turn requires very strong focusing quadrupoles close to the IP. 
Chromatic and geometric aberrations must be cancelled very accurately to 
avoid dilution of the beam sizes. 

• The extreme high charge densities of the colliding beams leads to significant 
beam-beam effects such as: 

o strong self-focusing (pinch) of the bunches (good); 
o instability effects which lead to tighter collision tolerances on the 

beams (bad); 
o a high level of beamstrahlung radiation which dilutes the luminosity 

spectrum (bad); 
o production of copious e-e+ pairs created by the strong field of the 

bunches which are a source of background for the detector (bad). 
• Tight tolerances on the vibration of the accelerator components, especially the 

final quadrupole magnets. 
 
Both the strong focusing and the resulting strong beam-beam effects are only 
achievable in a one-pass machine such as a linear collider; in storage rings, the beam-
beam effects are necessarily kept small to avoid loosing the beam! 
 

* *
x yσ σ×
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Figure 1: Typical electric field from a flat beam at the IP of a linear collider. 

Figure 1 shows the typical electric field of a flat beam ( * *
x yσ σ>> ) in a linear collider. 

Clearly fields up to GV/cm can be reached. Particles in the opposing bunch see this 
field and are deflected by it (the source of the pinch enhancement, characterised by 
the HD parameter in the luminosity formula). As the particles are deflected, they 
radiate hard photons referred to as beamstrahlung; this radiation is analogous to 
synchrotron radiation, although in the intense beam-beam regime the classical 
synchrotron radiation theory cannot be applied. 
 
The amount of beamstrahlung radiated is a critical linear collider parameter because it 
(a) quantifies the beam-beam backgrounds and (b) gives an indication of the dilution 
of the luminosity spectrum (luminosity per centre of mass energy bin). Most linear 
collider designs constrain the relative beamstrahlung energy loss to a few percent. The 
more general beam-beam effects are quantified by the so-called disruption parameter 
(Dx,y), defined as 
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where σz is the bunch length and 2/ oE m cγ = . fbeam is the effective focal length of the 
beam; hence a small disruption parameter (weak beam-beam) means that 

beam zf σ>> and the bunch acts as a ‘thin lens’. Conversely a high disruption 

parameter ( , 1x yD >> ) corresponds to a focal length which is significantly shorter than 
the bunch length, giving rise to a pinch enhancement and – if D is too big – an 
instability which significantly reduces the luminosity in the presence of small beam-
beam offsets. The enhancement factor (HD) can be estimated from the following 
expression: 
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where ,x yβ  are the β-functions at the IP. For most linear collider designs, Dy is in the 
range 10-20, with HD typically ~2. 

Ey (MV/cm) 

y/σy 



 
The last term in the square bracket in equation (11) comes from the so-called hour-
glass effect, and effectively sets a limit on the achievable beam size for a given bunch 
length. 
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Figure 2: The 'hour glass effect'. Left shows the z-y distribution for a beam with σz = βy, while 
right shows the z-y distribution for σz = 3βy. Units are in nominal beam σ. 

 
Figure 2 shows density plots of the bunch at the IP in the z-y plane for the case of 
(left) z yσ β=  and (right) 3z yσ β= . The latter case shows a marked ‘butterfly4’ 
distortion compared to the former case, which would reduce the luminosity during 
collision. βy can be thought of as a ‘depth of focus’ for the bunch, and consequently it 
is desirable to have z yσ β≤ . 
 
The relative energy loss during collision due to beamstrahlung is approximately given 
by 
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We would like to keep δBS as small as possible while maximising the luminosity. 
Comparing equation (12) with our luminosity formula (for example equation (9)), we 
can immediately spot the standard linear collider trick: δBS  is a function of the sum of 
the two beam sizes, while luminosity is a function of the product. Hence we collide a 
flat ribbon-like beam with x yσ σ>> . As a result, the beamstrahlung is only a function 
of the horizontal beam size which is then constrained: 
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4 to see the ‘hour glass’ you must rotate your head 90°; I have never understood why this is not called 
the ‘butterfly’ effect. 



 
We then increase the luminosity (independently of the beamstrahlung) by making σy 
as small as possible. Combining equations (13) and (9) we can express our luminosity 
scaling law in terms of the beamstrahlung energy loss δBS : 
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Summarising (so far), equation (14) indicates that for high luminosity operation we 
need: 
 

• a high beam power (high PAC); 
• a high wall-plug to beam power transfer efficiency η; 
• small vertical beam size σy at the IP; 
• long bunch length5 σz; 

 
In addition, a higher luminosity can be achieved at the expense of a larger energy loss 
due to beamstrahlung, providing we are ready to live with the consequences. 
 
Equation (14) is almost – but not quite – our final scaling law. We have yet to 
introduce the important parameter of vertical emittance, and in doing so, we will see 
that we can use our hour-glass constraint to effectively remove the bunch length from 
the equation. 
 
From basic linear optics, we can express the vertical beam size at the IP by 
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where yε  is the normalised or invariant emittance, and 2/ oE m cγ =  as before. From 
our discussion of the hour-glass effect, we already know that the bunch length and the 
vertical β-function are constrained by the relationship z yσ β≤ . To maximise the 

luminosity a sensible choice (limit) would be to set y zβ σ= . Using this last 

relationship, and replacing σy by equation (15) in equation (14), we arrive at our final 
luminosity scaling law: 
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We have re-introduced the enhancement factor for completeness. We have now 
successfully identified the key (fundamental) linear collider parameters which enter 
into the luminosity scaling, namely power conversion efficiency (η); power (PAC); 
beamstrahlung energy loss ( BSδ ); normalised vertical emittance ( yε ); and bunch 

                                                
5 we will see shortly that this is not the case. 



length ( zσ ), which sets the scale for the vertical β-function. In addition we can now 
re-state our requirements for high-luminosity (for a given centre of mass energy and 
beamstrahlung energy loss): 
 

• a high beam power (high PAC); 
• a high wall-plug to beam power transfer efficiency η; 
• small normalised vertical emittance yε ; 

• a short bunch length σz (and corresponding small yβ ); 
 
 

 
Figure 3: Luminosity as a function of βy for various bunch lengths. Dotted line shows the 

geometric luminosity. 

 
Figure 3 shows the luminosity as a function of *

yβ  for various bunch lengths; the 
dotted line shows the geometric luminosity (i.e. no beam-beam effects, equation (5) 

with HD = 1), which shows the expected *
yβ  behaviour. The solid lines are 

calculated from equations (5) with HD calculated from equation (11); we can make the 
following observations: 
 

• for *
y zβ σ> , a clear pinch enhancement is visible over the geometric 

luminosity (dotted line); 
• for *

y zβ σ<  the luminosity drops rapidly due to the onset of the hour-glass 
effect. 

 
While it appears that a shorter bunch length is desirable, we should not forget that this 
is general accompanied by higher beamstrahlung (equation (12)). 
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Introduction to the Generic Linear Collider 
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Figure 4: The Generic Linear Collider. 

 
In the last section we introduced the important beam parameters for a linear collider 
via the important issue of luminosity. In this section we will briefly describe how 
these parameters are obtained by outlining the various sub-systems of a generic linear 
collider; this section will act as an introduction to the more detailed descriptions to 
follow in the relevant lecture units. 
 
Figure 4 shows schematically a generic linear collider (or at least one half of it). In the 
sense of the beam, the various subsystems are: 
 

• source (provides the required electrons and positron bunches with the required 
time structure); 

• pre-accelerator which accelerates the bunches to the damping ring energy; 
• a damping ring (or rings), which ‘damp’ (or reduce) the phase volume of the 

bunches; 
• a bunch compressor which compresses the bunches longitudinally to the 

required IP bunch length; 
• the main linac, which accelerates the bunches from the damping ring energy 

up to the desired IP energy; 
• the beam delivery system (BDS) which transports the high-energy bunches to 

the IP where they are collided; 
• an extraction line which safely transports the ‘used’ bunches to the dump (and 

optionally supports post-IP beam diagnostics). 
 
In Figure 4, the BDS is further divided into two important sub-systems: 
 

• a post-linac collimation system which is needed to remove the beam ‘halo’ 
which would otherwise cause unacceptable background in the detector; 

• the Final Focus System (FFS), which supplies the strong focusing required to 
produce the nanometer-sized beams at the IP. 

 
We will now briefly discuss each of these sub-systems. As the linac and its associated 
technology is so central to the linear collider (and represents the major component 
costs) we will deal with it first. 
 



The Main Linac and Acceleration 
 
Accelerating Field 
The electron and positron bunches are accelerated by (i.e. they gain energy from) RF 
fields inside so-called structures. Structures can either be waveguide-like structures or 
resonant cavities. In both cases, the structures/cavities are so designed that the 
fundamental mode consists of a longitudinal electric field ( zE ). There are two basic 
ways of using an accelerating structure: the travelling-wave (TW) or standing-wave 
(SW) mode. 
 
In the TW mode, the e-m wave travels along a waveguide-like structure, with power 
being fed into the upstream end (see Figure 5). 
 

 
Figure 5: travelling wave structure 

 
Providing the phase velocity ( /pv kω= ) is equal to the velocity of the particles 
(assumed here to be the velocity of light, c), then the particles maintain a constant 
phase relation as they pass through the structure: 
 
 0( ) cos( )zE s E φ= , (17) 
 
where s is the longitudinal position along the structure (= ct), φ  is RF phase, and 0E  
is the peak electric field along the structure. The maximum energy gain is when φ = 0, 
but we will see later that a non-zero (synchronous) phase is generally required for 
emittance preservation. 
 
The fundamental issue in the design of a TW structure is to have an accelerating mode 
which has the correct phase velocity. The lowest order accelerating mode in a uniform 
circular waveguide is TM01, but this mode has a phase velocity that is greater than c 
(remember that the product of the group and phase velocities g pv v c=  for this simple 

geometry, and hence gv c< ). To make use of this mode as an accelerating structure, 
we must somehow slow the wave down. In practise this is achieved by periodically 
inserting irises as shown in Figure 6. 
 



 
Figure 6: disk loaded waveguide 

 
The disks act like capacitive loads in a transmission line and slow down the 
propagation of the wave. By tailoring the dimensions a and b the correct phase 
velocity for the accelerating mode can be achieved.  
 
In standing wave structures (cavities), the particles see a time varying field: 
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Acceleration is no longer constant as with the TW case, but varies along the cavity. 
The length of the cavities is / 2λ  so that the particle always sees an accelerating 
voltage as it passes from cavity to cavity. The total voltage seen per cavity is the 
integral of (18): 
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Hence the effective gradient is 0/( / 2) / 2cavV Eλ∆ = , or half the peek field.  
 
Important cavity parameters 
 
An important quantity for cavity performance – and particularly efficiency – is the 
shunt impedance unit length (rs), defined as 
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where /dP dz is the power lost in the structure walls per unit length. The shunt 
impedance tells us how much power you need to feed a structure to maintain a 
specified field. Ideally we would like to make the shunt impedance as high as possible 
to reduce the amount of power needed to maintain the field. Note that equation (20) 
refers to the case of zero beam loading (no beam); this is just the power needed by the 
structure itself. Note that if a standing wave structure with shunt impedance sr is used 
in a travelling wave mode, the shunt impedance is doubled; this is because a standing 
wave can be though of as the superposition of a forward and a backward travelling 
wave.  



 
Another important parameter is the Q of the cavity which is defined as 
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If ws is the stored energy per unit length of a structure, then 
 

 
/

sw
Q

dP dz
ω

= −  (22) 

 
Combining (22) with (20) gives 
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The quantity /sr Q  is important and depends only on the geometry of the 
cavity/structure, and not on the material or surface properties. 
 
The shunt impedance scales with operating frequency as  
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For this more than any other reason, LC designs based on conventional (normal 
conducting) RF have pushed to higher frequencies (JLC/NLC 11.2 GHz, CLIC 
30 GHz). For Superconducting cavities, lower frequencies are more efficient, the 
optimum being close to 1.3 GHz (as chosen for TESLA). 
 
The frequency scaling of the Q-factor is 
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Thus for normal conducting, the higher shunt impedance comes at the cost of a reduce 
Q. Finally the ratio /sr Q  scales as 
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As expected, this scaling is the same for both normal and superconducting cavities, 
since /sr Q  is independent of material or surface properties. 
 
Finally, we need to introduce the fill time tf of the cavity, which is the time required 
for the cavity to reach the required voltage. For a TW structure, it is defined as the 



length of time to fill the structure with energy ( / gL v ). In terms of Q  and ω it can be 
expressed as 
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where 0τ  is the structure attenuation coefficient defined as 
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where P0 and PL are the input and output RF power respectively.  For a SW cavity, 
the fill time is defined as the time for the field to charge up to 1/e of its final value: 
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which is the same as TW result (27) but without the attenuation factor.  
 
Beam loading 
 
So far we have only discussed the issue of  achieving the desired RF gradient in the 
structure or cavity. We have seen that, with normal conducting cavities, a significant 
RF power is required to maintain the gradient due to energy loss in the structure walls. 
When we now inject a beam, the electron bunches will be accelerated and gain energy 
from the field; this energy must be replaced by the power source (klystrons), or a drop 
in the structure voltage will occur. We refer to this effect as beam loading. 
 
Mathematically, we can write the power loss per unit meter in a structure as 
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where ib is the peak beam current. The first term on the right hand side of (30) is just 
equation (20), and represents the power lost to the cavity walls. The second term is 
the power removed by the beam (the beam loading). For warm (conventional) RF, the 
wall power term dominates, while for superconducting RF, the beam loading term 
almost completely dominates (i.e. all the power goes into the beam). 
 
For conventional RF, the beam loading effectively reduces the gradient (voltage) seen 
by the beam. We refer to the loaded gradient as opposed to the unloaded gradient: for 
JLC/NLC, the unloaded gradient is ~65 MV/m, while the loaded gradient is 
~50 MV/m; we can interpret this as the beam current generating a back-phased 
electric field of –15 MV/m. 
 
Figure 7 shows the gradient (electric field) along the an NLC-like structure. 
 



 
Figure 7: Electric field along an NLC-like structure. 

 
We can clearly see how the passage of the beam causes the gradient to decrease along 
the length of the structure. We refer to the average as the loaded gradient. The 
difference between the loaded and unloaded gradient is given by 
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Transient Beam Loading 
 
Equation (31) and the curve in Figure 7 represent the steady state solution, where the 
beam current ib is considered to be continuous. In a linear collider, the beam current is 
not continuous, but pulsed at the repetition rate. However the steady state 
approximation is very good for the long bunch trains typical of the current LC 
designs. 
 
Unfortunately, the transient behaviour cannot be ignored, otherwise the energy 
difference (spread) over the bunch train would be too severe. The transient voltage 
manifests itself at the beginning of the bunch train, before the steady state voltage is 
established. We can think of the first bunches extracting a portion of the stored energy 
from the structure, leaving a lower voltage for the trailing bunches. The first bunch 
sees the full unloaded gradient, while the trailing bunches see the steady state loaded 
gradient. Therefore the voltage transient over the beginning of the bunch train spans 
the full range between loaded and unloaded gradient (15 MV/m for an NLC-like 
structure). 
 
Transient beam loading is compensated by arranging for the (unloaded) gradient to 
increase  over the bunch train, in such a way that the transient behaviour is 
compensated. The beam loading is dependent on the current (bunch charge), which is 
generally measured dynamically in the damping ring before the pulse is extracted. In 

unloaded 

loaded 

loaded average 



this fashion the optimum compensation can be applied on a pulse by pulse basis. 
Compensation to the level of a few parts in 103 have been achieved in conventional 
RF systems.  
 
For superconducting systems, the situation is a little different. Since no power goes 
into the cavity walls, a long RF pulse can be used with many bunches (TESLA, has 
2820 bunches in 950 µs,  corresponding to bunch separation of 337 ns). On these time 
scales, fast feedback can be used to adjust the cavity voltage during the pulse itself. 
Such systems have been demonstrated to achieve a few parts in 104 stability over the 
bunch train. 
 
Single bunch loading 
 
Due to the finite length of a bunch in the bunch train, there is an additional single 
bunch beam loading effect, where the head of the bunch effectively decelerates the 
tail. Single bunch effects are generally calculated in the time domain by using a 
longitudinal wake field potential. 
 

 
Figure 8: Longitudinal wakefield for an NLC X-band structure. The bunch length is σz = 110 µm, 

and the bunch charge is 0.75×1010e. The grey curve indicates the Gaussian longitudinal bunch 
profile. 

 
Figure 8 shows the single bunch longitudinal wake for the NLC X-band structure. The 
average energy loss of the bunch per structure per unit charge is referred to as the loss 
parameter K: 
 

 
1

( ) ( )K W z z dz
Q

ρ
+∞

−∞
= ∫ P  (32) 

 
where ( )W zP  is the single bunch longitudinal wake potential, and ( )zρ  is the 
longitudinal charge distribution (Q is the total bunch charge). For the NLC structure it 
is ~5.7×1014 VpC-1m-1 (assuming a 110 µm Gaussian bunch), or ~0.7 MV/m for the 
nominal bunch. 

head tail 



 
As with the multi-bunch transient beam loading, the single bunch beam loading must 
also be compensated to prevent an excessive energy spread within the bunch. This is 
achieved by riding the bunch slightly in front of the RF crest at some phase angle φ. 
The slope of the RF at that point can be used to compensate the head-tail beam 
loading induced energy drop over the bunch. Figure 9 shows the effective gradient 
along the bunch for the optimum phase angle of –15.5° in the case of an NLC X-band 
structure. Figure 10 shows the mean (effective) gradient and the relative RMS energy 
spread of a single NLC bunch as a function of RF phase angle: the minimum energy 
spread is achieved at the optimum angle plotted in Figure 9. 
 
 

 
Figure 9: Example of single bunch beam loading compensation in the NLC using the RF 

curvature. The wake potential has been vertically offset to fit on the plot. 

 
Transverse Wakefields 
 
When a bunch travels through a structure with a transverse offset with respect to the 
structure axis, the bunch induces transverse modes which then act back on the beam. 
In the case of a single bunch, the modes deflect the tail of the bunch; In the multi-
bunch case the modes generated by earlier bunches deflect the later ones. If not 
compensated or corrected for, the transverse modes will lead to a phenomenon known 
as beam break-up, (single-bunch or multi-bunch), which destroys the transverse beam 
quality (emittance). 

The magnitude of the transverse wakefields are a strong function of the iris radius (a 
in Figure 6), or more precisely the ratio a/λ. Although the exact dependence varies 
with the details of the structure design, the transverse wakefield has been shown to 
scale approximately like 3.5 0.5a λ− − ; since the dimensions of the structures (including a) 
scale with inversely with the RF frequency ( f ), the transverse wakefields ( w⊥ ) scale 

roughly as 3w f⊥ ∝ . The push towards higher frequencies for greater RF efficiency 
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(higher shunt impedance) and high gradients (shorter linacs) thus comes at the price 
of much stronger wakefields, ultimately leading to tighter tolerances. 
 

 
Figure 10: Mean effective gradient and RMS energy spread of a single NLC bunch as a function 

of the RF phase. 
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Figure 11: Effects of detuning and damping on the long-range transverse wakefields in an NLC 

structure. 

For the multi-bunch case, the approach generally adopted is to engineer the problem 
away by sufficiently damping the modes generated by the passage of one bunch 
before the next bunch arrives. This is done in two steps: the fast ‘damping’ is 
achieved by randomly detuning neighbouring cells within a structure. The modes 
generated by these cells destructively interfere with each other and cause a rapid 
reduction in amplitude over the short time between bunches. However, this is not 
strictly damping, as the energy of the modes is still present, and due to the finite tune 
spread of the detuned structures, the modes will at some later time re-cohere. So on a 
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longer time scale, ‘true’ damping (so-called higher-order mode or HOM dampers) is 
used to extract the energy of the modes from the structures. Figure 11 shows both the 
measured and calculated long-range wake amplitude for an NLC damped detuned 
structure. The cell-to-cell detuning causes the more than two orders of magnitude 
decrease in amplitude with the first bunch spacing (1.4 ns).  
 
On the time scale of a single bunch, it is not possible to damp the modes 
mechanically, and generally the single-bunch wakefields are dealt with by better 
structure to beam alignment. One important instability – that driven by a coherent 
betatron oscillation along the linac – can be effectively controlled by the use of 
Balakin, Novokhatsky and Smirnov (BNS) damping. Consider a bunch performing a 
coherent betatron oscillation along the linac. When the bunch is at its maximum 
displacement (a), the wakefield generated by the head kicks the tail of the bunch. If 
we simplify things by thinking of two particles separated by 2 zσ , each with a charge 

/ 2Q , then the trailing (tail) particle will receive a kick from the head particle θ, 
which, π/2 in phase downstream, will lead to a finite displacement βθ≈  (where the 
head particle now has zero displacement). A further π/2 in phase and both head and 
tail particle now have a displacement −a, and the head will now give a −θ  kick to the 
tail. However, the original kick has now changed sign due to the π phase advance, and 
so the kicks add coherently. This resonant behaviour will continue down the linac, 
driving the tail particle to high and higher amplitudes. 
 
The concept of BNS damping is to balance the effective de-focusing of the tail due to 
the wakefield, by increasing the focusing from the lattice. This is effectively achieved 
by decreasing the energy of the tail with respect to the head. In other words, a 
longitudinally correlated energy spread is introduced into the bunch, so that the 
wakefield kicks are balanced by the natural chromaticity of the linac FODO lattice. 
As a result the bunch oscillates as a rigid body down the linac, and there is no (or 
little) emittance growth. 
 
For our two particle model, the energy difference between head and tail particle is 
given by 
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where cellL  is the FODO cell length, and βν  is the fractional betatron tune shift per 

cell (= cell / 2ϕ π∆ ). E∆  can be generated by a judicious choice of RF phase in the 
linac (see section above on single-bunch beam loading). 
 
We should note that ( )W z⊥ is generally a non-linear function, and that in practise, it is 
difficult to achieve the required energy difference given by (33) for each location in 
the bunch (this condition, if met, is referred to as auto-phasing). However, in practise 
it can be achieved to a very good approximation. The cost of implementing BNS 
damping is in the required RF overhead needed to run off phase in the initial sections 
of the linac, and the higher energy spread in both the downstream parts of the linac 



and the beam delivery system, ultimately leading to tighter alignment tolerances on 
the quadrupoles. 
 
BNS damping addresses the problem of single-bunch beam break-up due to a 
coherent oscillation in the linac, but does not address the issue of random cavity or 
structure alignment. The additional emittance growth due to random structure 
transverse alignment errors with an RMS of RMSY∆ is approximated by 
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where Ei  and Ef are the initial and final beam energies, α is the scaling of the 
focusing lattice (typically ~0.5), G is the accelerator gradient, Lacc is the length of the 
structures, iβ  is the initial average beta function, N is the number of particles per 
bunch, (2 )zW σ⊥  is the wake potential at twice the bunch length ( zσ ), and 0ε  and er  
are the permittivity of free space and the classical electron radius respectively. From 
(34) we can immediately see that for a given ε∆ , the RMS structure alignment 
tolerance scales roughly as 
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So going to high-frequencies has a significant impact on the required alignment 
tolerances for the structures. These tighter tolerances are then offset by having a 
higher gradient (G), stronger overall focusing (and hence smaller β-functions), and 
smaller charge per bunch (Ne). Nevertheless, the tight tolerances cannot be met using 
standard mechanical survey and alignment techniques, and beam-based alignment of 
the structures is generally required. For both JLC-NLC and CLIC the structures are 
placed on girders than can be remotely translated to micron precision. Each structure 
will be equipped with an output coupler which allows the transverse dipole modes to 
be measured (the coupler acts in essence as a structure beam position monitor). The 
girders can be moved to effectively zero out the dipole mode. The procedure must be 
repeated for the ~2000 structure girders in the linacs. 

Sources 
Electron sources 
In the first part of the lecture, we derived the scaling laws for luminosity for a linear 
collider. We saw that high beam powers where generally required to achieve the 
ambitious luminosity goals. From considerations of linac acceleration efficiency and 
wakefield control, we have seen that we ideally need to: 
 

• accelerate large numbers of bunches in a single bunch train to achieve a high 
RF to beam power transfer efficiency; 



• reduce the charge per bunch to mitigate the effects of the strong transverse 
wakefields. 

 
Hence the sources must provide the long bunch trains. In addition, polarisation is 
mandatory for the electron source. 
 
All LC designs propose to use a laser-driven photo-injector to provide the necessary 
time structure and charge per bunch. Figure 12 schematically shows the concept. 
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Figure 12: Concept of the laser-driven photo-injector for polarised electron production. 

The emittance produced by such a gun is dominated by space-charge effects, and is 
typically of the order of 10-5 m (a factor of 10 too big in the horizontal plane, and a 
factor of 500 too big in the vertical!). To produce polarised electrons, a GaAs cathode 
is used together with a laser light of 840 nm wavelength: such sources are capable of 
producing over 90% polarisation. Unfortunately, the GaAs cathodes are extremely 
sensitive and the guns require very high vacuum (better than 10-11 mbar); this rules 
out high-brightness RF guns that produces orders of magnitude better emittance, 
because the typical vacuum associated with such guns is rather bad (at best 10-7 
mbar). Development of high-brightness polarised RF guns with high vacuum would 
be very attractive for LC applications. 
 
Because the gun is effectively DC, the polarised source requires a bunching section 
downstream of the gun as shown in figure 12. The long DC beam is first bunched 
using a sub-harmonic bunching section (RF), before finally being accelerated up to a 
~GeV before injection into the damping rings. 
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Figure 13: typical bunching and pre-acceleration section for the polarised electron source. 

 
Positron Source 
Unlike electrons, positrons must first be created in a high-energy particle reaction. 
The basic mechanism is pair-production: high energy photons (gammas) are 
converted in a target into electron-positron pairs. The positrons are collected, focused 
and accelerated, while the electrons are dumped. The key issue for the source is how 
the gamma photons are created. For the current LC designs, two approaches to the 
problem are foreseen: 
 

• A conventional source (Figure 14), where high-energy electrons (>GeV) are 
allowed to strike a thick target (~4 radiation lengths). The primary electrons 
generate high-energy photons via bremstrahlung, and these then convert 
within the same target to the required electron-positron pairs. 

• An undulator based source (Figure 15), where very high energy electrons 
(>150 GeV) are first passed through an undulator or wiggler magnet to 
produce the required high-energy photons. These photons are then converted 
in a thin target (~0.4 rad. lengths) into electron-positron pairs. 

 
The conventional source requires a target of ~4 radiation lengths primarily to generate 
the photon shower (the bulk of the pair production is at the back of the target). 
Conversely, the undulator source requires a relatively thin target (0.4 rad. lengths) to 
act as converter for the photons; this has several advantages: 
 

• much less energy (average power) deposition in the target itself (~5 kW as 
opposed to 22 kW for a conventional source); 

• the emittance (both transverse and longitudinal) of the produces positrons are 
smaller due to less Coulomb scattering in the target (roughly a factor of two 
over a conventional source). 

 
To produce the required positron charge, the JLC-NLC machine proposes using three 
targets running in parallel (driven by the same 6 GeV linac). RF deflectors will be 
used to send alternate bunches to the targets, and recombine the resulting positron 
bunches into a single train after the target and capture sections. 
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Figure 14: Conventional positron source, using a thick target. Incident electron energies are 

typically 2-6 GeV. 
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Figure 15: undulator based source. 

 
The parallel target is necessary to reduce the average power deposition in the thick 
targets to below failure thresholds. The undulator source requires only a single target, 
due to the much reduced power deposition in the material itself. 
 
Unfortunately the undulator source has several disadvantages: 
 

• Generating high energy photons (gammas) using an undulator requires a high 
beam energy (>120 GeV). Practically the problem is solved by using the 
primary (luminosity) electron beam. After the undulator, the high-energy 
electron beam is steered around the target and either transported directly to the 
IP or further accelerated (depending on the location of the positron source). 
This introduces a fundamental coupling between the electron and positron 
linacs, the former being required before the later can operate fully. This 
coupling has potential impact for commissioning and boot-strapping the 
machine. 

• Unlike the conventional source, which is very like that used at the SLC, the 
undulator source has never been realised, and due to high electron beam 
energy required, is unlikely to be tested before the LC is built. 

 
One last advantage of the undulator source is the possibility of producing polarised 
positrons. By replacing the planar undulator with a helical undulator, whose magnetic 
field rotates azimuthally along the axis of the undulator with a given period. The field 
causes the generated photons to be longitudinally polarised, a characteristic that is 



past to the electron-positron pairs. There are several R&D challenges for the polarised 
source, not least the construction of the required very high field helical undulator. 
 

Damping Rings 
The emittances produced by both the electron gun and the positron source are too 
large by several orders of magnitude. While there is at least the conceptual possibility 
of producing a polarised electron source based on an RF gun that just might provide 
the required emittance, the nature of positron production will always insure the need 
for at least one damping ring. 
 
A damping ring is a storage ring in which the beams are stored for a specified time 
(typically 20-200 ms) before being ejected and accelerated in the main linac. During 
that time, the synchrotron radiation ‘damps’ both the longitudinal and transverse 
emittances. The damping behaviour can be summarised by the following equation: 
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where the iε , eqε , and fε  are the initial (injected), equilibrium and final (ejected) 

emittances, T is the storage time and Dτ  is the damping time, given by 
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where E is the damping ring energy, and Pγ is the average radiated power per electron: 
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Equation (38) states that the damping time is just twice the time required for an 
electron to radiate all its (initial) energy. 
 
The injected positron beam has a normalised transverse emittance of typically 0.01 m, 
which must be damped to ~2×10-8 m: a reduction by a factor of 5×105! From equation 
(36) this corresponds to about 7-8 damping times (providing the equilibrium 
emittance is small enough – see later). 
 
The store time T depends on the repetition rate of the machine (frep), and the number 
of bunch trains stored at any one time (Ns): 
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The ring must have a large enough circumference to hold the bunch trains: 
 



 s b bC cN n t=  (40) 
 
where nb are the number of bunches in a bunch train, and tb is the bunch spacing (c is 
the velocity of light). For JLC-NLC we have Ns = 3, nbtb = 267 ns, corresponding to 

240mC ≈ . Assuming the ring is approximately circular, that gives us a radius of 
~38 m. The ring energy is 1.98 GeV. From equations (37) and (38), we find that 
 
 45 GeV/sPγ ≈  
and 
 

 88msDτ ≈ . 
 
With frep = 120 Hz, we have from (39) T = 25 ms, about a third of our damping time. 
We require a damping time which is roughly 25/8 ~3 ms. Clearly it is necessary to 
significantly decrease the damping time (by a factor of ~30!).  
 
We could accomplish this by increasing the ring energy, since from (37) and (38) we 
have that 3

D Eτ −∝ . However, we must also consider that: 
 

• the equilibrium emittance 2 /eq Eε ρ∝ ; and 

• the required RF power 4
RFP P Eγ∝ ∝  

 
A second (and preferred) way to increase Pγ  is by the addition of strong wigglers in 

straight sections in the ring. The average power radiated per electron is now 
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where wigglerE∆  and arcsE∆  are the energy lost per electron per turn in the wigglers and 
arcs respectively, and Lwiggler is the total length of wiggler (straight sections) in the 
ring. Clearly 2wiggler arcs s b bL cN n tπρ+ ≥  in order to contain the required bunch trains. 
The energy radiated by a wiggler is given by 
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where B2 is the average value of the field squared over the total length of wiggler. 
 
Example: using the previous ring parameters, insert a total of 50 m of wiggler, and 
estimate the required wiggler field to achieve the required factor of 30 decrease in 
damping time. 
 
To decrease the damping time by a factor of 30, we must increase Pγ to 45×30 = 
1350 GeV/s.  
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Hence the energy lost in the wigglers per turn is  
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(note that the wiggler completely dominates the damping time). From (42) we have 
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Limits on Performance 
 
The equilibrium emittance in the horizontal plane is fundamentally defined by the 
steady state, where the rate of emittance change due to the radiation damping is 
exactly balanced by the increase in emittance due to the quantum ‘noise’. For the 
quantum excitations (so-called anti-damping), the growth rate is to a good 
approximation constant, giving rise to a linear increase in emittance with time: 
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where qx is a constant which is only a function of the lattice optics and the energy. We 
should note here that q depends explicitly on the random nature of quantum 
fluctuations of the emitted synchrotron radiation: 
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where N is the average photon emission rate, 2u  is the variance of the photon 

energy, and H  is given by 
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which is a function of the lattice and changes as we go around the ring (with s), as do 
N and 2u  (both these values depend on the local magnetic field, which clearly 

varies with s). The subscript s on the outer angle bracket in (44) indicates an average 
over the complete ring is to be taken. 



 
As we have already mentioned, the radiation damping depends only on the average 
radiated power per electron and the energy (equation (37)): 
 

 
2

D

E
Pγ

τ =  (46) 

 
We should note that there are no quantum effects involved here: damping is a purely 
classical mechanism which depends only on average loss rates. The (horizontal) 
equilibrium emittance is given when / 0d dtε = , i.e. 
 

 

,

2
0

1
2

x
x

D

x eq D

d
Q

dt

Q

ε
ε

τ

ε τ

= − =

=

 (47) 

 
The horizontal equilibrium emittance depends on the presence of horizontal 
dispersion via equation (45). In the vertical plane, we still have the same damping 
mechanism, since this does not depend on quantum fluctuations but only on the 
average power loss. However, does the absence of vertical dispersion (at least by 
design) mean that qy = 0, and that the vertical emittance simply damps away to zero? 
 
Not quite. Even in the absence of dispersion there is still a fundamental quantum 
effect that will generate emittance. When a photon is emitted with a given momentum 

/ cωh , the electron must necessarily recoil to conserve this momentum. The basic 
theory that leads to the classical damping rates and the horizontal excitation assume 
that the photon is emitted along the direction of the electron, and there is no change in 
the electron angle. However, the photons are emitted in a cone with a typical angle of 

1γ − (~250 µr for 2 GeV). These random angle ‘kicks’ add emittance to the beam. For 
most modern storage rings (light sources) this effect is negligible, but the proposed 
damping rings are pushing (dangerously) close to this limit. 
 
In practise, there are many other effects (including so-called collective effects) that 
limit the minimum achievable vertical emittance: 
 

• Intrabeam scattering, which begins to become important as the charge density 
increases during damping. 

• Instabilities, such as fast-ion or electron cloud. The former places constraints 
on the vacuum system, while the latter is sensitive to the surface properties of 
the vacuum chamber (secondary emission coefficient). 

• magnet misalignments, which cause close orbit deviations leading to cross-
plane coupling and spurious vertical dispersion, all of which will cause serious 
degradation to the vertical emittance if not corrected. 

 
All the above points are important effects, but the last one is probably the first 
obstacle to be tackled. The typical alignment tolerances are on the order of 10-20 µm, 
well beyond what is possible to achieve with traditional mechanical survey methods. 
Beam based alignment is therefore mandatory for the damping rings. Much of the 



‘proof of principle’ for a damping ring design is based on having orbit correction 
algorithms which – given a set of realistic installation alignment errors – allow the 
ring to achieve its design vertical emittance. 
 

Bunch Compression  
 
The choice of the damping ring lattice and energy defines the equilibrium beam phase 
space, i.e. the transverse emittances (x and y) and the longitudinal emittance. The 
longitudinal emittance is the product of the bunch length and the energy spread in the 
beam, both of which are fixed by the damping ring design. The bunch length 
produced by such rings is typically a few millimetres. We have seen in the section on 
luminosity scaling that the we need to make the bunch lengths short, typical a 
~100 µm. Thus we need to compress the bunch longitudinally by a factor of ~40 or 
so. We do this in a special bunch compression section, located after the damping ring 
and before the main linac (note that it is important in the main linac to have z RFσ λ=  
to keep the bunch energy spread small). 
 
Compressing a relativistic beam is achieved by first introducing an energy ‘chirp’ 
along the bunch using an RF section phased at the zero crossing. The beam is then 
transported through a dispersive (non-isochronous) lattice; the relative path length 
differences for the low and high energy parts of the bunch cause the bunch to 
compress longitudinally, or more precisely, to rotate in longitudinal phase space. 
Figure 16 outlines the concept. 
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Figure 16: Bunch compression by a π/2 longitudinal phase space rotation. 

 
By Louville’s theorem, the longitudinal phase space area must be conserved. We can 
use this fact to ascertain some basic parameters for the (linear) compressor. 
 



We begin with the bunch from the damping ring which has an uncorrelated relative 
energy (momentum) spread uδ and an initial bunch length ,0zσ . We will define the 

required compression ratio ,0 / 1c z zr σ σ≡ > , where zσ  is the final required bunch 

length. Since the product zσ δ  is conserved, the final energy spread must also be 
increased cr : 
 
 c urδ δ=  (48) 
 
The final energy spread is given by 
 
 2 2 2

u cδ δ δ= +  (49) 
 
where cδ  is the correlated relative energy spread introduced by the RF: 
 

 ,0RF RF z
c

k V
E

σ
δ ≈  (50) 

 
where 2 /RF RFk π λ= , RFV  is the total RF (peak) voltage, and E is the beam energy. 
We have assumed that ,0z RFσ λ= , and have taken the linear slope of the RF at the 
zero crossing (note that implicit in this assumption is no average acceleration of the 
beam, and thus E stays constant). 
 
Combining (48), (49) and (50) we arrive at an expression for the required RF voltage: 
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 (51) 

 
The quantity in parenthesis ( ,0/u zδ σ ) is fixed by the damping ring. To reduce the 
required voltage for a given compression ratio, we see that we can either reduce the 
energy at which we perform the compression, or decrease the wavelength of the RF, 
although if we decrease the wavelength too much, the linear approximation implicit in 
(50) will become invalid. The E in the numerator of equation (51) is one reason while 
bunch compression is (in general) not performed at high energies. 
 
For the dispersion (non-isochronous) section, we take the linear part only, which is 
usually written as 
 
 1 0 56 iz z R δ= +  (52) 
 
where z0, z1 are the initial and final particle longitudinal positions, iδ  is the particle 
relative energy (momentum) deviation, and 56R  is the linear longitudinal dispersion. 
The minimum bunch length is achieved when the longitudinal phase space ellipse is 
upright (see Figure 16), i.e. when the correlation 0zδ = . From equation (52) we 
have 



 
 2

56 0
final initial

z z Rδ δ δ= + =  (53) 

 
The initial correlation is given by the RF: 
 

 2
,0 ,0

RF RF
z c zinitial

k V
z

E
δ σ δ σ= =  (54) 

 
Remembering that 2 2 2

u cδ δ δ= +  (equation (49)), we arrive at an expression for R56: 
 

 ,0
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+
 (55) 

 
For a high compression ratio, c uδ δ?  and we can approximate (55) as 
 

 ,0
56
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c

R
σ
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≈  (56) 

 

Final Focusing 
 
Once the bunch has been damped, compressed longitudinally and then accelerated, we 
must focus the beams and collide them at the IP. Remembering the luminosity scaling 
arguments, we maximised the luminosity by reducing the vertical beam size to the 
point where *

y zβ σ≈ . Hence typical IP vertical β-functions are in the range 0.1-

0.4 mm. At the exit of the linac, the β-functions are much more characteristic of 
typical FODO lattices (~100 m): thus we must reduce (demagnify) the beam by a 

typical factor of */ 300linac yM β β= ≈ . The simplest way to achieve this is by use of 

a telescope structure with point-to-point focusing. Lets briefly consider only the 
vertical plane for simplicity. From Figure 17, we can immediately write down that 

1 2/M f f= . If we take the focal length of the final lens 2 2mf = , then we 
immediately see that we typically need 1 600mf ≈ , which roughly sets the length 
scale for the final focus system. In reality, the final focus optics is not strictly a simple 
telescope as above, and the same demagnification factors can generally be achieved in 
shorter systems. In addition, the simply ‘thin lenses’ in the above figure must focus in 
both planes, and the final ‘lens’ is generally formed from a quadrupole doublet 
(referred to as the final doublet, or FD). 
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Figure 17: Telescope optics for a final focus system. 

 
Much of the design of the complete system is constrained by the choice of focal 
length of the FD ( 2f ), which is often referred to as L* in the literature. The FD 
requires magnets with very high quadrupole gradients; typically hundreds of Tesla per 
meter. To achieve these types of gradient generally requires superconducting or 
permanent magnet technology, both of which are under consideration. 
 
Such a strong lens suffers from a high degree of chromatic aberration. Particles with 
different energies will be focused to different points. Consider the simplified case 
depicted in Figure 18. The shift in focal point is *f L δ∆ ≈ . Assuming that the 
associated change in IP angle θ  is negligible, the off energy particle will then have a 
finite displacement at the IP given by 
 
 * *y f Lθ θδ∆ ≈ ∆ =  (57) 
 
To estimate the impact of this aberration on the RMS vertical beam size, we must 

calculate the RMS aberration * *2
RMSy y∆ = ∆ . Assuming that there is no initial 

correlation between energy and angle, we have 
 
 * *

RMS RMS RMSy Lθ δ∆ ≈ . (58) 
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Figure 18: Chromatic aberration from the strong final doublet. 

 
Dividing equation (58) by the nominal (linear) beam size *

yσ , we have 
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Using the standard relations RMS /θ ε β=  and σ εβ= , we finally arrive at  
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With L*= 2 m, * 0.1mmyβ = , and RMS 0.3%δ = , we arrive at 
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Thus, if left uncorrected, the chromatic ‘aberration’ of the FD would completely 
dominate the IP vertical beam size, increasing it by a factor of ~60! Note that the 
effect is only dependent on L* and *

yβ  (for a fixed relative energy spread). We have 

already said that we’d like to make *
y zβ σ≈ to maximise the luminosity, which leaves 

only reducing L*. Unfortunately this is not practical since  (i) the magnet technology 
becomes intractable, and (ii) some space must be left for the physics detector 
(considerations of which general try to force the FD further away from the IP, thus 
increasing L*). There are potential exotic solutions for effectively making L* very 
short : plasma lenses at the IP, or the so-called dynamic focusing schemes, which 
utilise a second (low-energy) bunch as a lens just in front of the IP. These schemes are 



considered beyond the next generation 0.5-1 TeV machines, but may prove attractive 
for future multi-TeV machines, somewhere in the distant future. 
 
The current solution is to optically correct the FD chromaticity using strong sextupole 
magnets in a dispersive region of lattice. 
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Figure 19: Concept for a local chromatic correction scheme for the FD. 

 
Figure 19 shows the concept for the FD chromatic correction currently used in all LC 
designs. Horizontal dispersion is generated at the FD location by weak dipoles 
judiciously placed to cause the dispersion to be zero at the IP. A sextupole (or 
sextupoles) is then placed adjacent to the FD. In the presence of horizontal dispersion, 
the non-linear kicks from a thin-lens sextupole of integrated strength Ks are given by 
 

 ( )2 2 2 21 1
2 2s x s x

s x s

x K x y D K x D

y K xy D K y

δ δ

δ

′∆ = − − − −

′∆ = + +
 (61) 

 
The second term in both expressions ( xδ  and yδ ) are the first-order chromatic kicks 
we will use to cancel the similar kicks from the FD. Again for a thin-lens FD: 
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Adding the kick expressions given in (61) and (62) together, and choosing the values 
of Ks  and Dx such that 
 

 *

1
0x sD K

L
− = , (63) 

 
the first-order chromatic kicks vanish as required. The sextupole-FD combination is 
now chromatically corrected to first-order in δ. Unfortunately, there are still residual 
non-linear terms which will cause significant aberrations if left uncorrected: 
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The pure geometric (δ-independent) terms can be cancelled by placing one or more 
sextupoles upstream at the same phase as the FD (as shown conceptually in Figure 
19). The linear map should have the form shown in Figure 19, i.e. the magnification 
in both x and y planes should be the same (in this simplified example, m). Then the 
strength of the upstream compensating sextupole is *

, / 1/( )s comp s xK K m mL D= = . The 

non-linear dispersion in the horizontal plane (δ2 term) can be cancelled either by 
arranging for a finite dispersion function at some upstream quadrupoles at the same 
phase as the doublet, or allowing a small dispersion at a sextupole (or both). 
 
In a real system, four to five sextupoles are generally used to balance (zero) all the 
second-order terms in both planes; the system is therefore a second-order achromat. 
The trick is to achieve this and simultaneously minimise the third- and higher-order 
aberrations which arise from interactions between the various non-linear terms; this 
normally requires considerable experience on the part of the designer. 
 
Fundamental limits: The Oide Effect. 
 
We can reasonably ask the question if there are any fundamental limits to the 
minimum achievable vertical beam size at the IP from a given system 
(notwithstanding the constraint that *

y zβ σ≥ ; we can in principle always compress the 
bunch further). K. Oide derived one such limit based on synchrotron radiation emitted 
in the FD. As high amplitude particles travel through FD, they emit synchrotron 
radiation photons, loosing some energy in the process. The particle now travel on a 
slightly different trajectory due to the high chromaticity of the FD, and are focused to 
a different point on the axis (this is completely analogous to the above discussion on 
the FD chromatic aberration, except that here the momentum error is ‘born’ in the FD 
itself). The random quantum fluctuations in the doublet cause an increase in the RMS 
vertical beam  height at the IP. As *

yβ  is reduced, the corresponding β at the doublet 
increases; the particles then (on average) see higher magnetic fields, and the effect of 
synchrotron radiation also increases. Thus there should be a minimum value of *

yβ  

corresponding to a minimum *
yσ , below which, the effect of the radiation begins to 

dominate and increase the vertical IP beam size. 
 
Oide showed that the minimum beam size and corresponding β-function is given by 
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where F is a number dependent on the details of the FD focusing scheme; ,y nε  is the 

normalised vertical emittance, and ,e er D  have their usual meanings. F has a typical 



value of ~7, with a minimum of ~0.1. The rather weak 1/7-power dependence on F 
however makes the minimum beam size fairly insensitive to the actual details of the 
FD design.  
 
One remarkable observation from (65) is that both expressions are independent on 
beam energy. This is counter intuitive (and surprising), as most synchrotron radiation 
effects scale as very high powers of E (the emittance growth from a dipole magnet 
scales as E6!). 
 

Stability and Feedback 
 
The tiny vertical emittances and nanometer IP beam sizes place extremely tight 
tolerances on magnet alignment. Generally speaking, the tolerances required to 
achieve the design luminosities cannot be met using state-of-the-art survey and 
installation techniques, and heavy use of beam-based alignment is required. 
 
Having successfully beam-base aligned our linear collider and tuned up our 
luminosity, the environment will then attempt to ruin our good work. Particularly, 
ground motion (vibration) will attempt to move the accelerator components away 
from where we put them, degrading the luminosity as it does so. 
 
We generally divide the effects of component motion into two regimes: a shift in the 
orbit causing the nanometer beams to move out of collision at the IP; and a 
degradation of the beam quality (beam size) due to spurious dispersion, cross-plane 
coupling or wakefields.  Normally the former is on times scales much faster than the 
latter. 
 
To get a feel for the magnitude of the effects, lets consider the effect of moving a 
quadrupole vertically. The offset quadrupole gives a coherent kick to the beam, 
causing a downstream betatron oscillation. The resulting offset at the IP is given by 
 

 ( )* * sinQ Q yy K y β β φ∆ = ∆ , (66) 

 
where KQ is the integrated quadrupole strength, y is the quadrupole offset, Qβ  and *

yβ  

are the vertical β-functions at the quadrupole and IP respectively, and φ∆  is phase of 
the quadrupole with respect to the IP. By dividing (66) by the nominal beam size at 

the IP * *
, /y y y nσ β ε γ= , we find: 
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We require that the LHS of (67) be less than one (typically 0.3). In the beam delivery 
system, the β-functions range from hundreds of meters to thousands of kilometres at 
the special case of the FD. Typical tolerance numbers for y range from 10 to 100 nm. 
 



Lets now take a more qualitative look at the random vibration of the linac 
quadrupoles. The final motion at the IP is now the sum of the effects from all the 
quads: 
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We are interested in the RMS motion at the IP. Squaring (68) and taking the average, 
we find 
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where 2 2

Y iyσ =  is the variance of the quadrupole vibration (assumed uncorrelated 

and equal for all quads). We have also assumed that quad strength KQ is constant and 
taken it outside the summation. To make an estimate of the tolerance on the vibration 
amplitude, we approximate the summation of the quads by 
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We justify this approximation by assuming that change in energy (γ ) along the lattice 
is constant and linear, and that phase advance is smooth and 2sin ( )φ∆ averages to ½. 
Hence (69) (after taken the square root) becomes 
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Now lets take some example numbers: 
 
 QN  400 

 β  100 m 

 E  125 GeV (corresponding to 52.4 10γ = × ) 
 ,y nε  30 nm 

 QK  0.03 m 
 
Substituting the above numbers into (71) leads to 
 
 25nmYσ ≤  (72) 
 
An extreme case is the FD itself. Due to the parallel-to-point focusing arrangement of 
this ‘lens’, there is a one-to-one correspondence between the offset of FD and the 



resulting offset at the IP. Hence the vibration tolerance on the FD is of the order of 
~1 nm! 
 
Although these nm tolerances look formidable, we can fortunately significantly relax 
them by the use of beam-based orbit correction feedback. There will almost certainly 
be many such feedback systems in any future LC. The most important one is the 
beam-beam feedback system at the IP which keeps the nanometre beams in collision. 
 
The feedback makes use of the strong mutual beam-beam kick that a relative offset of 
the two beams at the IP produces. Figure 20 shows the basic set-up. Such a feedback 
system was successfully demonstrated at the SLC. 
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Figure 20: Concept of the beam-beam feedback system at the IP. 

 
The two BPMs placed at the exit of the FDs are used to measure the strong beam-
beam kick angle at the IP (θbb) due to a relative offset of the beams (∆y). A kicker 
(corrector) magnet then adjust the offset of one beam to null (zero) the beam-beam 
kick, at which point the beams should be colliding head on. 
 
When we discuss the use of feedback systems, we must immediately consider the 
frequency of the ‘noise’ that we are trying to correct. All feedback systems have a 
well defined frequency response (bandwidth). For an LC, we are in reality designing 
high-pass filters which attenuate beam motion below a certain cut-off frequency; 
above this frequency, the beam motion will in general be amplified. Figure 21 shows 
the frequency response for an idealised feedback system. The logarithmic frequency 
scale is indicated as a fraction of the sample rate (machine repetition rate) which 
ranges from 5 Hz for TESLA, to 200 Hz for CLIC (the high frequency colliders can 
operate at a much higher repetition rate than a superconducting machine). Several 
values of gain are plotted: gain can be thought of as the fraction of correction 
calculate for pulse n that is applied to pulse n+1. Hence gain=1 means the full 100% 
correction is applied on the next pulse. One immediate observation is that a higher 
gain will attenuate up to higher frequencies, but will at the same time significantly 
amplify those frequencies above the ‘cut-off’ (which I define here as the point where 
the response is unity). A lower gain has a lower cut-off, but has significantly less 
amplification at higher frequencies. 
 



Figure 21: Frequency response curves for a simple one pulse delay feedback system. The curves 
represent different feedback gains. The frequency scale is relative to the machine repetition rate; 

the red dotted line represents the Nyquist frequency (frep/2). 

 
The choice of feedback parameters (primarily gain) depends on the expected noise 
spectrum. Fortunately the amplitude of the ground motion vibration spectrum rapidly 
decreases with frequency ( 2f∝ ), and so we generally only need to worry about low 
frequencies below a few Hz. Figure 22 shows the ground motion power spectra 
measured at several accelerator sites around the world. We can see that above ~1 Hz 
the amplitudes are typically less that 10 nm (100 nm in the worst case). At lower 
frequencies where the amplitudes are microns, the ground motion is highly correlated 
over relatively long distances (long wavelength surface waves). The effect of the 
correlation is to significantly reduce the impact on the collider performance, since the 
magnets move together.  
 
From Figure 21 we see that a good choice of gain is 0.1 which will attenuate 
frequencies below 1/20th of the repetition rate (a good rule of thumb). Hence the high 
RF frequency machines can typically attenuate beam motion less that a few Hz, which 
with a good choice of site (Figure 22) would seem sufficient. For TESLA with a 
repetition rate of 5 Hz, the cut-off is 0.25 Hz, which would appear insufficient for the 
purpose of stabilising the beam. However, TESLA can use the extremely long bunch 
train (2820 bunches in 950 µs) to very effectively perform feedback within the train 
itself; this system has a bandwidth of ~300 kHz, well above any vibration spectrum. 
 
Although feedback alone would be sufficient to deal with the beam jitter generated 
from most quadrupoles in the machine, there still remains the problem of the FD with 
its ~1 nm tolerance. The FD is a very special case, and accordingly requires special 
attention. Mechanical stabilisation is foreseen for the warm RF machines (laser 
interferometer stabilisation systems using piezoelectric movers, and other passive 
damping devices are under investigation). For TESLA the intra-train fast feedback in 
principle will take care of 100 nm of FD motion (it is unlikely the FD will vibrate at 
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frequencies higher that 300 kHz!), but even here some stabilisation would probably 
prove beneficial. 
 

 
Figure 22: Ground motion spectra measured at various accelerator sites around the world. 

 
Finally, we should mention long-term stability. In the previous discussion we have 
been mostly concerned with relatively fast vibration. However at very low 
frequencies, slow diffusive ground motion can move magnets by microns over the 
course of days. A model that is widely used for this slow ground motion in the so-
called ATL law: consider two points on the ground separated by a distance L. after a 
time T, the variance of relative change in height of the two points ( y∆ ) is given by 
 
 2y ATL∆ =  (73) 

 
Where A is a constant depending on the site characteristics. Typical measured values 
of A range from 10-5 to 10-7 µm2/m/s. Since ground motion is random, we can only 
talk about statistical quantities such as the variance. 
 
Figure 23 shows the simulated effect of slow diffusive ground motion (based on (73)). 
Each curve represents the average over 20 different seeds of ground motion. The no 
feedback plot shows what will happen if no correction is made: the luminosity rapidly 
drops to 50% of its initial (design) value after 20 seconds. This is completely driven 
by the beams moving out of collision. Next we turn on the IP beam-beam feedback 
system to keep the beams colliding. The luminosity still drops but the time scale is 
now on the order of tens of minutes to an hour. The cause is the (relatively) slow 
decay of the upstream orbit which then generates spurious dispersion and cross-plane 
coupling, increasing the vertical beam size at the IP. To counter act this degradation, 
we must control (maintain) the orbit in all the magnets upstream. We achieve this by a 
slow orbit correction. Once we turn this correction on, we find that 
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Figure 23: Simulated effect of slow ground motion on collider performance (in this case TESLA). 

Only the effect of the beam delivery system magnets are shown. 

 
the luminosity is stable up to days. The slow reduction still observed is due (in this 
case) to the orbit correction algorithm not being completely dispersion free, and this 
residual dispersion eventually becomes large enough to reduce the luminosity. 
However, on this time scale use of semi-invasive tuning can be used to remove the 
dispersion without any significant hit in luminosity. 
 
 

Here endeth the first lecture ☺ 


