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4.9.1 Introduction 

For the PETRA III synchrotron radiation source [1], a damping wiggler section has 
been designed in the Budker Institute of Nuclear Physics. Two such sections will be 
installed to decrease the PETRA III beam emittance. The wiggler section vacuum 
chamber includes a set of synchrotron radiation absorbers intended to accept more than 
200 kW of radiation power during the machine routine operation. An irregular cross-
section of the vacuum chamber results in a quite large coupling impedance. To estimate 
the contribution of the wiggler section to the total PETRA III broad-band impedance, 
three-dimensional computer simulations of the wake fields have been performed using 
GdfidL code [2], in comparison with analytical formulae. 

4.9.2 Collective Effects and Coupling Impedance 

Particle dynamics of an intensive beam moving in a vacuum chamber differs from a 
single-particle dynamics. The beam induces quite strong electromagnetic fields (wake 
fields) affecting the beam itself. The most significant results of the collective effects are 
various instabilities of beam motion, which can lead to beam losses or beam quality 
deterioration. 

In the time domain, beam-environment interaction is characterized by the wake 
potential defined as the wake force integrated along the beam trajectory over the 
interaction length [3]. In the frequency domain, each part of a vacuum chamber can be 
represented as frequency-dependent coupling impedance, which is the Fourier transform 
of the wake function. The real (resistive) part of the impedance leads to a particle 
energy loss, the imaginary (reactive) one leads to a shift of particle oscillation phase. 
Total impedance of a vacuum chamber is a sum of impedances of all its components. 

For almost all practical cases, coupling impedance of a vacuum chamber component 
can be approximated by a resonant circuit for each oscillation mode: 
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where sR  is the shunt resistance of the longitudinal (Ω) or dipole transverse (Ω/m) 
mode, rω  is the resonance frequency, and Q  is the quality factor. 

Because a damping (rising) time of an oscillation mode is rQ ωτ 2= , a high-Q 
(narrow-band) mode is more long-living than a low-Q (broad-band) one. Thus, for a 
whole vacuum chamber or any its component, the narrow-band impedance and the 
broad-band one can be separated (see Figure 1). However, this separation is not 
rigorous because we should take into account the beam oscillation bandwidth. It is more 
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realistic to consider the narrow-band or the broad-band impedance as a contribution to 
the beam-environment interaction within the impedance bandwidth rather than as the 
pure electromagnetic characteristics of the vacuum chamber component itself. Anyway 
we can assert that the narrow-band impedance leads to the bunch-by-bunch interaction 
and can result in multi-bunch instabilities, whereas the broad-band impedance leads to 
the intra-bunch particle interaction and can cause single-bunch instabilities. 
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Figure 1: Broad-band and narrow-band impedance. 

Broad-band impedance of the vacuum chamber as a whole is a sum of broad-band 
impedances of all its components. This impedance is generally used as a global criterion 
of single-bunch beam stability. Since for almost all components of a vacuum chamber, 
the longitudinal broad-band impedance ||Z  is inductive at low frequencies (see 
Figure 1), it is useful to characterize it in terms of ||Z  normalized by the revolution 
frequency harmonic number 0ωω=n . For a fixed-diameter vacuum chamber with 
uniformly distributed impedance, there is a relationship between the normalized 
longitudinal nZ ||  and the transverse dipole ⊥Z  impedance: 
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where b  is the vacuum chamber radius, c  is the light speed. If space charge effects are 
negligible, this formula can be also used as a reference for a non-round vacuum 
chamber cross-section, in this case b  is the average half-size of the chamber. 

Impedance of a perfectly conducting chamber results from its cross-section 
irregularity. For a cylindrical vacuum chamber, there are formulae to estimate low-
frequency impedance of an untapered cross-section step from the radius b up to d [4]: 
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where ≈0Z  377 Ω is the free space impedance. These formulae multiplied by factor of 
2 can be used for a pill-box cavity with )(2 bd −  replaced by the cavity length. Tapering 
with a slope of θtan  reduces the impedance roughly by factor of θsin . 
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For a small-angle circular tapered transition of the length l , with the longitudinal 

shape )(zr , there are formulae [5,6] valid at frequencies much less than 2 2
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If the taper is linear, θtan=dzdr  , the integrals (4) are standard and the impedance is 
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The impedance of a rectangular taper with the horizontal half-size h and the vertical 
half-size b ( bh >> ) is one half of the impedance of a flat tapered collimator [7]: 
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For the linear taper, the impedance is: 
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For a beam stability analysis, there are useful integral factors: the energy loss factor 
)0(||k , the longitudinal wake gradient )1(||k , and the transverse kick factor ⊥k . These 

factors are defined as: 
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where )(|| sW  and )(sW⊥  are the longitudinal and transverse dipole wake potentials 
correspondingly, )(sλ  is the longitudinal beam charge distribution. 

4.9.3 Cross-section of the Vacuum Chamber 

The vacuum chamber of the damping wiggler section is composed of regular cells 
with exception of two end cells without absorbers. There are 8 regular cells in one 
wiggler section, 4 of them have minimal vertical aperture of 9 mm (type "A") and other 
4 have this size of 17 mm (type "B"). Coupling impedance of the cells is mainly formed 
by cross-section transitions between the vacuum chamber fragments. To decrease the 
impedance, all the fragments are connected by long tapered transitions. Each 6131 mm 
long regular cell consists of fragments having one of eight different cross-section shapes 
(see Figure 2). A summary of all the regular cell cross-sections is given in Table 1. 
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Figure 2: Regular cell of the damping wiggler section. 

Table 1: Vacuum chamber cross-sections of the regular cell. 

Distance, 
mm 

Cross-section Aperture,  
hor×ver, mm2 

Length, 
mm 

0 1 (wiggler chamber) 130×17.9 2082 
2082 1-2 transition  19.8 
2101.8 2 (short bellow) 140×30 84.2 
2186 2-3 transition  19 
2205 3 (beginning of the absorber) 130×17 0 
2205 3-4 transition  500 
2705 4 (end of the absorber) 67÷100×9 (A) or 67÷100×17 (B) 0 
2705 4-5 transition  160 
2865 5 (absorber mask) 60÷96×9 (A) or 60÷96×17 (B) 5 
2870 5-6 transition  51.8 
2921.8 6 (long bellow) 120×30 118.2 
3040 6-7 transition  16 
3056 7 (quadrupole) 120×30 740 
3796 7-8 transition  20.75 
3816.75 8 (BPM mask)   110×20 18.5 
3835.25 8-6 transition  20.75 
3856 6 (long bellow) 120×30 200 
4056 6-1 transition  35 
4091 1 (wiggler chamber) 130×17.9 2040 
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4.9.4 Impedance Budget 

To prove reliability of the computer simulations performed using the GdfidL, a 
cross-check of the GdfidL and MAFIA [8] codes has been carried out. Figure 3 shows 
an example of the longitudinal (a) and transverse vertical (b) wake potentials calculated 
using both MAFIA and GdfidL codes for the same cross-section transition 5-6A (see 
Figure 2 and Table 1). The transition 5-6A is a 51.8 mm-long taper connecting the 
absorber output with the vertical size of 9 mm and the long bellow with this size of 
30 mm. Maximal difference of the MAFIA and GdfidL data is about 0.03 V/pC for the 
longitudinal wake and 0.05 V/pC for the transverse one, whereas the root-mean-square 
deviation values are about 0.01 V/pC and 0.02 V/pC correspondingly. Comparative 
analysis of the GdfidL and MAFIA data allows us to conclude that the GdfidL 
simulations with the mesh size of 0.5 mm give enough reliable results. 
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Figure 3: Cross-check of the GdfidL and MAFIA codes. 

For all the cross-section transitions of the regular cells, the longitudinal normalized 
impedance nZ || , the transverse dipole impedance ⊥Z  (both horizontal and vertical), 
and all the integral factors (8) have been calculated using the GdfidL code [2] in 
comparison with analytical formulae (3)-(7) as a reference. 
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Figure 4: Longitudinal (a) and transverse vertical (b) impedances of one wiggler section. 

Total longitudinal and transverse vertical impedances of one wiggler section, 
calculated as a sum of impedances of all the cross-section transitions, are presented in 
Figure 4. There are both the results of the GdfidL simulations performed with the real 
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geometry, and the rough estimation values calculated using the formulae (4)-(5) for a 
circular taper, and (6)-(7) for a rectangular one. The energy loss factor )0(||k  calculated 
using GdfidL is about 140 mV/pC, whereas the circular taper formula gives about 
70 mV/pC and the rectangular taper formula gives about 330 mV/pC. For the vertical 
kick factor  ver⊥k , these values are 456 V/pC/m, 100 V/pC/m and 1000 V/pC/m 
correspondingly. One can see that the circular taper approximation gives an 
underestimate result, whereas the rectangular approximation gives an overestimated 
one. For short round and rectangular tapers (10 mm long), MAFIA simulations give a 
quite large difference with the (4)-(7) formulae. The tapers in the wiggler section are 
probably too short to be treated with the analytic formula. Nevertheless, in many cases 
the formula (4) multiplied by factor of 3 is a good approximation for the PETRA III 
tapers. 

For all the cross-section transitions, the low-frequency broad-band impedance, loss 
factor and kick factors are summarized in Table 2. The GdfidL data is used, the low-
frequency broad-band impedance is defined as a mean value of the impedance in the 
0÷1 GHz frequency band, the kick factors are calculated by numerical integration of the 
expressions (8). The last three rows of the table show the values related to one cell "A", 
one cell "B", and one wiggler section including 4 cells "A" and 4 cells "B". 

Table 2: Broad-band impedance, loss factor and kick factors summary. 

Taper Aperture 
hor×ver, mm2 

nZ ||

mΩ 
hor ⊥Z

kΩ/m 
 ver⊥Z

kΩ/m 

)0(||k
mV/pC

)1(||k  
V/pC/m 

hor ⊥k  
V/pC/m 

 ver⊥k
V/pC/m

1-2 130×17.9→140×30 0.151 0.203 1.610 3.406 2.497 1.795 7.455 
2-3 140×30→130×17 0.180 0.241 2.334 4.998 3.108 2.139 10.02 

3-4A 130×17→80.6×9 0.071 0.407 1.981 0.209 1.287 3.627 17.27 
4-5A 80.6×9→60×9 0.000 0.001 0.000 0.000 0.000 0.005 0.001 
5-6A 60×9→120×20 0.122 0.534 5.042 0.408 2.040 4.620 31.56 
3-4B 130×17→80.6×17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4-5B 80.6×17→60×17 0.001 0.008 0.001 0.002 0.009 0.071 0.010 
5-6B 60×17→120×20 0.021 0.060 0.252 0.080 0.355 0.525 1.714 
6-7 120×20→120×30 0.020 0.000 0.188 0.457 0.493 0.000 1.486 
7-8 120×30→110×22 0.076 0.089 0.637 3.445 1.401 0.802 3.207 
8-6 110×22→120×30 0.075 0.090 0.631 3.446 1.401 0.802 3.199 
6-1 120×30→130×17.9 0.106 0.163 1.297 1.426 1.907 1.421 6.393 

Σ1 cell A  0.80 1.73 13.7 17.8 14.1 15.2 80.6 

Σ1 cell B  0.63 0.85 6.95 17.3 11.2 7.56 33.5 

Σ1 section  5.7 10.3 82.7 140.2 101.2 91.1 456.3 
 
Figure 5 shows fractional contributions of the vacuum chamber fragments to the 

total low-frequency broad-band impedance of one wiggler section. As it was concluded 
from the simulations, two wiggler sections make a quite big contribution to the total 
PETRA III vertical kick factor. Main contribution of the wiggler section kick factor 
comes from the absorber mask taper situated before the quadrupole section. Reducing 
of the quadrupole vacuum chamber height decreases contribution of the 5-6 taper 
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(absorber mask), but, unfortunately, contributions of the 7-8 and 8-6 tapers (BPM mask) 
increase considerably, so a trade-off solution should be found. Last modification of the 
vacuum chamber geometry allows us to decrease the vertical kick factor of one wiggler 
section down to 456 V/pC/m. Thus the kick factor of two wiggler sections is 
912 V/pC/m, which is about 20% of the total PETRA III design value. 
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Figure 5: Impedance contributions: longitudinal (a) and transverse vertical (b). 

To protect the PETRA III dipole magnets from synchrotron radiation coming out of 
the damping wiggler section, an additional mask has been designed to place at the end 
of the section, between the last quadrupole and the dipole magnet. Coupling impedance 
of this mask has been estimated using the GdfidL code, to optimize the vertical 
aperture. A rectangular taper has been taken as the model geometry. The horizontal size 
of the model is constant of 120 mm, the vertical one decreases from 58 mm 
(quadrupole) down to the minimum, then it increases up to 38 mm (dipole). The 
calculations have been done for a set of the minimal aperture values in the 9-22 mm 
range, the low-frequency broad-band impedance, loss factor and kick factors are 
presented in Table 3. 

Table 3: Broad-band impedance, loss factor and kick factors of the dipole magnet mask. 

b2  

mm 

nZ ||  

mΩ 
hor ⊥Z  

kΩ/m 
 ver⊥Z  

kΩ/m 

)0(||k  
mV/pC 

)1(||k  
V/pC/m 

hor ⊥k  
V/pC/m 

 ver⊥k  
V/pC/m 

9 1.45 1.49 30.0 47.1 19.3 12.4 127.3 
10 1.41 1.23 25.3 46.2 18.6 11.1 108.9 
12 1.09 0.85 15.0 40.9 16.4 7.13 63.0 
14 0.95 0.68 11.7 37.2 15.1 5.85 49.2 
17 0.71 0.46 7.41 32.5 13.1 4.10 31.7 
20 0.70 0.30 4.47 29.5 10.8 2.73 19.5 
22 0.54 0.24 3.26 27.0 9.41 2.10 14.3 

 
Figure 6 shows the broad-band longitudinal normalized impedance nZ ||  (a) and 

the transverse vertical impedance  ver⊥Z  (b) in dependence of the mask vertical 
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aperture b2 . The low-frequency broad-band impedance is the impedance calculated by 
the GdfidL code averaged over the 0÷1 GHz frequency band. The simulation results are 
presented by the dots, the dashed curves are fits, the solid curves result from analytical 
impedance estimation using the formulae (6)-(7). 
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Figure 6: Longitudinal (a) and transverse vertical (b) impedance vs. vertical aperture. 

These simulations show that the mask with 9 mm vertical aperture adds about 33% 
to the energy loss factor and about 27% to the vertical kick factor of the wiggler section, 
the 22-mm mask adds about 19% and 3% correspondingly. The mask with a vertical 
aperture of 17 mm has been chosen to be built. 
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