An Introduction to the Physics and Technology of e+e- Linear Colliders

Lecture 9: a) Beam Based Alignment

Nick Walker (DESY)

USPAS, Santa Barbara, 16th-27th June, 2003

BBA

- Dispersion Free Steering (DFS)
 - Find a set of steerer settings which minimise the dispersive orbit
 - in practise, find solution that minimises difference orbit when 'energy' is changed
 - Energy change:
 - true energy change (adjust linac phase)
 - scale quadrupole strengths
- Ballistic Alignment
 - Turn off accelerator components in a given section, and use 'ballistic beam' to define reference line
 - measured BPM orbit immediately gives \mathbf{b}_{offset} wrt to this line

DFS practicalities

- Need to align linac in sections (bins), generally overlapping.
- Changing energy by 20%
 - quad scaling: only measures dispersive kicks from quads.
 Other sources ignored (not measured)
 - Changing energy upstream of section using RF better, but beware of RF steering (see initial launch)
 - dealing with energy mismatched beam may cause problems in practise (apertures)
- Initial launch conditions still a problem
 - coherent β-oscillation looks like dispersion to algorithm.
 - can be random jitter, or RF steering when energy is changed.
 - need good resolution BPMs to fit out the initial conditions.
- Sensitive to model errors (M)

Ballistic Alignment

- Turn of all components in section to be aligned [magnets, and RF]
- use 'ballistic beam' to define straight reference line (BPM offsets)

 $y_{\text{BPM},i} = y_0 + s_i y'_0 + b_{\text{offset},i} + b_{\text{noise},i}$

- Linearly adjust BPM readings to arbitrarily zero last BPM
- restore components, steer beam to adjusted ballistic line

Ballistic Alignment: Problems

- Controlling the downstream beam during the ballistic measurement
 - large beta-beat
 - large coherent oscillation
- Need to maintain energy match
 - scale downstream lattice while RF in ballistic section is off
- use feedback to keep downstream orbit under control

An Introduction to the Physics and Technology of e+e- Linear Colliders

Lecture 9: b) Lessons learnt from SLC

Nick Walker (DESY)

USPAS, Santa Barbara, 16th-27th June, 2003

The SLC								
	1980	1998						
	Design	Achieved	Units					
Beam charge	7.2e10	4.2e10	e [±] /bunch					
Rep. rate	180	120	Hz					
DR $\varepsilon_{\rm x}$	3.0e-5	3.0e-5	m rad					
DR $\varepsilon_{\rm v}$	3.0e-5	3.0e-6	m rad					
FF ε _x	4.2e-5	5.5e-5	m rad					
FF ε_{v}	4.2e-5	1.0e-5	m rad					
IP σ_x	1.65	1.4	μm					
IP $\sigma_{\rm y}$	1.65	0.7	μm					
Pinch factor	220%	220%	Hd					
Luminosity	6e30	3e30	cm ⁻² sec ⁻¹					

note: SLC was a single bunch machine $(n_b = 1)$

taken from SLC – The End Game by R. Assmann et al, proc. EPAC 2000

SLC: lessons learnt

• Control of wakefields in linac

- orbit correction, closed (tuning) bumps
- the need for continuous emittance measurement (automatic wire scanner profile monitors)
- Orbit and energy feedback systems
 - many MANY feedback systems implemented over the life time of the machine
 - operator 'tweaking' replaced by feedback loop
- Final focus optics and tuning
 - efficient algorithms for tuning (focusing) the beam size at the IP
 - removal (tuning) of optical aberrations using orthogonal knobs.
 - improvements in optics design
- many many more!

The SLC was an 10 year accelerator R&D project that also did some physics ©

The Alternatives							
2003 E _{cm} =500 GeV							
		TESLA	JLC-C	JLC-X/NLC	CLIC		
f	GHz	1.3	5.7	11.4	30.0		
L	×10 ³³ cm ⁻² s ⁻¹	34	14	20	21		
P _{beam}	MW	11.3	5.8	6.9	4.9		
P_{AC}	MW	140	233	195	175		
$\gamma \epsilon_y$	×10 ⁻⁸ m	3	4	4	1		
σ_{y}^{*}	nm	5	4	3	1.2		

Examples of LINAC technology

9 cell superconducting Niobium cavity for TESLA (1.3GHz)

11.4GHz structure for NLCTA

(note older 1.8m structure)

An Introduction to the Physics and Technology of e+e- Linear Colliders

Lecture 9: c) Summary

Nick Walker (DESY)

USPAS, Santa Barbara, 16th-27th June, 2003

Pinch Enhancement
$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}} \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} H_D$$
 $H_D = H_D(D_y)$ $D_y = \frac{\sigma_z}{f_{beam}} \approx \frac{2N_b r_e \sigma_z}{\gamma \sigma_y (\sigma_x + \sigma_y)} \approx \frac{2N_b r_e \sigma_z}{\gamma \sigma_y \sigma_x}$ Trying to push hard on D_y to achieve larger H_D leads to single-bunch kink instability \Rightarrow detrimental to luminosity

Slight random detuning between cells causes HOMs to decohere Will recohere later: needs to be damped (HOM dampers)

Final Focusing: Fundamental limits

Already mentioned that $\beta_{\nu} \ge \sigma_z$

At high-energies, additional limits set by so-called *Oide Effect*: synchrotron radiation in the final focusing quadrupoles leads to a beamsize growth at the IP

minimum beam size: $\sigma \approx 1.83 (r_e \lambda_e F)^{\frac{1}{7}} \varepsilon_n^{\frac{5}{7}}$ independent occurs when $\beta \approx 2.39 (r_e \lambda_e F)^{\frac{2}{7}} \gamma \varepsilon_n^{\frac{3}{7}}$

F is a function of the focusing optics: typically $F \sim 7$ (minimum value ~0.1)

A Final Word

- Technology decision due 2004
- Start of construction 2007+
- First physics 2012++
- There is *still* much to do!

WE NEED YOUR HELP

for

the Next Big Thing

hope you enjoyed the course

Nick, Andy, Andrei and PT