PETRA III Studies July 2013.

Discussion on the operation of PETRA III at E < 6 GeV

- -Emittance
- -Bunch length
- -Instabilities

Rainer Wanzenberg

DESY Hamburg, April 16, 2013

Emittance – a simple model

$$\epsilon = rac{C_q}{J_x} {\left(rac{E}{m_0\,c^2}
ight)}^2 rac{I_5}{I_2}$$

$$I_5=\int ds\,rac{{\cal H}}{
ho^3}, \quad I_2=\int ds\,rac{1}{
ho^2}$$

Assumption: Optic unchanged

D: bending radius 192 m PDA: bending radius 24 m

W: bending radius 19 m @ 6 GeV,

scaled with Energy

Energy	Emittance (w/o Wigg)	Emittance	Tolerance D In Wigg.
6 GeV	4.4 nm	1 nm	1.5 cm
5 GeV	3 nm	0.5 nm	1 cm
4 GeV	2 nm	0.2 nm	0.5 cm
3.4 GeV	1.4 nm	0.1 nm	0.2 cm
3 GeV	1 nm	0.07 nm	0.2 cm

Bunch length – simplified model

Energy	Energy spread 10 ⁻³	Voltage / MV	f _s / kHz	Bunch length / mm
6 GeV	1.1	20	6.4	10 (12 mm)
5 GeV	1.0	20	7.0	8.5
		15	6.1	9.7
4 GeV	0.9	20	7.9	6.8
		15	6.9	7.8
		10	5.6	9.7
3.4 GeV	0.86	10	6.0	8.2
3 GeV	0.8	20	9.2	5.2
		10	6.5	7.3

Instabilities

Tune shift with intensity:

$$\Delta Q_{\beta} = \frac{\Delta f_{\beta}}{f_0} = \frac{I_{\rm B} \langle \beta \rangle T_0}{4\pi E/e} k_{\perp}$$

Tune shift is increasing with lower E

TMCI, mode coupling m = 1, l = 0, -1

Coupled bunch instabilities:

transverse damping time ~ Energy

$$\frac{1}{\tau_{||}} = \frac{2\pi Q_{S}}{T_{0}} \frac{I_{tot} Z_{||_{eff}}}{2 V_{rf}},$$

$$\frac{1}{\tau_{\perp}} = \frac{2\pi}{T_0} \frac{I_{tot} \beta_{cav} Z_{\perp eff}}{4\pi E/e}$$

Conclusion

- Plans and objectives for the studies in July 2013
 - Studies for USR, collective effects at low emittance?
 - Lower emittance at 6 GeV ?
- •Running at 5 GeV with 0.5 nm seems to be realistic
- •Running at 4 GeV is more ambitious: smaller tolerance for the max Dispersion in the wiggler, emittance diagnostics (0.2 nm), use the interferometer with horz, slits?
- •Running at 3 GeV is a real challenge, it is not clear that we can identify the causes of possible problems

