

TRC table of general parameters of Linear Collider projects

M

	TESLA		JLC-C		JLC-X/NLC ^a		CLIC		
Center of mass energy [GeV]	500	800	500	1000	500	1000	500	3000	
RF frequency of main linac [GHz]	1.3		5.7	5.7 5.7/11.4 ^b		11.4		30	
Design luminosity [10 ³³ cm ⁻² s ⁻¹]	34.0	58.0	14.1	25.0	25.0(20.0)	25.0(30.0)	21.0	80.0	
Linac repetition rate [Hz]	5	4		100	150(120)	100(120)	200	100	
Number of particles/bunch at IP [10 ¹⁰]	2	1.4		0.75	0.	75	0	.4	
Number of bunches/pulse	2820	4886		192	19	92	1	54	
Bunch separation [nsec]	337	176		1.4	1	.4	0.	67	
Bunch train length $[\mu sec]$	950	860		0.267	0.2	267	0.1	102	
Beam power/beam [MW]	11.3	17.5	5.8	11.5	8.7(6.9)	11.5(13.8)	4.9	14.8	
Unloaded/loaded gradient ^c [MV/m]	23.8 / 23.8 ^d	35 / 35	41.8/31.5	41.8/31.5 / 70/55	65	/ 50	172	/ 150	
Total two-linac length [km]	30	30	17.1	29.2	13.8	27.6	5.0	28.0	
Total beam delivery length [km]	3		3.7		3.7		5.2		
Proposed site length [km]	33		33		32		10.2	33.2	
Total site AC power ^e [MW]	140	200	233	300	243(195)	292(350)	175	410	
Tunnel configuration ^f	Single		Double		Double		Single		

TRC table of IP parameters of Linear Collider projects									
TABLE 2.6: Linear colliders: beam delivery system and interaction point parameters									
	TE 500 GeV	SLA 800 GeV	JL 500 GeV	C-C 1000 GeV	JLC-X 500 GeV	/NLC ⁴ 1000 GeV	Cl 500 GeV	2000 GeV	
Beam delivery system length ^b [km]	3	.2	3	.8	3	.8	JUU GET	5.2	
Collimation system length ^b [km]	1.4		1.4		1.4		4.1		
Final Focus system length ^b [km]	1.2		1.6		1.6		1.1		
$\gamma \varepsilon_{\pi}^{*} / \gamma \varepsilon_{\mu}^{*} [\text{m-rad} \times 10^{-6}]$	10 / 0.03	8 / 0.015	3.6 /	0.04	3.6 /	0.04	2.0 / 0.01	0.68 / 0.01	
$\beta_x^{\star} / \beta_y^{\star} [\text{mm}]$	15 / 0.40	15 / 0.40	8 / 0.20	13 / 0.11	8 / 0.11	13 / 0.11	10 / 0.05	16 / 0.07	
$\sigma_x^{\star} / \sigma_y^{\star}$ before pinch ^c [nm]	554 / 5.0	392 / 2.8	243 / 4.0	219 / 2.1	243 / 3.0	219 / 2.1	202 / 1.2	60 / 0.7	
σ_z^{\star} [µm]	300		200	200 110		110		35	
$\sigma^{\star}_{\Delta E/E} d$ [%]	0.14 / 0.04		0.25		0.25		0.25	0.35	
Distance between IP and last quad	3.0		4 3.5		3.5		4.3		
Crossing Angle at IP [mrad]	0		7		7 (20)		20		
Disruptions D_x / D_y	0.23 / 25.3	0.20 / 28.0	0.29 / 17.5	0.10 / 10.3	0.16 / 13.1	0.10 / 10.3	0.04 / 6.4	0.07 / 6.3	
Υ_0	0.05	0.09	0.07	0.28	0.13	0.28	0.25	5.0	
δ_B [%]	3.2	4.3	3.4	7.5	4.6	7.5	4.4	21.1	
n_{γ} [number of γ s per e]	1.56	1.51	1.36	1.30	1.26	1.30	0.75	1.53	
$N_{\text{pairs}}(p_T^{\min} = 20 \text{ MeV/c}, \Theta_{\min} = 0.2)$	39.4	37.3	10.7	15.0	11.9	15.0	7.2	43	
N _{hadron events} /crossing	0.248	0.399	0.075	0.270	0.103	0.270	0.066	2.26	
$N_{\rm jets} \times 10^{-2} \ [p_T^{\rm min} = 3.2 \ {\rm GeV/c}]$	0.74	1.90	0.23	2.27	0.36	2.72	0.29	150.5	
Geometric Luminosity ^{e} [10 ³³ cm ⁻² s ⁻¹]	16.4	28.1	8.76	18.5	17.7(14.2)	18.5(22.2)	16.0	47.0	
H_D	2.11	1.90	1.61	1.42	1.49	1.42	1.42	1.70	
Luminosity dilution for tuning [%]		0		5		5	10	0	
Peak Luminosity ^{e} [10 ³³ cm ⁻² s ⁻¹]	34.5	53.4	13.6	24.9	25.1(20.1)	25.0(30.0)	21.0	80.0	
$L_{99\%}$ [%]	66	62	67	58	64	58	71	41	
L _{95%} [%]	91	86	90	86	85	77	87	53	
L _{90%} [%]	98	95	97	87	94	87	93	62	

4

telescope. It "demagnify" the incoming beam ellipse to a smaller size. Matrix transformation of such telescope is diagonal:

$$\mathbf{R}_{\mathbf{X},\mathbf{Y}} = \begin{pmatrix} -1/M_{\mathbf{X},\mathbf{Y}} & \mathbf{0} \\ \mathbf{0} & -M_{\mathbf{X},\mathbf{Y}} \end{pmatrix}$$

A minimal number of quadrupoles, to construct a telescope with arbitrary demagnification factors, is four.

If there would be no energy spread in the beam, a telescope could serve as your final focus (or two telescopes chained together).

Shown above is a "telescope-like" optics which consist just from two quads (final doublet). In may have all the properties of a telescope, but demagnification factors cannot be arbitrary. In the example shown the IP beta functions are 15mm for X and 0.1mm for Y. The el-star is 3m.

E> choice of	kercise 1 • IP parameters				
Consider the CLIC 3TeV CM parameters, but assume that only half of the nominal beam population was achieved. Suggest how the IP beam sizes can be changed to keep the nominal luminosity and to have reasonable beam-beam parameters. Take into account the following scaling: Lumi $\sim \frac{N^2}{\sigma_x \sigma_y}$ $D_y \sim \frac{N \sigma_z}{\sigma_x \sigma_y}$ $\Upsilon \sim \frac{N}{\sigma_x \sigma_z}$ $\delta_E \sim \frac{N^2}{\sigma_x^2 \sigma_z}$ Verify your predictions with Beam-Beam simulations using Guinea-Pig program [D.Schulte] The necessary files are in C:\LC_WORK\ex1 (You may need to read the readme.txt file in this directory and also the file tasks bb to ffs.doc in C:\LC_WORK\)					
<pre>\$ACCELERATOR:: YOURLC1 { energy = 500 ; GeV particles = 0.75 ; e10 sigma_x = 250 ; nm sigma_y = 2.0 ; nm sigma_z = 100 ; micron beta_x = 5.0 ; mm beta_y = 0.2 ; mm offset_x = 0 ; nm (total offset will be 2*offset_x) offset_y = 0 ; nm (-//-) } 18</pre>	<pre>\$PARAMETERS:: LCPARS {n_m=20000 ; number of macroparticles hist_ee_max=1020; max E CM of lumi spectrum Analysing the results. Look into gp.out : lumi_fine (or lumi_ee) luminosity [1/m^2] E_cm and E_cm_var CM energy and energy spread due to beamstrahlung [GeV] bpm_vx, bpm_vy average angular beam deflection after collision [microrad] upsmax max value of Upsilon parameter</pre>				

