
Internal Report 
DESY M 06-02 
July 2006 
 
 
 
 
 
 
 
 
 
 
 

Computations of Wakefields for  
Beam Position Monitors of PETRA III 

 
A.K. Bandyopadhyay, A. Jöstingmeier, A.S. Omar, R. Wanzenberg 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deutsches Elektronen-Synchrotron DESY, Hamburg  
 
 
 



Computations of Wakefields for
Beam Position Monitors of PETRA III
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Abstract

At DESY it is planned to convert the existing PETRA II accelerator into a 3rd gener-
ation synchrotron radiation source, called PETRA III. The reconstruction will start mid
2007. The vacuum system of the 2.3 km long ring will be renewed. For proper design
of PETRA III it is important to estimate the wakes due to various components along
the beam pipe. This article covers the wake computations for two types of Beam Posi-
tion Monitors (BPMs) for PETRA III. The computer codes MAFIA and Microwave Studio
were used to compute the electromagnetic field. Convergence tests and the agreement
between the results of both codes were taken as criteria in order to validate the results.

1 Introduction

In order to meet the future demands for synchrotron radiation at DESY it has been decided
to convert the existing storage ring PETRA II into a 3rd generation synchrotron radiation
source, called PETRA III [1]. The new light source will be operated at an energy of 6 GeV, a
horizontal beam emittance of 1 nm and a vertical beam emittance of 0.01 nm. It is foreseen to
install thirteen insertion devices in one octant ring, since this is an effective solution in terms
of cost and constructional changes. The optic of the new octant consists of nine double bend
achromat (DBA) cells, while 14 FODO cells are used in each of the seven other (often called
old) octants. In the new octant a very good beam position monitor resolution of less then
1 µm in the vertical plane is require to stabilize the orbit with a feedback system to the level
of 1/10 of the beam rms beam size. In the seven old octants a BPM resolution of about 10 µm
is sufficient.

The standard vacuum chamber in the seven old octants has an elliptical shape with a
total width of 80 mm and a total height of 40 mm. The elliptical vacuum chamber is often
approximated with an octagonal shape for many numerical calculations with the computer
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Figure 1: Electric (static) field of a line charge density in a beam position monitor.

code MAFIA. In Fig. 1 the electric field of a line charge density in a beam position monitor
with four knobs as pick-up antennas is show. The corresponding electrostatic potential in
the center of the BPM is show in Fig. 2. The beam position can be calculated from the four
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Figure 2: Electric (static) field of a line charge density in a beam position monitor.

pick-up signals ΦUR, ΦUL, ΦDR and ΦDL at the four button locations up-right (UR), up-left
(UL), down-right (DR) and down-left (DL). The schematic allocation of signals at the buttons
is shown in Fig. 3. The four button signals can be combined into a horizontal and a vertical
normalized signal ΦH and ΦV according to the equations 1 and 2:

ΦH =
(ΦUR + ΦDR) − (ΦUL + ΦDL)

ΦUR + ΦUL + ΦDR + ΦDL
, (1)

ΦV =
(ΦUR + ΦUL) − (ΦDR + ΦDL)

ΦUR + ΦUL + ΦDR + ΦDL
. (2)
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The vertical and horizontal signals ΦH and ΦV are functions of the beam positions (xb, yb).
The vertical and horizontal monitor constants KH and KV are derived as the inverse of the

ULΦ URΦ

ΦDL ΦDR

Figure 3: Allocation of pick-up signals of a BPM with four buttons.

derivative of the functions ΦH and ΦV evaluated at the origin:

1
KH

=
∂

∂x
ΦH (x = 0, y = 0),

1
KV

=
∂

∂y
ΦV (x = 0, y = 0). (3)

The beam positions can be calculated from the horizontal and vertical signal ΦH and ΦV in a
linear approximation as:

x = KH ΦH , y = KV ΦV . (4)

Several electrostatic calculations, similar to that shown in Fig.2, would be necessary to ob-
tain the normalized potentials ΦH and ΦV as functions of position of the line charge (beam)
position (x, y). A more practical way is the solution of a transformed electrostatic problem
using Green’s reciprocity theorem [2, p. 43] and the superposition principle. The transformed
problem is an electrostatic problem with a fixed potential of one volt at one of the button elec-
trodes and no line charge inside the vacuum chamber. The electrostatic potential is shown in
Fig. 4. For the considered geometry one obtains the monitor constants

KH = 14.2mm KV = 28.2mm, (5)

which implies that the monitor is less sensitive in the vertical plane than in the horizontal
plane. A more balanced design (KH ≈ KV ) can be obtained if the positions of the pick-up
electrodes in the vacuum chamber is optimized. Nevertheless the design shown in Fig. 2 has
been used to calculate the wake fields due to the BPMs.
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Figure 4: Electric (static) field of a line charge density in a beam position monitor.

2 Wakes

A beam in a storage ring interacts with its surroundings via electromagnetic fields induced by
image currents in the walls of the vacuum chamber and in any other objects like RF cavities,
kickers or beam positions monitors, which are considered in the next section of this report.
These electromagnetic fields act back on the beam and may cause beam instabilities.

Two different bunch fill patterns with a total beam current of 100 mA are foreseen for
PETRA III, one with many (960) bunches and a low single bunch intensity, and another one
with only 40 bunches and a single bunch intensity of 24 · 1010 electrons or positrons per
bunch (2.5 mA single bunch current). In order to avoid intensity limitations, it is required to
know the interaction of the beam with its surrounding. This interaction is described in detail
by the wakefields excited due to a moving bunch of particles. From the wakefields several
quantities, including the loss and kick parameters, are calculated which represent an integral
measure of the interaction with the considered component of the accelerator.

Let us consider a point charge moving in free space at a velocity close to the velocity of
light, c. With reference to the laboratory frame, the electric and magnetic fields of such a
relativistic particle lie nearly in a plane passing through the charge and perpendicular to its
path. So, a second charge moving behind the first charge on the same or on a parallel path,
and at the same velocity v ≈ c will not be subjected to any forces from the fields produced by
the leading charge. The situation is different if the two charges are moving in the vicinity of
metallic objects or other boundary discontinuities. The trailing charge still will not experience
the direct fields in the wavefront moving with the lead charge. This wavefront can, however,
scatter from the boundary discontinuities, and this scattered radiation will be able to reach
the trailing charge and exert forces parallel and perpendicular to its direction of motion.
These scattered waves are termed wakefields, and the integrated effects of these wakefields
over a given path length of the trailing charge give rise to longitudinal and transverse wake
potentials [3–5].

Consider the situation shown in Fig. 5. A test charge q2 follows a point charge q1 at a
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distant s. The Lorentz force on the test charge due to the fields generated by the point charge
q1 is

�F =
d�p

dt
= q2 (�E + c �ez × �B). (6)

r
�

z��

�� ϕ

q1
� �v = c �ez�
�r

q2�

�r

� s

Figure 5: A point charge q1 traversing a cavity with an offset r followed by a test charge q2

with the same offset.

The wake potential of the point charge q1 is defined as:

�W δ(r, s) =
1
q1

∫ L

0
dz (�E + c �ez × �B)t=(z+s)/c. (7)

The wake potential may be regarded as an average of the Lorentz force on a test charge.
Causality requires �W (s) = 0 for s < 0. The distant s is positive in the direction opposite
to the motion of the point charge q1. The wake potential of a Gaussian bunch with charge
density:

ρ(�r, t) = q1 λ(z − ct), λ(s) =
1

σ
√

2π
exp

(
−(s − s0)

2

2σ2

)

is obtained by a convolution integral with the point charge wake potential �W δ

�W (r, s) =
∫ ∞

0
ds′ λ(s − s′) �W δ(r, s′).

From the wake potential �W (s) of a Gaussian bunch the following loss and kick parameters
are obtained:

k‖ =
∫ ∞

−∞
ds W‖(r = 0, s)λ(s) (8)

k‖(1) =
∫ ∞

−∞
ds W‖(r = 0, s)

d

ds
λ(s) (9)

k⊥ =
1
r

∫ ∞

−∞
ds W⊥(r, s)λ(s). (10)
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In the case that the total charge of the Gaussian bunch is q1, the total energy loss of the
bunch [6, 7] is given by,

∆W = q2
1 k‖. (11)

The parameter k‖(1) plays an important role for the longitudinal impedance model of the
accelerator [8]. From the parameter k‖(1) and the kick parameter k⊥ the coherent tune shifts
of the lowest order bunch modes in the longitudinal (∆νs) and transverse planes (∆νβ) can
be calculated according to the following equations [1, 8]:

∆νs = νs
IB RT0

2hUrf
k‖(1) (12)

∆νβ =
IB < β > T0

4π E/e
k⊥, (13)

where νs = 0.045 is the synchrotron tune, IB the single bunch current, R = 366.7 m the
average radius, T0 = 7.685µs the revolution time, h = 3840 the harmonic number, Urf =
20 MV the total rf voltage, < β > the average beta-function and E = 6 GeV the energy of
PETRA III.

3 Simulation Software

3.1 Microwave Studio

CST MICROWAVE STUDIO (MWST ) [9] is an electromagnetic field simulation code for the
analysis and design of components such as antennas, filters, transmission lines, couplers,
resonators etc., which is based on the Finite Integration Technique (FIT) [10, 11]. The code
contains four different solvers: a transient solver, a frequency domain solver, an eigenmode
solver and a modal analysis solver. MWST has a user-friendly, Windows-based interface
to model three-dimensional (3D) structures. The code includes the option of user defined
or automatic meshing and features a Perfect Boundary Approximation (PBA) method. This
method allows mesh cells to be partially filled for a more accurate representation of shapes
that do not conform to the Cartesian (x,y,z) or cylindrical (r, θ,z) coordinate systems.

3.2 MAFIA

MAFIA is a general code for the computation of electromagnetic fields [12]. It is also based
on the Finite Integration Technique (FIT). The program is modular and is divided into pre-
processor, postprocessor and several time and frequency domain solvers as well special
solvers for electro- and magnetic-static problems. It is possible to simulate a particle beam
to exciting electromagnetic fields in a general (three dimensional) geometrical structure and
to compute the resulting wake potentials, which makes the program suitable to be used for
electromagnetic problems related to particle accelerators.
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4 The BPMs in the arc of PETRA III

For this article an elliptical beam pipe with the beam position monitor buttons positioned at
an angle of 45◦ to the vertical axis is considered. This design is not optimal for the measure-
ment of the beam position in the vertical plane (see also the discussion on monitor constants
in the Introduction) and a modified design will be installed in PETRA III. The semi major
axis and the semi minor axis of the normal beam pipe are 40 mm and 20 mm respectively.
The cross section of the elliptical beam pipe along with the BPMs is shown in Fig. 6(a). Due
to limitations for the shape creation and computer memory the elliptical structure was mod-
eled in MAFIA as an octagon. One quarter of the beam pipe as it was modeled in MAFIA
is shown in Fig. 6(b).

(a) The elliptical beam pipe with the BPMs. (b) Quarter of the modeled beam pipe using
MAFIA

Figure 6: The elliptical beam pipe and the same beam pipe as modeled for the MAFIA
simulations.

The auto-mesh facility within MWST was used to model the beam pipe with the BPM,
while the MAFIA mesh was created manually. A comparison of the MAFIA and MWST
meshes is shown in Fig. 7 and Fig. 8. It can be noticed that MWST allows partially filled
meshes, whereas MAFIA supports only diagonal meshes. So the MWST model is more
realistic than the MAFIA model. This difference is prominent for the BPM, as they consist
of many small cylindrical shapes.

4.1 Eigenmode solver results

The eigenmode solver of MAFIA and MWST were used to compute the eigenmodes for
a 25 mm long section of the beam pipe with the BPM mounted in the structure. The eigen-
mode solver results from MWST and MAFIA corresponding to the boundary conditions
tabulated in Table 1 are summarized in the Tables 2 and 3, respectively.

7



Figure 7: MAFIA mesh of some parts of the BPM

Figure 8: MWST mesh of the same parts shown in Fig. 7
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boundary Boundary condition

x-min, x-max Magnetic, Electric

y-min, y-max Magnetic, Electric

z-min, z-max Electric, Electric

Table 1: Boundary conditions used in MWST and MAFIA for the eigenmode computations
with respect to the coordinate axes shown in Fig. 6

Table 2: First ten eigenmodes computed using MWST with the boundary conditions listed
in Table 1.

Table 3: First ten eigenmodes computed using MAFIA with the boundary conditions listed
in Table 1

The eigenmode solver results from MAFIA and MWST corresponding to the bound-
ary conditions shown in Table 4 are shown in the Tables 5 and 6, respectively. From the
eigenmode solver results it may be noted that the eigenfrequencies for the 1st, 6th and 7th
eigenmodes do not change with the alternation of the boundary condition in the z-direction.
The reason for this is that these three modes are concentrated near the BPM-button and there-
fore do not interact with the boundaries at z-min and z-max. The electric field plots for these
modes are shown in the Figs. 9, 10, 11. The field plots clearly show that the energy of these
modes is closely bound to the BPM itself. Here it may be noted that the MWST results have
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been used for the field plot as the modeling is more realistic with MWST .

boundary Boundary condition

x-min, x-max Magnetic, Electric

y-min, y-max Magnetic, Electric

z-min, z-max Magnetic, Magnetic

Table 4: Boundary conditions used in MWST and MAFIA for the eigenmode computations
with respect to the coordinate axes shown in Fig. 6

Table 5: First ten eigenmodes computed using MWST with the boundary conditions listed
in Table 4.

Table 6: First ten eigenmodes computed using MAFIA with the boundary conditions listed
in Table 4.

The electric field plots corresponding to the modes 1, 6 and 7 computed with MAFIA
are shown in Figs. 12, 13 and 14, respectively. The two-dimensional plots of the electric field
distribution in the vicinity of the BPM-button are also shown in 12, 13 and 14. The field
distributions for the 6th and 7th modes indicate that these two modes are nearly degenerate
orthogonally polarized dipole modes trapped in the vicinity of the BPM button.
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Figure 9: The electric field distribution corresponding to the first mode as calculated with
MWST .

Figure 10: The electric field distribution corresponding to the sixth mode as calculated with
MWST .

11



Figure 11: The electric field distribution corresponding to the seventh mode as calculated
with MWST .

(a) Electric field distribution at the beam pipe for mode
1 from the MAFIA eigenmode solver.

(b) Details of the electric field distribution near the but-
ton monitor of the BPM for mode 1 from the MAFIA
eigenmode solver.

Figure 12: Electric field distribution for mode 1 from the MAFIA eigenmode solver.
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(a) Electric field distribution at the beam pipe for mode
6 from the MAFIA eigenmode solver.

(b) Details of the electric field distribution near the but-
ton monitor of the BPM for mode 6 from the MAFIA
eigenmode solver.

Figure 13: Electric field distribution for mode 6 from the MAFIA eigenmode solver.

(a) Electric field distribution at the beam pipe for mode
7 from the MAFIA eigenmode solver.

(b) Details of the electric field distribution near the but-
ton monitor of the BPM for mode 7 from the MAFIA
eigenmode solver.

Figure 14: Electric field distribution for mode 1 from the MAFIA eigenmode solver.
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4.2 Wake computation results

For the wake computations, the coaxial port of the BPM has been modeled as a waveguide
port. To ensure that the port definition has been correctly implemented into the MAFIA
model, time domain simulations of scattering parameters for the same structure with MAFIA
and MWST were compared. The boundaries in the z-direction were taken as electric bound-
aries. The phases of the reflection coefficient (S11) recorded at the coaxial port computed
with MAFIA and MWST are shown in Fig. 15. The good agreement between the obtained
results strongly supports the accuracy of the computations. Here it may be mentioned that
in reality the coaxial waveguide port should have a 50 Ω impedance. For the limitations in
mesh resolution, the modeled waveguide port has an impedance of nearly 41 Ω.
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Figure 15: Comparison of frequency vs. phase of S11 computed with MWST and MAFIA
at the coaxial BPM port.

In the next step, the time-domain computations for the wake fields were done. A beam
with an rms bunch length (σz) of 10 mm, transversing the BPM on axis in the vacuum cham-
ber, was used as the excitation source. For the simulation a Gaussian charge distribution with
a total charge of 1 C was used. The beam pipe was considered to be 100 mm long, stretching
equally at both sides of the discontinuity (the BPM). A cut through the geometry is shown in
Fig. 16. A uniform mesh step size of 0.12 mm along the z-axis was used, which is a compro-
mise between the available computer memory and the necessity to model the small gap of
0.4 mm between the BPM button and the vacuum chamber. The details of the meshing in the
vicinity of the BPM can be seen in Fig. 17.

Here it may be mentioned that a new coordinate system is generally used to describe the
positions of the particles in the bunch. This coordinate system is termed the ’bunch coor-
dinate system’. This bunch coordinate system is specified by the two transverse Cartesian
coordinates which are the same as before and a new coordinate axis ’s’ along the beam axis.
The orientation of this s-axis is opposite to the direction in which the beam moves. The ori-
gin of the bunch coordinate system is moving with the bunch and is given by the position
of the very first particle in the bunch. A wakefield monitor has been placed at x = y = 0 to
record the wakefields as a function of the bunch coordinate (s). The z-component of the wake
potential (longitudinal wake) and the bunch charge density versus the bunch coordinate are
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shown in Fig. 18.
The total loss parameter computed according to equation (8) is found to be −4.0744× 108

V/C. It sufficient to evaluate the integral in Eqn. (8) from zero to 10σz since the particle
density is zero for s > 10σz . The trapezoidal rule was used for the integration and an inter-
polation of the wake data within the integration limit was used. The k(1) parameter comes
out to be −1.0266 × 1011 VC−1 m−1.

The wake calculations have been repeated with a finer mesh step. For a mesh size of
0.1 mm along the z-axis the loss parameter is −3.5276 × 108 V/C while the k(1) parameter is
−9.0985 × 1010 VC−1 m−1.

Figure 16: Cross section (YZ plane) of the beam pipe along with the BPM.

Figure 17: Detailed view of the mesh (YZ plane) for a part of the beam pipe containing the
button monitor of the BPM.
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Figure 18: The z-component of the wake and the bunch charge density vs the bunch coordi-
nate.

From the previous eigenmode computation, it has turned out that some of the eigen-
modes are trapped in the vicinity of the BPM. These modes contribute significantly to the
long range wake. To investigate this point in detail, electric field monitors (for all three com-
ponents of the electric field) have been defined during the simulation time at a point near the
BPM-button. The approximate position of the field monitor is shown by the arrow in Fig. 19.

Figure 19: The position (indicated by the arrow) at which the electric field components are
monitored.

The variation of the z-component of the electric field as a function of time at the monitor
is plotted in Fig. 20. The frequency of the field is estimated from the time period. It comes out
to be approximately 8.6 GHz - which is near to the frequencies of the 6 th and 7 th eigenmodes
found with the eigenmode solver of MAFIA and MWST .
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Figure 20: The z-component of the electric field vs time at the position indicated in Fig. 19.

4.3 Estimation of the quality factors and other cavity parameters

The quality factors of the modes 6 and 7 were calculated with the codes MAFIA and MWST
using the power loss method. For these computations the conductivity of copper was taken
as 5.8 × 107(Ωm)−1. The dielectric constant and the loss tangent of the Al2O3 ceramic disk
were taken as 9.5 and 5 × 10−4, respectively. The quality factors obtained from MWST are
758 and 847 for the 6th and the 7th mode, respectively. It has to be stated here that the fre-
quencies of the 6th and the 7th modes from MWST come out to be 9.036 GHz and 9.038 GHz,
respectively. This is quite far apart from the corresponding resonant frequencies obtained us-
ing MAFIA which are 8.712 GHz and 8.7476 GHz, respectively. The quality factors for the
same modes obtained from MAFIA are 753 and 707, respectively. The deviations of the res-
onant frequencies can be explained by the difference in modeling of the structure in MAFIA
and in MWST . In the MAFIA calculations, the gap between the electrode of the button
monitor and the shielding looks quite rough, whereas the accuracy of the MWST model is
much better due to the partially filled cells. However, the differences in the quality factors
computed with MAFIA and MWST are in an acceptable range. Another point to keep in
mind is that the actual surface resistance of the metallic parts of the structure is about 10%
higher than the theoretical surface resistance - leading to a lower conductivity of copper than
the theoretical one (σcopper = 5.8 × 107(Ω m)−1) used for the loss calculations.

The loss parameter k(r⊥), the shunt resistance R(r⊥) and the parameter G1 were calcu-
lated in the next step. First, the longitudinal voltage VL(r⊥) for the length of the beam pipe
was obtained using the #1dintegral section of MAFIA as,

VL(r⊥) =
∫ L

0
Ez(r⊥, z) exp(−iωz/c)dz (14)
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where r⊥ is the transverse offset and z is the coordinate in the axial direction of the beam pipe.
The electric fields corresponding to modes 6 and 7 were used, and the integration path was
taken from (0.0, yoffset, zmin) to (0.0, yoffset, zmax). The total energy of the mode is calculated
(considering the symmetries) by default in MAFIA as

U =
ε0

2

∫
|E|2d3r. (15)

From the voltage and the total energy stored, the modal loss parameter k(r⊥), the shunt resis-
tance Rshunt(r⊥) and the parameter G1 were calculated according to the following equations:

k(r⊥) =
|VL(r1)|2

4 × U
(16)

Rshunt(r1) =
|VL(r⊥)|2

2 · Pw
(17)

G1 = Rcu × Q, (18)

where Rcu is the surface resistivity of copper and Pw is the metallic power losses. The values
of G1 was found to be 18.3 Ω and 17.3 Ω for the 6th and the 7th mode, respectively. The plots
of the loss parameter and the shunt resistance as a function of yoffset are shown in Figs. 21
and 22 respectively.
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Figure 21: The loss parameter and the shunt resistance corresponding to mode 6 (frequency
= 8.6694 GHz) as a function of the offset in the y-direction.

4.4 Wake computations for an off-axis beam

The next step was to compute the wakes for an off axis beam. In this case it is no longer
sufficient to consider one quarter of the structure since the symmetry for at least plane is lost.
Therefore one half (considering a beam offset in only one transverse direction) of the beam
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Figure 22: The loss parameter and the shunt resistance corresponding to mode 7 (frequency
= 8.6925 GHz) as a function of the offset in the y-direction.

pipe has been modeled instead of only one quarter. A cut along the z-axis and a cross section
of the beam pipe as modeled in MAFIA for wake computations for a beam with a y-offset
are shown in Figs. 23 and 24, respectively.

Figure 23: Longitudinal section of the beam pipe (normal to the x-direction) modeled with
MAFIA with the cutting plane located at the center of the BPMs.

For the wake computations, both the upper and the lower coaxial ports were modeled
as waveguide ports. The simulation results for the longitudinal wake, y-component of the
wake and the output wave amplitudes at both coaxial waveguide ports are shown in the Figs.
25, 26 and 27, respectively. In this case an offset of 5 mm in the y-direction was considered.
The wave amplitude recorded at the upper and the lower coaxial ports are different, as is
expected. The wave amplitude at the upper coaxial port is larger than that at the lower port
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Figure 24: Cross section of the beam pipe (normal to the z-direction) modeled with MAFIA.

because the beam is now nearer to the upper coaxial port. The difference between these two
wave amplitudes has also been plotted versus time in the same graph. The loss parameter
(k‖) and the k‖(1)-parameter computed according to equations (8) and (9) for a 5 mm y-offset
of the bunch are found to be −3.9167 × 108 V/C and −9.8876 × 1010 VC−1m−1, respectively.
With a finer meshing, the same parameters come out to be −3.3527× 108 V/C and −8.6656×
1010 V C−1m−1, respectively.
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Figure 25: The z-component of the wake potential and the bunch charge density vs the bunch
coordinate for a 5 mm y-offset of the beam (coarse mesh).

The kick parameter has been calculated using equation (10) and the y-component Wy

of the wake potential. The y-kick parameter, normalized to the y-offset of 5 mm, comes
out to be −17.842 × 109 V/(C m). The same parameter with a finer mesh comes out to be
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Figure 26: The y-component of the wake potential and the bunch charge density vs the bunch
coordinate for a 5 mm y-offset of the beam (coarse mesh).

−25.256 × 109 V/(C m).
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Figure 27: The output wave amplitude vs time at the coaxial ports for a y-offset of 5 mm
(coarse mesh).
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5 Modeling of the BPM near the undulator chamber

The design of the BPM close to the undulator chamber is not yet finalized. For a first eval-
uation of the wake fields due to this BPM we have modeled a button BPM in the undulator
chamber with four buttons similar to the BPM in the arc. The cross-section of the beam pipe
is, in this case, also an ellipse, but the minor axis is much smaller (minor axis = 7 mm, ma-
jor axis = 90 mm) than that of the arc beam pipe. The BPM buttons are placed 5 mm apart
from the center. The geometry and the dimensions of the BPM buttons and feed-throughs
are taken to be the same as in the arc. To model the structure, as in the arc, the elliptical
cross section of the beam pipe was approximated by a polygon. To be consistent, the same
approximations were used for modeling the beam pipe with MAFIA and with MWST . The
MWST model for the approximated structure is shown in Fig. 28. The corresponding mesh-
ing in the vicinity of the BPM is shown in Fig. 29. The eigenmode solver results obtained by
MWST corresponding to the boundary conditions listed in Table 7 are shown in Table 8.

boundary boundary condition
x-min,x-max Magnetic,Electric
y-min,y-max Magnetic,Electric
z-min,z-max Electric,Electric

Table 7: Boundary conditions used in MWST and MAFIA for the eigenmode computations.

Figure 28: The BPM near the undulator chamber and a quarter of the beam pipe as modeled
in MWST .

The list of the first ten eigenmodes computed using MWST and MAFIA corresponding
to the boundary conditions tabulated in Table 9 are given in Tables 10 and 11 respectively.
Comparison of the obtained results using both programs underlines the quality of the results.
The resonant frequencies computed with both programs agree very well. Here, it may be
noted that the frequencies of the eigenmodes are the same as those found with electric wall
boundary conditions at z-min and z-max. As the resonant frequencies are not affected at all
by the z boundaries, it can be concluded that all of the computed eigenmodes in Tables 10
and 11 are confined near the the BPM.
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Figure 29: Mesh distribution in the vicinity of the BPM.

Table 8: Eigenmode solver results from MWST corresponding to the boundary conditions
of table 7.

boundary Boundary condition

x-min, x-max Magnetic, Electric

y-min, y-max Magnetic, Electric

z-min, z-max Magnetic, Magnetic

Table 9: Boundary conditions used in MWST and MAFIA for the eigenmode computations.
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Table 10: First ten eigenmodes computed using MWST with the boundary conditions listed
in Table 9.

Table 11: First ten eigenmodes computed using MAFIA with the boundary conditions listed
in Table 9.

24



The electric field distributions for the first four modes are shown in Figs. 30, 31, 32 and 33.
The field distribution plots were taken from MWST simulations because of the convenience
in displaying the results. The field plots confirm that all the eigenmodes are confined near
the BPM.

The quality factors of all modes were computed both with MAFIA and MWST . The
quality factors for the first ten eigenmodes from MWST and MAFIA are listed in Table
12. For the quality factor computations, the conductivity of copper has been taken as 5.8 ×
107(Ωm)−1, the relative dielectric constant and the loss tangent of the alumina disk were
taken as 9.5 and 5 × 10−4, respectively. For a few modes, there is a good agreement between
the computed quality factors using MAFIA and MWST , but mostly for the modes with
higher resonant frequencies, there is a quite large relative deviation between the computed
quality factors. Apart from the difference between the loss modules implemented in MWST
and MAFIA, the deviation of the results may be explained by the different meshing schemes
in both methods.

Frequency Frequency Q-value Q-value
mode in GHz in GHz (MWST) (MAFIA) QMWST−QMAF IA

Qaverage
× 100%

number (MWST) (MAFIA)

1 1.9162 1.9186 774 933 -18.63
2 8.9729 8.7916 717 693 3.40
3 8.9739 8.8582 718 690 3.98
4 10.1677 10.2571 997 1037 -3.93
5 13.5869 13.5907 1602 1361 16.26
6 13.5878 13.6052 1604 1360 16.46
7 14.5032 14.4718 1481 1158 24.48
8 14.5093 14.4978 1497 1188 23.02
9 17.3111 17.3480 2427 1561 43.43
10 17.4845 17.5003 2006 1377 37.19

Table 12: Quality factors computed with MWST and MAFIA and their relative deviations
for the first 10 eigenmodes.
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Figure 30: Electric field distribution of the first mode computed with MWST .

Figure 31: Electric field distribution of the second mode computed with MWST .
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Figure 32: Electric field distribution of the third mode computed with MWST ..

Figure 33: Electric field distribution of the fourth mode computed with MWST .
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5.1 Wake computations for the BPM in the narrow beam pipe

5.1.1 On axis beam

Half of the beam pipe with two waveguide ports (one at the upper coaxial port and another
at the lower coaxial port) has been modeled in MAFIA for the wake computations. The cross
section of the narrow beam pipe along with the BPM is shown in Fig. 34. The beam pipe was
considered to be 100 mm long. A Gaussian charge distribution with σ = 10 mm having a
total charge of 1 C was taken as the exciting beam. The constant mesh step along z-direction
and the fine mesh step around the BPM button were taken as 0.12 mm. The details of the
mesh around the BPM button used for the wake computation can be seen in Fig. 35.

Figure 34: Cross section of the beam pipe and the BPM as modeled with MAFIA.

All the components of the wake have been recorded at the position of the beam. Fig. 36
shows the variation of the z-component of the wake with the bunch coordinate for an on axis
beam. The output wave amplitudes at both coaxial ports were also recorded, which can be
seen in Fig. 37. Although from Fig. 37 at first sight it seems that the output wave amplitudes
are the same at the upper and lower coaxial ports, a detailed inspection shows that there is a
small difference between the two recorded amplitudes. The details of the output amplitudes
and their difference are shown in Fig. 38. It can be noted that the order of magnitude of
the difference is much smaller than the peak recorded voltage. This difference is probably
caused by a default shift of the y-position of the beam by the MAFIA program. This is again
supported by the fact that also a non-zero y-component of the wake field has been found for
the on-axis beam as can be seen in Fig. 39.

The total loss parameter (ktot) and k(1)-parameter computed according to equations 8 and
9 come out to be −1.6211 × 108 V/C and −5.2732 × 1010 V C−1m−1, respectively.
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Figure 35: Meshing near the BPM button used in wake computations.
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Figure 36: The z-component of the wake and the bunch charge density vs the bunch coordi-
nate (on-axis beam).
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Figure 37: The output wave amplitudes vs time at the coaxial ports for the on-axis beam.
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0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8

10
x 10

4

Time (ns)

D
iff

er
en

ce
 b

et
w

ee
n 

ou
tp

ut
 w

av
e 

am
pl

itu
de

s
at

 th
e 

up
pe

r 
an

d 
lo

w
er

 c
oa

xi
al

 p
or

ts

(b) Difference between the output wave amplitudes at
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Figure 38: Details of the output wave amplitude at the upper and lower coaxial ports and
their difference vs time.
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Figure 39: y-component of the wake for the on-axis beam.

5.1.2 Beam with y-offset

In the next step the wakes were estimated for a beam with a y-offset. As the beam pipe in this
case is very narrow, a beam offset of 2.0 mm has been used for the y-offset. The geometry of
the beam pipe remains the same as shown in Fig. 34. All the components of the wake and the
output wave amplitude at the upper and lower coaxial port were recorded. Fig. 40 shows
the y and z components of the wake along the beam pipe.
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(a) y-component of the wake for the beam with 2 mm
y-offset.
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(b) z-component of the wake for the beam with 2 mm
y-offset.

Figure 40: y- and z- components of the wake along the bunch coordinate for a beam with a
y-offset of 2 mm.

Then the total loss parameter was calculated using equation (8). The estimated total loss
parameter and k‖(1)-parameter come out to be−7.0962×107 V/C and−2.3176×1010 VC−1m−1,
respectively. The y-kick parameter was computed using equation (10). The y-kick parameter
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normalized to an offset of 2 mm in this case is −3.874 × 1012 V/(C m).

6 Summary

Wake computations for the BPMs installed at two different parts of beam tube of PETRA III
have been done. The cases of on- and off- axis beams have been considered. MWST and
MAFIA were used for the electromagnetic field computations. Wherever possible, agree-
ment between the results from this two codes has been used to validate the results. The issue
of trapped modes near in the vicinity of the BPM has also been investigated. Various para-
meters including different loss parameters and kick parameters have been estimated. The
following table summarizes different estimated parameters - which can be used to estimate
different beam instabilities as well as the budget for PETRA III.

Analyzed Longitudinal y-kick longitudinal
structure loss parameter parameter k(1) parameter

(V C−1) (VC−1m−1) ( VC−1m−1)
Arc BPM

Quarter of the −4.0744 × 108 n.a −1.0266 × 1011

arc beam pipe
Half of the

normal beam pipe −3.9167 × 108 −1.7842 × 1010 −9.8876 × 1010

(offset 5.0 mm)
Quarter of the
arc beam pipe −3.5276 × 108 n.a −9.0985 × 1010

(finer mesh)
Half of the

normal beam pipe
(offset 5.0 mm) −3.3527 × 108 −2.5256 × 1010 −8.6656 × 1010

(finer mesh)
Undulator BPM

Half of the
narrow beam pipe −1.6211 × 108 −1.9147 × 103 −5.2732 × 1010

(offset 0 mm)
Half of the

narrow beam pipe −7.0962 × 107 −3.8739 × 1012 −2.3176 × 1010

(offset 2 mm)

Table 13: Summary of the various loss parameters and kick parameters.

The results for the arc BPM was first obtained using a mesh with a step size of 0.12 mm
along the z-axis and a step size of 0.8 mm for the transverse dimensions. In the region of the
BPM buttons a step size of 0.12 mm was also used for the transverse dimensions. The wake
calculations have been repeated on a finer mesh with a step size of 0.1 mm along the z-axis
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and a step size of 0.5 mm for the transverse dimensions. In this case a step size of 0.1 mm
was used in the region of the BPM buttons. The results for the BPM in the undulator pipe in
Table 13 were obtained with the fine mesh.
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[11] T. Weiland. Numerical solution of maxwell’s equations for static, resonant and transient
problems. In International URSI Symposium on Electromagnetic Theory, pages 537–542,
Budapest, August 1986.

[12] MAFIA. Release 4, Nov 2004. CST GmbH.

33


	M 06-02.pdf
	Internal Report 
	A.K. Bandyopadhyay, A. Jöstingmeier, A.S. Omar, R. Wanzenberg 
	Deutsches Elektronen-Synchrotron DESY, Hamburg  



