Beam Injection Scheme for SPring-8-II

Diffraction-limited Synchrotron Radiation Design Group RIKEN SPring-8 Center Hitoshi Tanaka

Outline

- 1. Introduction
- 2. Our approach
- 3. Optics design
- 4. Strategic component development
- 5. Time schedule
- 6. Summary

Trend and requirements

- 1) Smaller injection beam amplitude
- 2) Transparent beam injection
- 3) Topping up
- 4) Low construction and running costs
- 5) Energy efficiency (lower power consumption)

1. Introduction

2. Our approach

- 3. Optics design
- 4. Strategic component development
- 5. Time schedule
- 6. Summary

Why off-axis injection?

Scheme Item	Off-axis	RF Multi-pole	On–axis	Off–energy Beta Osc. Free
Small 3D Inj. Amplitude	0	\bigtriangleup	0	Δ
Transparency	0	0	0	0
High Stored Current	0	0	Δ	0

Beam injection scheme for SPring-8-II

New "Off-axis beam injection" based on (1) low emittance injection beam, (2) In-vacuum pulse septum and (3) a perturbation-free linear π -bump.

- One order smaller amplitude \rightarrow a few mm
- One order higher transparency \rightarrow stored beam oscillation smaller than 10 μm
- Usual top-up operation keeping the stored beam

Beam injector for SPring-8-II - Timeshared use of XFEL linac -

Features of proposed scheme

- 1. Introduction
- 2. Our approach
- 3. Optics design
- 4. Strategic component development
- 5. Time schedule
- 6. Summary

Injection cell of SPring-8-II

The whole ring optics is composed of 42 regular cells, 4 straight cells, and 2 injection cells.

Bump orbit composition and injection amplitude

Expected DA at injection point

- 1. Introduction
- 2. Our approach
- 3. Optics design
- 4. Strategic component development
- 5. Time schedule
- 6. Summary

Parallel development of two main subjects

(1) <u>Timeshare use of SACLA linac as an injector for SPring-8-II</u>

- XFEL requires a high peak current of ~10 kA, which is inadequate for beam injection to SPring-8-II
- In a pulse-by pulse manner, (a) beam temporal profile, (b) beam delivery route, and (c) beam acceleration timing should be changed according to the use

(2) In-vacuum transparent off-axis beam injection

- Following three key components are essential for the system development
- (d) PM based DC septum, (e) in-vacuum pulse septum, and
 (f) twin kickers driven by a single solid state high power PS

(a) Shot-by-shot RF parameter switching to control E-beam temporal profile

Two methods under development

- (I) Ethernet based "event information" delivery system
- (II) Trigger pulse based "event information" delivery system

(b) Shot-by-shot beam route switching to deliver E-beam to both XFEL BLs and SPring-8-II

(c) Synchronization system enabling on-demand beam injection for SPring-8-II

Prototype of the synchronization system tested at SACLA.

- Timing jitter of 1.2 ps rms obtained, which satisfies target value
- Small influence to the XFEL performance

2016/09/15

(c) Synchronization system enabling on-demand beam injection for SPring-8-II

Prototype of the synchronization system tested at SACLA.

- Timing jitter of 1.2 ps rms obtained, which satisfies target value
- Small influence to the XFEL performance

2016/09/15

(d) PM-based DC septum magnet

Essential countermeasures

1) Leakage field suppression

2) Demagnetization

Difference of integrated field between bump on and off less than 10⁻⁵ T • m

Adoption of SmCo PM, Field correction by Outer plate

(e) In-vacuum pulse septum magnet

1) Vacuum - Minimizing outgassing (material, coating, yoke structure, heat

treatment), Optimizing pumping system
 2) Magnet - Leakage field suppression
 Thin septum conductor and magnetic shield

(f) Twin kickers driven by a single solid state PS

Tentative parameters				
ltem	Specifications			
Beam energy	6 GeV			
Kick angle	3.5 mrad			
Stability	< 5µrad(Target 1µrad)			
Magnetic field	0.2 T			
Excitation current	2.6 kA			
Current stability	< 0.1%(Target 0.01%)			
Pulse width	4 µs			
Magnet Inductance	3.5 µH			
Capacitance	400 nF			
Charging voltage	25 kV			
Timing jitter	< 1ns			

- 1. Introduction
- 2. Our approach
- 3. Optics design
- 4. Strategic component development
- 5. Time schedule
- 6. Summary

Development status

(1) Timeshare use of SACLA linac as an injector for SPring-8-II

Proof-of-principle experiments accomplished for (a) pulse-by-pulse temporal profile control and (c) timing synchronization.
(b) beam route switching will be accomplished as a final form by the end of FY2016.

Test beam injection to SPring-8 scheduled in FY2018 (2) In-vacuum transparent off-axis beam injection

3-years R&Ds started this year for (d) PM-based DC septum,
(e) in-vacuum pulse septum, and (f) twin kickers driven by a single solid state high power PS since.

All R&D items will be completed by the end of FY2018.

Summary

- 1. A new beam injection scheme has been proposed for SPring-8-II, which timeshares the SACLA linac as an injector and adopts an in-vacuum transparent off-axis injection scheme.
- 2. The new injection system under development satisfies simultaneously high injection performance, i.e., a small injection amplitude and high transparency, and substantial energy-saving required for SPring-8-II.
- 3. All the developments are expected to finish in FY2018.