<u>STUDIES on HIGHER ORDER MODES</u> in ACCELERATING STRUCTURES for LINEAR COLLIDERS

Nicoleta Baboi

DESY

Disputation, 18. Mai 2001

Linear Colliders

- •Synchrotron radiation ($P_{loss} \propto E^4/R^2$) \rightarrow limitation in energy for e⁺e⁻ circular accelerators
- •Luminosity $L \propto dN_p/dt$

for flat beams

$$L \propto rac{P_b}{E_{cm}} rac{\sqrt{\delta_E}}{\sqrt{arepsilon_{y,n}}}$$

 P_b - beam power E_{cm} - CM energy δ_E - beamstrahlung $\varepsilon_{y,n}$ - vertical normalized emittance

Transverse emittance:

$$\varepsilon_{y} = \sqrt{\langle y^{2} \rangle \langle y'^{2} \rangle - \langle yy' \rangle^{2}};$$

$$\varepsilon_{y,n} = \beta \gamma \varepsilon_y$$

TESLA

The TESLA cavity

- 1 m long, 9-cell1.3 GHz
- standing waves

superconducting (Nb, 2 K)

- Iow losses, high efficiency
- > gradients achieved : > 23.4 MV/m (design)
- high luminosity (3.4-10³⁴ cm⁻²s⁻¹)

Accelerating mode

monopole mode

Electric field profile on the axis:

phase advance per cell: π

Wake fields

•The long range wake field = \sum resonant fields (HOMs) •Transverse dipole <u>wake field</u>:

• Calculated with the help of simulation programs (MAFIA, URMEL)

Higher Order Modes

HOM damping

- Extract mode energy \Rightarrow
 - \succ reduce Q
 - reduce damping time

$$\tau = \frac{2Q}{\omega}$$

• with HOM couplers

Trapped modes

> most difficult to damp

Dipole modes

Dispersion diagram

Modes with highest R/Q

$\omega/2\pi$ [GHz]	(R/Q) _l [Ω/cm²]	Q
(measurement)	(simulation)	(measurement)
1 st dipole passband		
1.6506	0.76	7.0·10 ⁴
1.6991	11.21	5.0·10 ⁴
1.7252	15.51	2.0·10 ⁴
1.7545	2.16	2.0·10 ⁴
1.7831	1.75	7.5·10 ³
2 nd dipole passband		
1.7949	0.77	1.0·10 ⁴
1.8342	0.46	5.0·10 ⁴
1.8509	0.39	2.5·10 ⁴
1.8643	6.54	5.0·10 ⁴
1.8731	8.69	7.0 10 ⁴
1.8795	1.72	1.0·10 ⁵
3 rd dipole passband		
2.5630	1.05	1.0·10 ⁵
2.5704	0.50	1.0·10 ⁵
2.5751	23.80	5.0·10 ⁴

Transverse long range wake field for TESLA cavities

Obtained with dipole modes with highest R/Q measured on TTF cavities; averaged over 36 cavities with 0.1 % frequency spread

TESLA main linac

- Steady state achieved after about 7 % of beam
- Multi-bunch emittance growth $\Delta \epsilon / \epsilon_0 \approx 5\%$ (negligible) ($\epsilon_0 = 3.10^{-8} \text{ m} \cdot \text{rad}$)

High-Q mode

•High-Q mode in the 3rd dipole passband excited resonantly by a beam with modulated intensity

≻ $\omega_l/2\pi$ = 2.584 GHz, $(R/Q)_l$ = 23.8 Ω/cm², Q_l = 10⁶

Beam dynamics with high-Q mode

•1 cavity in each cryo-module \rightarrow high Q mode in 3rd passband:

 \Rightarrow average $\Delta \varepsilon / \varepsilon_0 > 50\% \Rightarrow$ stronger damping is needed

Cause of insufficient damping of mode in the 3rd dipole passband

Effective absorption of the HOM couplers

 \Rightarrow field minima at both couplers for 2 angles \Leftrightarrow high Q

Excitation of single modes

• change with ω_{mod} are comparable to the fluctuations in beam charge and position

rejection of sum signal in difference signal

BPM filtered signal

Modulation frequency scan

Spectrum from HOM couplers

 $\omega_{mod}/2\pi = 23.775 \text{ MHz}, \quad \omega_l/2\pi = 3.063724 \text{ GHz} = (57 \cdot \omega_b - \omega_{mod})/2\pi$

Polarization angle

R/Q

• Kick amplitude:

$$\Delta x'_{\max} = c \frac{e}{E} \delta x_0 (q_0 f_b) \lambda \frac{1}{\omega_l} \left(\left(\frac{R}{Q} \right) Q \right)_l \cos \varphi$$
polarization angle

• For $\omega_1 / 2\pi = 1.874$ GHz / cavity 1:

 $\Delta x = 1.8 \text{ mm} \Rightarrow \Delta x' = 200 \mu \text{rad} \Rightarrow (R/Q)_l \cos \varphi = 3.3 \Omega/\text{cm}^2$

 \Rightarrow (*R*/*Q*)_{*l*} = 9.3 Ω /cm² ± 3 Ω /cm² (simulations: 8.7 Ω /cm²)

Conclusions

- •HOMs in accelerating structures for TESLA
- •Beam dynamics in the TESLA main linac
 - > ok for modes of 1st + 2nd dipole passbands
 - > mode in 3rd passband needs better damping in all cavities
 - high-Q induced by boundaries imposed by neighboring cavities
- Method to study modes individually
 - > modes excited and identified \rightarrow 5th dipole passband
 - polarization direction was measured
 - > R/Q estimated with good agreement with simulations

•Correction techniques will minimize HOM effects