Tapered Transitions Dominating the PETRA III Impedance Model.

ICFA Mini-Workshop:

Electromagnetic Wake Fields and Impedances

in Particle Accelerators

Rainer Wanzenberg DESY April 26, 2014

Outline

> PETRA III

- > The Impedance Model
 - Kick and Lossparametter
- > Tapered Transitions
 - Modelling the tapered transitions
- Measurements
 - Intensity dependent tune shift
 - Intensity dependent betatron phase advance
- Conclusion

PETRA III - Overview

PETRA built in 1976 1978 to 1986, e- / e+ collider PETRA II: 1988 to 2007 preaccelerator for the HERA PETRA III

synchrotron light facility

2007 – 2008 (construction) 2009 – 2014 (operation) 2014 PETRA III extension

Circumference 2.3 km

PETRA III Beamlines

Number	ID Туре	Energy range
		(keV)
P01	10 m U32 (2 x 5 m)	5 – 40
P02	2 m U23	20 – 100
P03	2 m U29	8 – 25
P04	4 m UE65 (APPLE)	0.2 - 3.0
P05	2 m U29	8 – 50
P06	2 m U32	2.4 – 50
P07	4 m U19 (IV) (pres. 2m)	50 - 300
P08	2 m U29	5.4 - 30
P09	2 m U32	2.4 – 50
P10	5 m U29	4 – 25
P11	2 m U32	8 – 35
P12	2 m U29	4 - 20
P13	2 m U29	5 – 35
P14	2 m U29	5 - 35

High β_x	
Low β_x	

Max von Laue Hall: 14 beam lines 8 DBA cells (length 23 m)

High beta: $\beta_x = 20 \text{ m}$ $\beta_y = 4 \text{ m}$ Low beta : $\beta_x = 1.4 \text{ m}$ $\beta_y = 4 \text{ m}$

PETRA III Extension (under construction)

12 New Beamlines

PETRA III: 14 + 12 = 26 Beamlines

North:

Damping Wiggler straigth 4 x new straight sections (2 m) (2 DBA cells in the arc) N - NE: Dipole Radiation East: Long straigth section

Long straigth section room 2+1 Insertion devices 4 x new straight sections (2 m) (2 DBA cells in the arc)

Web page:

petra3-extension.desy.de

with webcam of the construction sides

Impedance Model - Collaboration

Collaboration:

Contributions to the ICFA Beam Dynamics Newsletter 45, April 2008

E. Gjonaj, T. Lau, T. Weiland (**TEMF, Technische Universität Darmstadt**), **Computation of short range wake fields with PBCI**,

M. Ivanyan, E. Laziev, V. Tsakanov, A. Vardanyan, (CANDLE, Yerevan, Armenia), A. Tsakanian, (Universität Hamburg), PETRA III storage ring resistive wall impedance,

V. Smaluk (Novosibirks, BINP) Geometrical impedance of the PETRA III damping wiggler section,

A.K. Bandyopadhyay, A. Jöstingmeier, A.S. Omar (Otto-Von-Guericke University, Magdeburg), Wake computations for selected components of PETRA III

K. Balewski, R. Wanzenberg, O. Zagorodnova (**DESY**) **The Impedance Model of PETRA III**

Wake Potential and Loss Parameter

$$W_z(s) = \frac{1}{q_1} \int dz \ E_z(r, z, t = (s + z)/c)$$

Equation of motion:

Bunch q_1 Z=C t Witness q_2 Z = C t - S charge

Lossparameter:

Transverse Wake and Kick Parameter

Transverse Wake Potential:

Kick Parameter:

 $k_{\perp} = \int ds \ W_{\perp}(s) \lambda(s)$

The kick parameter is related to the tune shift:

 $\Delta Q_{\beta} = \frac{I_{\rm B} \langle \beta \rangle T_0}{4\pi E / \rho} k_{\perp}$

Impedance – Model and Budget

Predicted tune shifts

$Q_s = 0.049$				
Q_s	$f_0 = 6.4$	· kHz		

PETRA III	k_{\perp} (V/ pC/ m)	k_{\perp} (V/ pC/ m)	
	Horz.	Vert.	
Budget (2.5mA)	4800	4800	
Impedance model	750	2610	

mode coupling:m=1, I=0, I=-1longit. / traansverse mode number I, m(radial modes are ignored)

Tapered Transition

Transition from a 90 mm x 38 mm chamber to a small gap chamber 57 mm x 7 mm

Tapered Transition (cont.)

Transition from a 90 mm x 38 mm chamber to a small gap chamber 57 mm x 7 mm

PETRA III – Insertion devices

Tapered Transitions before and after each 5 milliong straight see

16 transitions (8 DBA cells) + 2 additional transitions

Modelling the tapered transitions with CST studio / PBCI

Wakefield Calculation with the Parallel Beam Cavity Interaction (PBCI) code

(total length of the modeled structure ~ 1 m, rms bunch length 1 cm)

Erion Gjonaj, Thomas Lau, Thomas Weiland, Technical University of Darmstadt Computation of Short Range Wake Fields with PBCI ICFA Beam Dynamics Newsletter No. 45, 2008

Wakefield of the Tapered Transition

The wake potentials of the tapered transition have been calculated for different mesh resolutions. A convergent result was obtained in PBCI using a discretization with $\Delta x = \Delta y = \Delta z = 0.25$ mm

Kick parameter of the tapered transition

Loss and Kick Parameters of the Tapered Transition.

Code	k_{\parallel} / (V/nC)	k_{\perp} / (V/pC)
Variant 1 / MAFIA	-7.4	138.6
Variant 1 / PBCI	-7.1	75.6
Variant 2 / PBCI	-5.2	62.8

Variant 2 was implemented

(Variant 1 differs from Variant 2 with respect of the second taper 9 mm \rightarrow 11 mm)

(The bellow, the BPM and the second short taper are included in the impedance model, but not in the kick of 62.8 V/pC)

Measurements

- Intensity dependent tune shift (global measurement)
- Intensity dependent betatron phase advance (local measurement)

Remember the prediction from the impedance model:

PETRA III	$\Delta f/\Delta I \ (kHz / mA)$	$\Delta f/\Delta I \ (kHz/mA)$	
	Horz.	Vert.	
Budget (2.5mA)	1.28	1.28	
Impedance model	0.2	0.7	

$$\Delta f_{\beta} = \frac{I_{\rm B}}{4\pi E/e} \left< \beta \right> k_{\perp}$$

Measurement, Aug 14, 2009

Horz. and Vert. tune versus single bunch current (positron beam)

(measured fs = 5.2 kHz, ~ 15 MV total voltage)

Intensity Dependent Betatron Phase Advance

The betatron phase advanced is obtained from orbit response measurements (ORM).

- 1) Total current 20 mA, 240 Bunches
- 2) 20 mA, 10 Bunches
- 3) Compare the results from step 1) and 2) and translate the data into a frequency shift

Intensity Dependent Betatron Phase Advance (cont.)

There are two section with 2 x 10 damping wigglers (4 m long) which also contribute significantly to the impedance budget. (-0.175 kHz / mA for one section)

There are small gap chambers and several synchrotron light absorber blocks.

Wiggler Section

Wake field calculations: V. Smaluk, BINP, Novosibirsk

Summary

Impedance model	$\frac{\Delta f_x}{\Delta I} =$	$-0.2 \frac{\text{kHz}}{\text{mA}}$	$\frac{\Delta f_y}{\Delta I} =$	$= -0.7 \frac{\text{kHz}}{\text{mA}}$
Impedance budget		$\frac{\Delta f_{x,y}}{\Delta I} = -2$	$1.28 \frac{\text{kHz}}{\text{mA}}$	
Measurements PETRA III				
Aug 14, 2009	$\frac{\Delta f_x}{\Delta I} =$	$-0.228 \frac{\text{kHz}}{\text{mA}}$	$\frac{\Delta f_y}{\Delta I} =$	$-1.046 \frac{\text{kHz}}{\text{mA}}$
Oct 21, 2010, ORM based	$\frac{\Delta f_x}{\Delta I} =$	$=-0.17\frac{\text{kHz}}{\text{mA}}$	$\frac{\Delta f_y}{\Delta I} =$	$= -1.2 \frac{\text{kHz}}{\text{mA}}$
Oct 10, 2012	$\frac{\Delta f_x}{\Delta I} =$	$= -0.26 \frac{\text{kHz}}{\text{mA}}$	$\frac{z}{\Delta I}$ $\frac{\Delta f_y}{\Delta I} =$	$= -1.24 \frac{\text{kHz}}{\text{mA}}$
In Oct. 2010 and Oct. 2012 the measure shift is 0.2 kHz larger than in Aug 2009	ed vert 9 !	ical tune		

Conclusion

- The tapered transition of the small gap undulator chambers dominate the (vert.) impedance of the PETRA III
- But the contribution from the two wiggler sections together is even a bit larger
- The horz. impedance model is in very good agreement with the Measurements
- The vert. impedance model differs noticeably from the measurements (factor 1.48 ... 1.77), but the is within the impedance budget.
- The results for the kick parameters of the tapered transitions depend on the step size of the mesh
- There is a not understood differrence between the measured tune shift from 2009 and 2010 (change of the resitivity of the NEG coating in the Wiggler chambers ?)

Thank you for your attention !

