N. Baboi, DESY, Hamburg

for the "HOM team": S. Molloy¹, N. Baboi², N. Eddy³, J. Frisch¹, L. Hendrickson¹, O. Hensler², D. McCormick¹, J. May¹, S. Nagaitsev³, O. Napoly⁴, R.C. Paparella⁴, L. Petrosyan², L. Piccolli³, R. Rechenmacher³, M. Ross¹, C. Simon⁴, T. Smith¹, K. Watanabe⁵ and M. Wendt³ ¹SLAC, ²DESY, ³FNAL, ⁴CEA-DSM/DAPNIA, ⁵KEK

• DESY

• FLASH

- user facility SASE-FEL
- test facility for ILC and XFEL
- The TESLA cavity
 - superconducting technology
 - Higher Order Modes HOM

- Higher Order Modes as diagnostics
 - beam position; cavity alignment; beam phase etc.
 - method
 - results
- Summary and outlook

• DESY

• FLASH

- user facility SASE-FEL
- test facility for ILC and XFEL
- The TESLA cavity
 - superconducting technology
 - Higher Order Modes HOM

- Higher Order Modes as diagnostics
 - beam position; cavity alignment; beam phase etc.
 - ➤ method
 - results and status
- Summary and outlook

Deutsches Elektronen-Synchrotron - DESY

Particle Physics

- Present: HERA
 - proton-positron collider
 - ▹ protons: 920 GeV
 - ▶ e⁺ or e⁻: 27 GeV
- Future: LHC and ILC
 - ILC: 500 GeV e⁻-e⁺ collider project study

Research with Photons: Synchrotron Radiation

Research with Photons: SASE Free Electron Laser

- Present: FLASH
 - \blacktriangleright = VUV-FEL and TTF2
 - > 48-13 nm (later 6 nm)
- Future: XFEL
 > 6 nm 1 Å

Hajdu, Chapman et al.

• DESY

• FLASH

- user facility SASE-FEL
- test facility for ILC and XFEL
- The TESLA cavity
 - superconducting technology
 - Higher Order Modes HOM

- Higher Order Modes as diagnostics
 - beam position; cavity alignment; beam phase etc.
 - ➤ method
 - results and status
- Summary and outlook

Free electron LASer in Hamburg FLASH

250 m

Self-Amplified Spontaneous Emission Free Electron Laser

Self-Amplified Spontaneous Emission Free Electron Laser (2)

SASE-FEL Properties

Properties

- high intensity (brilliance)
- ultra short pulses
- tunable
- > monochromatic
- coherent

Performance up to now

- at FLASH
- ▶ 48 13 nm
- 8.5 nm on 3rd harmonics
 - shortest wavelengths achieved worldwide
- saturation at 13.7 nm
- pulse length < 100 fs rms</p>
- power up to 100 μJ / pulse

GSI, Nov 23 - Uni Frankfurt, Nov. 24, 2006

Application Examples of SASE-FELs

- Ultra-fast coherent X-ray diffraction
 - made possible by the high brilliance and short pulse length
 - recently first demonstration
- Pump and probe
 - made possible by short pulse length
 - "make movies" of dynamic processes

A Bit of History - The TESLA Technology

TESLA: TeV Energy **Superconducting Linear** Accelerator > 500 GeV c.m. e--e+ linear collider project study • TTF: TESLA Test Facility test superconducting technology • XFEL: X-ray Free Electron Laser at TESLA > SASE-FEL proof of principle at TTF > approved as independent project

 ILC: International Linear Collider

 FLASH: Free electron LASer in Hamburg
 new 'flashy' name

The European XFEL

Status of the European XFEL

 SASE FEL: 6 nm – 1 Å; with 20 GeV superconducting linear accelerator, based on the TESLA technology,

- proposal Oct. 2002
- approved by German government in Feb. 2003 as European project
- Commitment by:
 - 50%: German gov.
 - 10%: Hamburg & Schleswig-Holstein
 - >= European and International partners

- > 2006: final Technical Design Report
- "Planfeststellungsverfahren" ended
- start building next year
- planned start for 2012

FLASH as test facility for the XFEL

also for the ILC

• DESY

• FLASH

- user facility SASE-FEL
- test facility for ILC and XFEL
- The TESLA cavity
 - superconducting technology
 - Higher Order Modes HOM

- Higher Order Modes as diagnostics
 - beam position; cavity alignment; beam phase etc.
 - ➤ method
 - results and status
- Summary and outlook

The TESLA Cavity

Cryo-module with 8 cavities

Higher Order Modes (HOM) in Accelerating Cavities

Accelerating Cavity = RF EM-Resonator

> accelerating wave (monopole mode) at 1.3 GHz

generated by a klystron and injected into the cavity

•other modes: Higher Order Modes (HOM)

- > excited by the electron beam
- > monopole, dipole, quadrupole etc. modes

Higher Order Modes (HOM)

• Effect of HOMs / wakefield (= Σ HOM)

- damaging to the beam
- try to keep them low by damping (HOM coupler) and beam alignment

• DESY

• FLASH

- user facility SASE-FEL
- test facility for ILC and XFEL
- The TESLA cavity
 - superconducting technology
 - Higher Order Modes HOM

- Higher Order Modes as diagnostics
 - beam position; cavity alignment; beam phase etc.
 - ➤ method
 - results and status
- Summary and outlook

HOM used for Diagnostics

•Can use HOM signals for:

- beam position monitoring, similar to cavity BPMs
- > minimizing the HOMs
- measuring the cavity alignment inside the cryo-modules
- > monitoring the beam phase etc.

•Advantage:

- Iarge proportion of linac length occupied by TESLA cavities
- > special couplers already provide the HOM signals
- no need to install new beamline hardware

Beam Position Monitors (BPMs)

- compare signals from two opposite antennas and calculate transverse beam position
- more than 60 BPMs currently in FLASH, mostly button and stripline type

Cavity Beam Position Monitors

Cavity Beam Position Monitors (2)

Dipole modes

- excited by off-axis beam
- > proportional to beam position and angle \Rightarrow used for monitoring

Dipole Modes in the TESLA Cavities

Dipole modes

- excited by off-axis beams
- amplitude is proportional to beam position
- ➤ ⇒ can use for beam position monitoring
- ➤ ⇒ find beam position for which they have minimum amplitude ⇒ minimum damaging effect

HOM as BPMs

more complicated than conventional cavity BPMs

- the two polarizations of dipole modes are coupled
- cavities are not axially symmetrical
- ⇒ more complicated calibration
- but already available
 - ⇒ no need for extra space or development, low costs
 - potential for sub-µm resolution

HOM Measurement Setup

• Move beam with magnetic steerers

measure amplitude of dipole mode with spectrum analyzer

HOM Measurement

• Proof-of-principle for superconducting cavities \Rightarrow

- can find axis of dipole mode = beam trajectory generating minimal amplitude of both polarizations
 - can minimize wakefields
- can calibrate the HOM signals in beam position

HOM Electronics

- similar to typical BPM electronics
- ➢ filters one dipole mode out of cavity spectrum and converts it from ~ 1.7 GHz to ~ 20 MHz → digitized
- > also phase information is measured, needed to tell if bunch is left or right
- installed at both HOM couplers of all 40 FLASH cavities

HOM-BPM Calibration Setup

- same as for previous measurements, except electronics instead of network analyzer
- simultaneous measurement from all 8 cavities in a cryomodule
- generate many beam offsets and angles:
 - try to generate large range of values in the (x,x') and (y,y') space

HOM-BPM Calibration

Straightforward method

- correlate amplitudes of the mode polarizations with the beam positions interpolated from BPM readings
- but, complicated since:
 - polarizations have ~ random, unknown polarizations
 - each of the 40 cavities are different

• Need for more universal and robust method \rightarrow SVD

Singular Value Decomposition - SVD

- Form matrix, X, of all measurement sets in time
 SVD decomposes X into the product of matrices:
 - $\rightarrow X = U \cdot S \cdot V^{T}$
 - > U, V unitary \rightarrow eigenvectors
 - \succ S diagonal \rightarrow eigenvalues

U and V: "normal eigenvectors"

- i.e. "modes" whose amplitude changes independently of each other.
- These may be linear combinations of the cavity dipole modes.

• Does not need a priori knowledge of resonance frequency, Q, etc.

Model Independent Analysis

SVD Modes with Largest Eigenvalues λ

Note: signals from both couplers are combined into one vector

Calibrating the HOM

- > Dot product of largest eigenvectors with beam pulses: $X \cdot V_k = A_k (A_k \text{ is a vector})$
- then correlate by linear regression each A_k to beam position (x and y) as interpolated from BPM reading
- ightarrow
 ightarrow
 m mode 2
 m horizontal;
 m mode 1+3
 m vertical

HOM-BPM Resolution

- compare measurement with one cavity, to prediction from adjacent cavities
- > 5-10 µm rms observed
 - improvement of electronics \rightarrow expect 1 μ m resolution or better

Same method based on SVD

- Find beam trajectory for minimum dipole signal
- > This is the centre of that dipole mode in that cavity.
- •Measure the axis of a dipole mode for the 8 cavities within a cryo-module.
 - Can compare the centre of a particular mode in many cavities.
 - Gives in situ alignment data on the internals of the accelerating module.

Measurement of Cavity Alignment - Results

- Digitise the HOM signal with a broadband scope,
 - ➢ 5 GS/s, 2.5 GHz
- Can measure phase of beam induced monopole lines.
- HOM coupler allows a small amount of the fundamental to leak through.
 - Accelerating RF and beam induced HOMs exist on same cable.
 - No cable expansion issues.

- Measurement of the 1.3 GHz phase wrt beam
 - 5 degree phase change command from the RF control system.
- Noise is 0.08 degrees at 1.3 GHz
 - Estimated by comparing the measurement from two couplers from the same cavity.
 - When the beam phase is compared to the RF phase of two cavities on the same klystron, RMS of 0.3 degrees.
 - not understood

Summary and Outlook

• FLASH and the XFEL

- SASE FEL
- based on the TESLA technology (also base for ILC)

HOM as diagnostics

- HOM-BPMs
 - use dipole fields excited by beam in the TESLA cavities as BPMs
 - successful proof-of-principle
 - resolution: 5-10 μ m rms observed, potential for < 1 μ m
- beam alignment
- cavity alignment in cryo-module
- beam phase

Outlook for HOM-BPMs

- currently work to integrate them in the accelerator control system
- can be used in the XFEL, the ILC and other accelerators