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Two topics in particle
accelerator beams

by

Klaus Heinemann

Diplom Physiker, University of Hamburg, 1986

Ph.D., Mathematics, University of New Mexico, 2010

Abstract

This thesis has two parts. In the first part I present results from my studies of the

Vlasov-Maxwell system which was developed, together with a code, in collaboration

with Bassi, Ellison and Warnock. The emphasis is on the link between the theory

and the self-consistent numerical computations performed by the code. The Vlasov-

Maxwell system models electron beams, typically in synchrotron light sources. In the

second part I present results from my studies of the dynamics of spin polarized beams.

Here the emphasis is on improvements of the theoretical basis of beam simulations

by using topological methods.
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Chapter 1

General Introduction

This thesis has two parts. In the first part, consisting of Chapters 2-4 and Appendix

A, I present results from my studies of the Vlasov-Maxwell system (VMS) and in the

second part, consisting of Chapters 5-10 and Appendices B-G, I present results from

my studies of spin polarized beams. Both parts deal with beam dynamics issues for

particle accelerators. A good title for the first part is: “Vlasov-Maxwell treatment of

coherent synchrotron radiation” and a good title for the second part is: “Topological

treatment of spin polarized beams”.

In the first part (Chapters 2-4 and Appendix A) I discuss the Vlasov-Maxwell

system which was developed, together with a code, in collaboration with Bassi,

Ellison and Warnock. Here the emphasis is on the link between the theory and the

self-consistent numerical computations performed by the code whence no attempt at

extreme rigor is aimed at. For my publications on the Vlasov-Maxwell system, see

[EPAC06, PAC07-1, PAC07-2, EPAC08-1, EPAC08-2, MICRO, PAC09, ICAP09].

The second part (Chapters 5-10 and Appendices B-G) presents the theory of spin-

orbit tori which play an important role in beam dynamics studies of spin polarized

beams. Here the emphasis is on blending given concepts and folklore into a full

1



Chapter 1. General Introduction

fledged theory of spin-orbit tori allowing to cast established as well as new results

into the rigorous form of mathematical theorems. However the practical relevance

of these concepts for spin polarized beams is covered in considerable detail as well.

For my recent publications on spin polarized beams, see [BEH04, EH].
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Chapter 2

Introduction to the

Vlasov-Maxwell system

I now begin with the first part of this thesis which consists of Chapters 2-4 and

Appendix A. In the present chapter I make some general remarks for the orientation

of the reader. Since the first part was developed in collaboration with Bassi, Ellison

and Warnock, I here often use the term ‘we’ instead of ‘I’.

The first part of this thesis is concerned with the electron beam in a bunch

compressor in a free electron laser (FEL). A bunch compressor is designed to increase

the peak current of the beam and it typically consists of four dipole magnets. Fig. 1

shows the first bunch compressor system in the FERMI@Elettra free electron laser

at Trieste, Italy. Note that the electron beam in a FEL consists of a train of separate

bunches and that in a bunch compressor one can neglect the interaction between the

bunches. Thus we only have to study a single bunch.

The purpose of an FEL is to produce intense coherent synchrotron radiation,

but this does not take place in its bunch compressors. Nevertheless the electron

beam produces, due to the dipole magnets, coherent synchrotron radiation in the

3



Chapter 2. Introduction to the Vlasov-Maxwell system

bunch compressors and this warrants the study of bunch compressors. In fact bunch

compressors can lead to a microbunching instability with detrimental effects on the

beam quality. This is a major concern for free electron lasers where very bright

electron beams are required, i.e. beams with low emittance and energy spread. Thus

I discuss in some detail an initial condition on the bunch which we also studied in

great detail in [MICRO].

A basic theoretical framework for understanding a bunch compressor is the 6D+3D

Vlasov-Maxwell system (6D phase space for the bunch and 3D space for the self field

of the bunch). Note that part of the self field accounts for the above mentioned

coherent synchrotron radiation produced by the bunch compressor. However, the

numerical integration of this system is computationally too intensive at the moment.

Our basic ansatz is therefore a 4D+2D Vlasov-Maxwell system (4D phase space for

the bunch and 2D space for the self field of the bunch). More precisely, we treat the

beam evolution through a bunch compressor using a Monte Carlo mean field self-

consistent approximation. We pseudo-randomly generate N points from an initial

phase-space density. Here we use N for the simulated points to distinguish it from N

for the number of particles in the bunch. We then calculate the charge density using

a smooth density estimation. The electric and magnetic fields which constitute the

self field of the bunch are calculated from the smooth charge/current density using

a field formula that avoids singularities by using the retarded time as a variable of

integration. The sample points are then moved forward in small time steps using

the equations of motion in the beam frame with the fields frozen during a time step.

We try to choose N large enough so that the charge density is a good approximation

to the charge density that would be obtained from solving the 2D Vlasov-Maxwell

system exactly. We call this method the ‘Monte Carlo Particle (MCP) method’ and

we developed a FORTRAN code based on this method. We believe we calculate

the charge density accurately and that for N sufficiently large one could obtain an

accurate approximation to the 4D Vlasov phase-space density. That is beyond our

4



Chapter 2. Introduction to the Vlasov-Maxwell system

current computer capability, however, and it is likely that a better approach would be

to use the method of local characteristics to integrate the Vlasov equation directly.

Our MCP solver has been tested against other codes on the Zeuthen benchmark

bunch compressors. Our results for the mean energy loss are in good agreement

with 2D and 3D codes confirming that 1D codes underestimate the effect of coherent

synchrotron radiation on the mean energy loss by a factor of 2. For more details see

[PAC07-2],[PAC07-1] and references therein.

The above mentioned initial condition on the bunch corresponds to the bunch

compressor of Fig. 1 which consists of a 4-dipole chicane between rf cavities and

quadrupoles. This initial condition is a smooth beam frame initial phase-space den-

sity a0(z, x, pz, px) modulated by a factor 1 + A cos(2πz/λ0) where A is a small

amplitude and λ0 is the perturbation wave length. The function a0 contains the

energy chirp, the z − pz correlation that is necessary for bunch compression. The

beam frame coordinates (z, pz, x, px) are standard and are defined in Section 3.2. The

4D+2D Vlasov-Maxwell system is described in two frames: the lab frame, which is

tied to the cartesian coordinates Z,X, PZ , PX and the beam frame, which is tied to

the accelerator coordinates z, x, pz, px.

To define clearly our Vlasov-Maxwell starting point we begin with exact equa-

tions, but for practical work we later make approximations based on the following

assumptions:

(A) The maximum bunch size Δ is small compared to the minimum bending radius.

(B) In beam frame coordinates the bunch form (and also the form of the phase-

space distribution) changes very little during a time Δ/c. Correspondingly, the

field of the bunch at a co-moving point changes little on such a time interval.

Here Δ is the biggest extent of the bunch in any direction. Under typical conditions

5



Chapter 2. Introduction to the Vlasov-Maxwell system

Figure 1: Proposed layout of FERMI@Elettra first bunch compressor system. Ac-
celerating rf cavities in red, quadrupole magnets in blue, drift sections in black and
dipoles in green. Parameters are given in (3.105).

(A) and (B) should be very well satisfied. We also assume that the beam is relativistic

(γ � 1), as is true in the example studied, but that assumption could be removed

without great cost.

The first part of this thesis is organized as follows. In Section 3.1 the 6D+3D

Vlasov-Maxwell system is introduced via the 6D Vlasov equation and Maxwell’s equa-

tions for the self field. By confining to a sheet bunch, the 6D+3D Vlasov-Maxwell

system is then boiled down to the lab frame 4D+2D Vlasov-Maxwell system. Exact

formulas for the self field of the 4D+2D Vlasov-Maxwell system are presented as

well and the 4D Vlasov equation is derived from the 6D Vlasov equation. Section

3.2 is devoted to the definition of the beam frame and beam coordinates, the beam

frame equations of motion, and the transformation of densities from beam frame to

lab frame which is needed to determine the lab frame sources. Also the 4D Vlasov

equation in the beam frame is derived from the 4D Vlasov equation in the lab frame

and the above mentioned initial bunch condition is introduced. Some numerical re-

sults are presented in Section 3.3 where also the underlying initial condition on the

bunch is introduced. In Section 3.4 we give the details of our MCP algorithm. In

particular in Section 3.4.2 a causality issue is discussed and in Section 3.4.3 a conver-

gence study of computation errors of our code is presented. Moreover Section 3.4.3

gives further insight into some density estimation techniques. Appendix A contains

supplementary material needed for Chapter 3 and Chapter 4 gives an outlook on the

Vlasov-Maxwell system.

6



Chapter 2. Introduction to the Vlasov-Maxwell system

My contributions to the Vlasov-Maxwell system are about as follows. I have been

strongly involved in many aspects of our Vlasov-Maxwell work, part of which is doc-

umented in [EPAC06, PAC07-1, PAC07-2, EPAC08-1, EPAC08-2, MICRO, PAC09,

ICAP09]. Among my main contributions are the development of the sheet beam

ansatz (see Section 3.1), the parallelization of our code (see Section 3.4), the work

on some aspects of the transformation steps in (3.54), the work on the 2D integral

equation approach to the microbunching instability (see [MICRO]), the discovery of

the causality issue of our code (see Section 3.4), the study of the kernel density esti-

mation method (see Sections 3.4.3 and A.3) and the convergence studies (see Section

3.4.3).

7



Chapter 3

The Vlasov-Maxwell system

3.1 Generalities

Our basic starting point is the 6D+3D Vlasov-Maxwell system, i.e., we assume col-

lisions can be ignored and that the N−particle bunch can be approximated by a

continuum. Our final scheme for computation is less ambitious, but we think that

it might be a reasonable approximation to the full system. We reduce the problem

from 3D to 2D, since we expect that most of the acceleration by a self field will be in

the plane of the unperturbed orbit. We use a particle method that follows the spatial

density rather than the phase-space density, but hope that with sufficient attention

to smoothing the result approximates that defined by the Vlasov-Maxwell system.

We are studying the time evolution of an electron bunch and its Maxwell field

(=self field) as the bunch moves through a chicane. In the model we use, the only

force which acts on the bunch is the Lorentz force produced by the self field E =

E(R̄, u), B = B(R̄, u) and the external magnetic field (the latter is produced by the

magnets of the chicane) where u = ct is the scaled time which we call ‘time’ and

8



Chapter 3. The Vlasov-Maxwell system

where the 3D position vector is written as

R̄ = (Z,X, Y )T . (3.1)

There is no external electric field and the external magnetic field B̄ext is time inde-

pendent and we write

(B̄ext,Z, B̄ext,X , B̄ext,Y )T = B̄ext = B̄ext(R̄) . (3.2)

In the Y = 0 plane the external magnetic field B̄ext has the rather simple form

B̄ext(Z,X, 0) = (0, 0, Bext(Z))T . (3.3)

Clearly the total field is given by E and B+B̄ext. We use a Vlasov-Maxwell approach

whereby the bunch is represented by a time-dependent 6D phase-space density f̄ =

f̄(R̄, P̄; u) where ˙= d/du. Note that P̄ is the 3D momentum vector written as

P̄ = (PZ , PX , PY )T , (3.4)

and that

γ̄ =

√
1 +

P̄ · P̄
m2c2

, ˙̄R =
P̄

mcγ̄
, (3.5)

where m is the electron rest mass, c is the vacuum light velocity and γ̄ is the 3D

Lorentz factor. The phase-space variables R̄, P̄ characterize the ‘lab frame’. Note

that in the first part of this thesis the scalar product is denoted by ′·′ as in (3.5).

The phase-space density evolves according to the 6D Vlasov-equation

∂uf̄ + ˙̄R · ∇R̄f̄ + ˙̄P · ∇P̄f̄ = 0 , (3.6)

f̄(R̄, P̄; u0) = f̄0(R̄, P̄) , (3.7)

where u0 is the initial time. Note that the Lorentz force term, ˙̄P · ∇P̄f̄ , of the 6D

Vlasov-equation is determined by the Lorentz force of the total field whence we have

9



Chapter 3. The Vlasov-Maxwell system

the lab frame equations of motion

˙̄R =
P̄

mcγ̄
, (3.8)

˙̄P =
q

c
(E +

P̄

mγ̄
× [B + B̄ext]) , (3.9)

where q is the electron charge. We use SI units throughout. We used in (3.6) the

fact that the vector field defined by the rhs of (3.8),(3.9) is divergence free. The self

field satisfies Maxwell’s equations

∂uE = c∇R̄ ×B− μ0cJ̄ , c∂uB = −∇R̄ × E ,

∇R̄ ·E =
ρ̄

ε0
, ∇R̄ ·B = 0 ,

(3.10)

where the 3D charge density ρ̄ and the 3D current density J̄ of the bunch are deter-

mined by the 6D phase-space density f̄ via

ρ̄(R̄; u) := Q

∫
R3

dP̄f̄(R̄, P̄; u) , (3.11)

J̄(R̄; u) = (J̄Z(R̄; u), J̄X(R̄; u), J̄Y (R̄; u))T := Q

∫
R3

dP̄
P̄

mγ̄
f̄(R̄, P̄; u) , (3.12)

with Q being the charge of the bunch. Note that ε0 is the vacuum electric perme-

ability and μ0 is the vacuum magnetic permeability whence c2 = 1/μ0ε0. Maxwell’s

equations for the external magnetic field are homogeneous and read as

0 = ∇R̄ × B̄ext , ∇R̄ · B̄ext = 0 . (3.13)

Clearly, Maxwell’s equations for the total field are the same as for the self field. Since

f̄ is the 6D phase-space density it is normalized by

1 =

∫
R6

dR̄dP̄f̄(R̄, P̄; u) , (3.14)

whence, by (3.11), the 3D spatial density (1/Q)ρ̄ is normalized, too:

Q =

∫
R3

dR̄ρ̄(R̄; u) . (3.15)

10
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We assume that the initial self field vanishes, i.e.,

0 = E(R̄, u0) = B(R̄, u0) , 0 = ∂uE(R̄, u0) = ∂uB(R̄, u0) . (3.16)

We abbreviate

E := (EZ , EX , EY )T , B := (BZ , BX , BY )T . (3.17)

We consider two scenarios, the shielding resp. nonshielding one. In the shielding

scenario we assume a perfect conductor at the planes Y = ±g modelling the vacuum

chamber of the chicane where 2g is the distance between the two conductors which

constitute the shielding. Thus in the shielding scenario we impose the following

boundary conditions on the total field:

0 = EZ(Z,X,±g, u) = EX(Z,X,±g, u) = BY (Z,X,±g, u) + B̄ext,Y (Z,X,±g) ,

(3.18)

0 = ∂YEY (Z,X,±g, u) = ∂YBZ(Z,X,±g, u) + ∂Y B̄ext,Z(Z,X,±g)

= ∂YBX(Z,X,±g, u) + ∂Y B̄ext,X(Z,X,±g) . (3.19)

In fact (3.18) defines the perfect conductor [Ja] and (3.19) follows from (3.10),(3.13),

(3.22). Note that in the shielding scenario we are only interested in the electromag-

netic field between the two conductors, i.e., for Y ∈ [−g, g]. It follows from the initial

conditions (3.16) for the self field and from the boundary conditions (3.18),(3.19) for

the total field that the external field satisfies, in the shielding scenario,

0 = B̄ext,Y (Z,X,±g) , (3.20)

0 = ∂Y B̄ext,Z(Z,X,±g) = ∂Y B̄ext,X(Z,X,±g) . (3.21)

Of course, (3.18),(3.19),(3.20), (3.21) imply

0 = EZ(Z,X,±g, u) = EX(Z,X,±g, u) = BY (Z,X,±g, u) , (3.22)

0 = ∂YEY (Z,X,±g, u) = ∂YBZ(Z,X,±g, u) = ∂YBX(Z,X,±g, u) . (3.23)

11
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We observe that, in the shielding scenario, the external field and the self field satisfy

the same boundary conditions as the total field. It is clear by (3.22),(3.23) that,

in the shielding scenario, EZ , EX , BY satisfy a Dirichlet condition and EY , BZ , BX

satisfy a Neumann condition at Y = ±g. Thus in the shielding scenario we have, for

the self field, the initial boundary value problem consisting of eq.’s (3.6),(3.7),(3.10),

(3.16),(3.22),(3.23) while in the nonshielding scenario we have the initial value prob-

lem consisting of eq.’s (3.6),(3.7),(3.10), (3.16). Fig. 2 shows our coordinate system

(Z,X, Y ) and the two conductors in the shielding scenario (Rr will be explained in

Section 3.2).

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎛

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎝

h

Figure 2: Basic Setup (h:=2g)

We assume that our 6D+3D Vlasov-Maxwell system is well-posed in both sce-

narios. Our problem is nonlinear since E,B depend via (3.10), (3.11),(3.12) on f̄

whence the term q
c
(E + P̄

mγ̄
×B) · ∇P̄f̄ in the 6D Vlasov equation (3.6) is nonlinear

in f̄ . Thus we are faced with a complicated problem which warrants a numerical

treatment. It is important to note that we need to compute the self field to the extent

as it contributes to the 6D Vlasov equation (3.6). Thus for arbitrary initial values

12
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(3.7) all six 3D self field components of E,B are involved whence it is believed that

for arbitrary initial values (3.7) our problem is numerically intractable. To arrive at

a numerically tractable problem we confine to a sheet bunch, i.e., a situation where

f̄ is concentrated in the (Y, PY ) = 0 plane:

f̄(R̄, P̄; u) = δ(Y )δ(PY )fL(R,P; u) , (3.24)

with

R = (Z,X)T , P = (PZ , PX)T . (3.25)

Thus from now in this chapter we assume that f̄ has the form (3.24). It is shown in

Section A.2 that f̄ is of the form (3.24) if it is initially of this form. Moreover it is

shown in Section A.1 that if f̄ is of the form (3.24) then EY (R̄, u), BZ(R̄, u), BX(R̄, u)

are odd in Y and EZ(R̄, u), EX(R̄, u), BY (R̄, u) are even in Y (see also the remarks

after (3.45)). Furthermore it is shown in Section A.2 that if f̄ is of the form (3.24)

then fL satisfies the 4D Vlasov equation

∂ufL + Ṙ · ∇RfL + Ṗ · ∇PfL = 0 , (3.26)

where

Ṙ =
P

mcγ
, (3.27)

Ṗ =
q

c

(
E‖(R, u) +

1

mγ
(Bext(Z) +B⊥(R, u))(PX,−PZ)T

)
, (3.28)

and where

γ = γ(P) =

√
1 +

P ·P
m2c2

, (3.29)

E‖(R, u) = (EL,Z(R, u), EL,X(R, u))T := (EZ(R, 0, u), EX(R, 0, u))T , (3.30)

B⊥(R, u) := BY (R, 0, u) . (3.31)

Note that the vector field defined by the rhs of (3.27),(3.28) is divergence free. Writ-

ing the initial form of fL as

fL(R,P; u0) = fL,0(R,P) , (3.32)
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we have, by (3.7), f̄0(R̄, P̄) = δ(Y )δ(PY )fL,0(R,P). Only the three components

EZ , EX , BY of the self field contribute to the 4D Vlasov equation (3.26) (and they

only contribute in the Y = 0 plane). As explained in Section A.2, the reason for

this is that EY (R̄, u), BZ(R̄, u), BX(R̄, u) are odd in Y . Thus E‖, B⊥ are the only

parts of the self field which have to be computed whence we only have to deal with a

4D phase-space density and three 2D self field components, i.e., the 6D+3D Vlasov-

Maxwell system boils down to a 4D+2D Vlasov-Maxwell system. We believe that

the 4D+2D Vlasov-Maxwell problem is numerically tractable. We define

F := (EZ , EX , BY )T , (3.33)

FL(R, u) := F(R, 0, u) = (E‖(R, u), B⊥(R, u))T . (3.34)

Computing fL and FL solves the 4D+2D Vlasov-Maxwell problem. Maxwell’s equa-

tions (3.10) and the initial conditions (3.16) give us

�F(R, Y, u) = δ(Y )S(R, u) , (3.35)

0 = F(R, Y, u0) = ∂uF(R, Y, u0) , (3.36)

where

S = Z0

⎛
⎜⎜⎜⎝

c∂ZρL + ∂uJL,Z

c∂XρL + ∂uJL,X

1
c
[∂XJL,Z − ∂ZJL,X ]

⎞
⎟⎟⎟⎠ , (3.37)

ρL(R; u) = Q

∫
R2

dPfL(R,P; u) , (3.38)

JL(R; u) = (JL,Z(R; u), JL,X(R; u))T = Q

∫
R2

dP
P

mγ
fL(R,P; u) , (3.39)

and where � = ∂2
Z + ∂2

X + ∂2
Y − ∂2

u with Z0 :=
√

μ0

ε0
being the free space impedance.

Note that

ρ̄(R̄; u) = δ(Y )ρL(R; u) , J̄(R̄; u) =

⎛
⎝ δ(Y )JL(R; u)

0

⎞
⎠ , (3.40)
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and that by (3.14)

1 =
1

Q

∫
R2

dRρL(R; u) =

∫
R4

dRdPfL(R,P; u) . (3.41)

We refer to ρL as the 2D charge density, JL as the 2D current density and ρL/Q as

the 2D spatial density. In the nonshielding scenario we write F = Fnsh and in the

shielding scenario we write F = F sh and we abbreviate

Fnsh
L (R, u) := Fnsh(R, 0, u) , F sh

L (R, u) := F sh(R, 0, u) . (3.42)

Thus by (3.22)

0 = F sh(Z,X,±g, u) . (3.43)

It is shown in Section A.1 that (3.35),(3.36),(3.43) imply

Fnsh(R, Y, u) = − 1

4π

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + Y 2)

·S(R′, u−
√
|R−R′|2 + Y 2)√

|R−R′|2 + Y 2
, (3.44)

F sh(R, Y, u) =
∑
k∈Z

(−1)kFnsh(R, Y − 2kg, u) , (3.45)

where 1[u0,∞) is the indicator function of the set [u0,∞). Clearly Fnsh(R, Y, u) and

F sh(R, Y, u) are even in Y and only those values S(R̄, u) contribute to Fnsh and F sh

for which u ≥ u0. It follows from (3.42), (3.44),(3.45) that

Fnsh
L (R, u) = − 1

4π

∫
R2

dR′1[u0,∞)(u− |R−R′|)S(R′, u− |R−R′|)
|R−R′| , (3.46)

F sh
L (R, u) =

∑
k∈Z

(−1)kFnsh(R, 2kg, u)

= − 1

4π

∑
k∈Z

(−1)k

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + (2kg)2)

·S(R′, u−
√
|R−R′|2 + (2kg)2)√

|R−R′|2 + (2kg)2
. (3.47)

Clearly Fnsh
L equals the k = 0 term in the expression (3.47) of F sh. The integration

in (3.46),(3.47) is restricted to a very small part of R2, because of the small size of
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the bunch, but it is awkward to locate this region owing to the fact that spatial and

temporal arguments of the source both depend on R′. The task of integration is

greatly simplified if we take the temporal argument to be a new variable of integra-

tion. We first transform the integrand in (3.44) to polar coordinates (χ, θ), then take

the temporal argument v in place of the radial coordinate χ. That is,

R′ −R = χe(θ) , e(θ) = (cos θ, sin θ)T , v = u−
√
χ2 + Y 2 . (3.48)

This conveniently gets rid of the potentially small divisor in (3.44) giving the self

field simply as an integral over the source. In fact it is shown in Section A.1 that

Fnsh can be written as

Fnsh(R, Y, u) = − 1

4π

∫ u−|Y |

−∞
dv1[u0,∞)(v)

∫ π

−π

dθS(R +
√

(u− v)2 − Y 2e(θ), v) ,

(3.49)

whence by (3.47)

F sh
L (R, u) =

∑
k∈Z

(−1)kFnsh(R, 2kg, u)

= − 1

4π

∑
k∈Z

(−1)k

∫ u−|2kg|

−∞
dv1[u0,∞)(v)

∫ π

−π

dθS(R +
√

(u− v)2 − (2kg)2e(θ), v) ,

i.e.

F sh
L (R, u) = − 1

2π

∞∑
k=0

(−1)k(1− δk0/2)

∫ u−2kg

u0

dv1[u0,∞)(v)

∫ π

−π

dθS(R̃(θ, v; u), v) ,

(3.50)

where R̃(θ, v; u) = R +
√

(u− v)2 − (2kg)2e(θ). Of course Fnsh
L is the k = 0 term

in (3.50), i.e.,

Fnsh
L (R, u) = − 1

4π

∫ u

−∞
dv1[u0,∞)(v)

∫ π

−π

dθS(R + (u− v)e(θ), v) . (3.51)

To estimate the effective region of the θ integration in (3.50), note that the

source in (3.50) has significant values only for R̃(θ, v; u) restricted to a bunch-sized

16



Chapter 3. The Vlasov-Maxwell system

neighborhood of Rr(βrv); i.e., the bunch is close to the reference particle (see Section

3.2 for the definition of Rr) where βr is the constant speed of the reference particle.

For F sh
L at time u we are interested only in R in a bunch-sized neighborhood of

Rr(βru). Thus for R in a small neighborhood of Rr(βru) the integrand is appreciable

only when

∣∣R̃(θ, v; u)−Rr(βrv)
∣∣ ≈ ∣∣Rr(βru)−Rr(βrv) +

√
(u− v)2 − (2kg)2e(θ)

∣∣ = O(Δ) ,

(3.52)

where Δ was introduced in Chapter 2. For k = 0 and u−v large compared to Δ, this

cannot be satisfied unless e(θ) has nearly the same direction as Rr(βru)−Rr(βrv),

which is to say that the domain of θ integration is tiny (and close to θ = 0 for a

chicane with small bending angle). When u− v gets close to Δ the domain expands

precipitously to the full [−π, π]. For k 
= 0 the condition (3.52) cannot be met unless

u− v � 2kg, so for image charges there are no contributions to the v-integral close

to its upper limit.

The θ integration is over an arc centered at the observation point R at time

u with radius
√

(u− v)2 − (2kg)2, its extent being its intersection with the bunch

at time v. This is illustrated in Fig. 3 for k = 0. When v is close to u the source

bunch and the observation region (the region of the bunch at time u) overlap and the

θ−support of the source is large. However, for most v the θ−support is small and it

is important to determine the approximate support as shown in the figure. Currently

the θ integration is done with the trapezoidal rule, which is superconvergent. The

remaining v−integrand varies with v, R and u in ways we have not yet quantified

and so we use an adaptive integrator (Gauss-Kronrod).
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Figure 3: Plan for θ integration

3.2 Beam frame

3.2.1 Exact formulas

In our approach the Maxwell equations are solved in the lab frame (recall that FL

depends on R) but the equations of motion are integrated in the beam frame (to

be defined in this section). Here we discuss the beam frame coordinates and the

transformation of the densities between the two frames. The beam frame is defined

in terms of the reference curve Rr(s) = (Zr(s), Xr(s))
T which in turn is defined by

the Lorentz force without self field. We take s = 0 at the entrance of the chicane, i.e.,

Rr(0) is the entry point of the reference curve into the chicane. We also write s = sf
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Figure 4: Beam Frame Coordinates (P ≡ Rr(s) + xn(s))

for the end of the chicane. The unit tangent vector, t, to the reference curve is just

t(s) = R′
r(s) and we define the unit normal vector, n, by n(s) = (−X ′

r(s), Z
′
r(s))

T

so that n is a π/2 counterclockwise rotation from t as shown in Fig. 4. It follows

from the equations of motion (3.27),(3.28) that t′(s) = −qBext(Zr(s))n(s)/Pr where

Pr = mγrβrc is the momentum of the reference particle and γr = (1− β2
r )

−1/2. This

determines the curvature κ up to a sign and we choose κ(s) = qBext(Zr(s))/Pr. Thus

t′(s) = −κ(s)n(s) and n′(s) = κ(s)t(s). In terms of Fig. 2 this makes κ negative in

the first magnet, positive in the second magnet and so on.

The beam frame Frenet-Serret coordinates are s, x, where s is the arc length

along the reference curve and x is the perpendicular distance along n. Thus the
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transformation from (s, x) to (Z,X) is

R = Rr(s) + xn(s). (3.53)

Based on (3.53) our lab to beam transformation can be performed in three steps:

(Z,X, PZ , PX ; u)→ (s, x, ps, px; u)→ (u, x, ps, px; s)→ (z, x, pz, px; s) . (3.54)

The phase-space variables z, x, pz, px characterize the ‘beam frame’. The first step

in (3.54) is defined by (3.53) and by

P = Pr(pst(s) + pxn(s)) . (3.55)

In the second step the variables s and u are interchanged making s the new inde-

pendent variable. In the final step z = s − βru replaces u as a dependent variable

and pz = (γ − γr)/γr replaces ps where γ depends on ps, px via (3.29),(3.55) as

γ =
√

1 + (P 2
r /m

2c2)(p2
s + p2

x). The variables z, x, pz, px are small near the reference

curve which corresponds to z = x = pz = px = 0.

To summarize, the coordinate transformation is written as

R = Rr(s) + xn(s),

P = Pr[ps(pz, px)t(s) + pxn(s)],

u = (s− z)/βr ,

(3.56)

with inverse

s = ŝ(R) , z = ẑ(R, u) = ŝ(R)− βru , x = x̂(R) ,

pz = p̂z(P) := −1 + (1 + P ·P/m2c2)1/2/γr ,

px = p̂x(R,P) := P · n(ŝ(R))/Pr ,

(3.57)
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where

ps(pz, px) =
[
(

1

βr
)2(1 + pz)

2 − p2
x −

1

γ2
rβ

2
r

]1/2

= [1 + (2pz + p2
z)/β

2
r − p2

x]
1/2 . (3.58)

The transformation (z, x, pz, px; s) → (Z,X, PZ , PX ; u) in (3.56) is only considered

in a neighborhood of the reference curve Rr, i.e., for small x so that it is one-one.

Furthermore (3.56) is restricted to ps > 0 in order to have ds/du > 0 which allows to

use s as the independent variable. Under the transformation (3.57), the beam frame

equations of motion become

z′ = 1− [1 + κ(s)x](1 + pz)

ps(pz, px)
, (3.59)

x′ =
[1 + κ(s)x]px

ps(pz, px)
, (3.60)

p′z =
q[1 + xκ(s)]

mγrc2
[t(s) +

px

ps(pz, px)
n(s)] ·E‖(Rr(s) + xn(s);

s− z
βr

), (3.61)

p′x = ps(pz, px)κ(s)−
q

Pr
[1 + κ(s)x]Bext[Zr(s)− xX ′

r(s)]

+
q(1 + pz)

Prβrcps(pz, px)
[1 + κ(s)x]n(s) · E‖(Rr(s) + xn(s);

s− z
βr

)

− q

Pr
[1 + κ(s)x]B⊥(Rr(s) + xn(s),

s− z
βr

) , (3.62)

where ′ = d/ds. The beam frame equations of motion (3.59-3.62) can be written

compactly as

ζ ′ = B(s, ζ) , (3.63)

where ζ = (z, x, pz, px)
T . Thus the beam frame Vlasov equation is

∂sfB +B(s, ζ) · ∇ζfB = 0, (3.64)

where fB is the beam frame phase space density and where we have made use of the

fact that the vector field B(s, ·) is divergence free.

Our field formula is in the lab frame so the lab charge and current densities must

be determined from the beam frame phase-space density. The relation between the
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lab frame phase-space density, fL, and the beam frame phase-space density, fB, is

fL(Z,X, PZ , PX ; u) =
β2

r

P 2
r

fB(ẑ(R; u), x̂(R), p̂z(P), p̂x(R,P); ŝ(R)) . (3.65)

Here fB is normalized, i.e.,

1 =

∫
R4

dzdpzdxdpxfB(z, x, pz, px; s) , (3.66)

as is fL in (3.41). Even though the derivation of (3.65) is somewhat subtle (see,

e.g.,[StoT]) the end result is quite simple. To determine the charge density in terms

of the beam frame phase space density we use (3.38) and (3.65) to obtain

ρL(R; u) = Q

∫
R2

fL(R,P; u)dP

= Q

∫
R2

(1 + pz)

ps(pz, px)
fB

(
ẑ(R, u), x̂(R), pz, px; ŝ(R)

)
dpzdpx . (3.67)

To determine the current density in terms the beam frame phase space density we

use (3.39) and (3.65) to obtain

JL(R; u) = Q

∫
R2

P

mγ(P)
fL(R,P; u)dP

= Qβrc

∫
R2

[
t(ŝ(R)) +

px

ps(pz, px)
n(ŝ(R))

]
·fB

(
ẑ(R, u), x̂(R), pz, px; ŝ(R)

)
dpzdpx . (3.68)

The formulas (3.67) and (3.68) are derived by substituting (3.65) and changing the

variables of integration from PZ , PX to pz, px. where the Jacobian is

det

[
∂P

∂pz
,
∂P

∂px

]
= P 2

r det

[
∂ps

∂pz
t,
∂ps

∂px
t + n

]

= P 2
r det

[
∂ps

∂pz
t,n

]
= P 2

r

∂ps

∂pz
=
P 2

r

β2
r

1 + pz

ps(pz, px)
. (3.69)

We define the beam frame spatial density ρB by

ρB(z, x; s) =

∫
R2

dpzdpxfB(z, x, pz, px; s) , (3.70)
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and the longitudinal beam frame spatial density ρ by

ρ(z; s) =

∫
R

dxρB(z, x; s) =

∫
R3

dxdpzdpxfB(ζ ; s) . (3.71)

Note that
∫

R2 ρB(z, x; s)dzdx = 1 and that QρB is the beam frame charge density.

For more background material on this section, see [MICRO, StoT].

3.2.2 Approximations

To approximate the inverse functions ẑ, x̂ in a neighborhood of R = Rr(s) we com-

pute by Taylor expansion

(
ŝ(R)− s
x̂(R)

)
= MT (s)(R−Rr(s)) +O(κ(s)‖R−Rr(s)‖2) , (3.72)

where

M(s) := [t(s),n(s)] . (3.73)

To approximate the beam frame equations of motion (3.63) we linearize B w.r.t.

z, x, pz, px and use that γr 
 1. Using also (see Assumption A of Chapter 2) that

κ(s)x
 1 we obtain

z′ = −κ(s)x , x′ = px ,

p′z =
q

Prc
[t(s) + pxn(s)] · E‖(Rr(s) + xn(s), (s− z)/βr) ,

p′x = κ(s)pz +
q

Prc

[
n(s) · E‖(Rr(s) + xn(s), (s− z)/βr)

−cB⊥(Rr(s) + xn(s), (s− z)/βr)
]
.

(3.74)

The approximate equations of motion (3.74) have FL(R, u) evaluated at R = Rr(s)+

xn(s) and u = (s − z)/βr. Since it is inconvenient for numerical computations
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to compute FL(Rr(s) + xn(s), (s − z)/βr for different values of z, we perform the

following additional approximations:

FL(Rr(s) + xn(s), (s− z)/βr) ≈ FL(Rr(s+ z) + xn(s+ z), s)

≈ FL(Rr(s) +M(s)(z, x)T , s) . (3.75)

At the first approximation we use the fact that the self field is slowly varying in

s for fixed z, x (see Assumption B of Chapter 2) and that βr ≈ 1. The second

approximation uses the fact that we are only interested in the self field in the bunch

for z, x small, which again uses Assumption A of Chapter 2 and drops the O term

in (3.72) giving us

(
s+ z

x

)
=

(
ŝ(Rr(s+ z) + xn(s+ z))

x̂(Rr(s+ z) + xn(s+ z))

)

≈MT (s)(Rr(s+ z) + xn(s+ z)−Rr(s)) +

(
s

0

)
. (3.76)

From (3.74) and (3.75) we obtain the approximate equations of motion

z′ = −κ(s)x , x′ = px ,

p′z = Fz1(R̂, s) + pxFz2(R̂, s) , p′x = κ(s)pz + Fx(R̂, s),

(3.77)

where R̂ = R̂(z, x, s) = Rr(s) +M(s)(z, x)T and

Fz1(R̂, s) =
q

Prc
E‖(R̂, s) · t(s), Fz2(R̂, s) =

q

Prc
E‖(R̂, s) · n(s) ,

Fx(R̂, s) =
q

Prc

[
E‖(R̂, s) · n(s)− cB⊥(R̂, s)

]
.

(3.78)

Including the self field we write the initial value problem for (3.77) as

ζ ′ = A(s)ζ +G(ζ, s;FL), (3.79)

ζ(0) = ζ0 , (3.80)
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where

A(s) =

⎛
⎜⎜⎜⎜⎜⎝

0 −κ(s) 0 0

0 0 0 1

0 0 0 0

0 0 κ(s) 0

⎞
⎟⎟⎟⎟⎟⎠ . (3.81)

The vector field defined by the rhs of (3.79) is divergence free, thus the beam frame

Vlasov equation is

∂sfB(ζ ; s) + (∇ζfB(ζ ; s)) · [A(s)ζ +G(ζ, s;FL)] = 0 . (3.82)

The equations of motion (3.79), without the self field, represent the Lorentz force in

linearized form and they can be written as

ζ ′ = A(s)ζ , ζ(0) = ζ0 . (3.83)

Eq. (3.83) can be solved and the solution reads as ζ = Φ(s, 0)ζ0 where the principal

solution matrix Φ(s, τ) can be written in terms of the dispersion function,

D(s, τ) =

∫ s

τ

ds′
∫ s′

τ

ds′′κ(s′′) , (3.84)

and the momentum compaction function

R56(s, τ) = −
∫ s

τ

ds′κ(s′)D(s′, τ) , (3.85)

as

Φ(s, τ) =

⎛
⎜⎜⎜⎜⎜⎝

1 −D′(s, τ) R56(s, τ) D(s, τ)− (s− τ)D′(s, τ)

0 1 D(s, τ) s− τ
0 0 1 0

0 0 D′(s, τ) 1

⎞
⎟⎟⎟⎟⎟⎠ , (3.86)

where D′(s, τ) = ∂sD(s, τ). Note that without self field we have

fB(ζ ; s) = fB(Φ(0, s)ζ ; 0) . (3.87)
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The approximate equations of motion in the interaction picture become

ζ ′0 = Φ(0, s)G(Φ(s, 0)ζ0, s;FL). (3.88)

We have found that it is numerically more efficient to integrate (3.88) than to inte-

grate (3.77). Equations (3.67) and (3.68) lead by Taylor expansion of (3.58) in pz, px

to

ρL(R; u) ≈ QρB(ẑ(R, u), x̂(R); ŝ(R)) , (3.89)

JL(R; u) ≈ Qβrc[ρB(ẑ(R, u), x̂(R); ŝ(R))t(ŝ(R))

+τB(ẑ(R, u), x̂(R); ŝ(R))n(ŝ(R))] , (3.90)

where τB(z, x; s) =
∫

R2 pxfB(z, x, pz , px; s)dpzdpz. Using (3.72) gives us the approxi-

mation

(
ẑ(R, u)

x̂(R)

)
=

(
ŝ(R)− βru

x̂(R)

)
≈MT (βru)(R−Rr(βru)) , (3.91)

and using the fact that ρB(z, x; s) has its support for z, x small, we have

ρB(ẑ(R, u), x̂(R); ŝ(R)) ≈ ρB(MT (βru)(R − Rr(βru)); ŝ(R)). Using also the fact

that fB(z, x, pz, px; s) is slowly varying in s we have

ρB(ẑ(R, u), x̂(R); ŝ(R)) ≈ ρB(MT (βru)(R − Rr(βru)); βru). With similar approxi-

mations of the current density we thus arrive at

ρL(R; u) ≈ QρB(MT (βru)(R−Rr(βru)); βru) , (3.92)

JL(R; u) ≈ Qβrc
[
ρB(MT (βru)(R−Rr(βru)); βru)t(βru)

+τB(MT (βru)(R−Rr(βru)); βru)n(βru)
]
. (3.93)

For more background material on this section, see [MICRO, StoT].

26



Chapter 3. The Vlasov-Maxwell system

3.3 The FERMI@Elettra first bunch compressor

system

We studied the microbunching instability in great detail for the FERMI@Elettra first

bunch compressor system [MICRO]. This bunch compressor system was proposed as

a benchmark for testing codes. The complete layout of the system is shown in Fig.

1. The system consists of a 4-dipole chicane between rf cavities and quadrupoles.

The initial beam frame phase-space density to be

fB(z, x, pz, px; 0) = (1 + ε(z))a0(z, x, pz , px) , (3.94)

where

a0(z, x, pz, px) = μ(z)ρc(pz − hz)ρt(x, px) , (3.95)

μ(z) =
α

4a
[tanh((z + a)/b)− tanh((z − a)/b)] , (3.96)

ρc(pz) = exp[−p2
z/2σ

2
u]/
√

2πσu , (3.97)

ρt(x, px) = exp[−(x2 + (α0x+ β0px)
2)/2ε0β0]/2πε0 , (3.98)

ε(z) = A cos(2πz/λ0) = A cos(k0z) . (3.99)

Note that the ‘linear energy chirp’ parameter h in (3.95) is unrelated to the shielding

parameter h = 2g in Fig. 2. The smooth a0 is perturbed by a modulation, ε,

with wave length λ0 and small amplitude A. The purpose of α is to normalize fB,

as demanded by (3.66). However, since it is a good approximation, we use α = 1

in our computations. Taking the limit b → 0+ in (3.96) we get μ → μ0 where

μ0(z) = (α/2a)I(−a,a)(z). The function μ0 is a rough pointwise approximation to μ,

so that the bunch length is ≈ 2a. We use the smooth μ instead of μ0 because the

discontinuous μ0 gives rise to a Gibbs phenomenon which causes problems in our

numerics. Due to (3.71),(3.94),(3.95),(3.97), (3.98) the initial longitudinal spatial

density is

ρ(z; 0) = (1 + ε(z))μ(z) , (3.100)
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whence

fB(z, x, pz , px; 0) = ρ(z; 0)ρc(pz − hz)ρt(x, px) . (3.101)

The density ρc(pz−hz) contains the linear energy chirp which is created by ‘off-crest

rf acceleration’ such that particles in front of the reference particle gain less energy

than particles behind the reference particle. This creates the correlation needed for

bunch compression. To discuss bunch compression we define

C(s) := [1 + hR56(s, 0)]−1, Cf := C(sf) , Rf := R56(sf , 0) , (3.102)

where R56 is defined by (3.85). Note that C(s) > 0 for s ∈ [0, sf ] and that, by (3.85),

C(0) = 1. Recalling that sf is the s-value at the end of the chicane, we conclude

from (3.71),(3.87),(3.94) that

ρ(z; sf ) =

∫
R3

dpzdxdpxfB(Φ(0, sf)ζ ; 0)

=

∫
R3

dpzdxdpxfB(z −Rfpz, x− sfpx, pz, px; 0)

=

∫
R

dpzρ(z − Rfpz; 0)ρc(pz/Cf − hz)

= Cf

∫
R

dyρ

(
Cf(z − Rfy); 0

)
ρc(y) , (3.103)

where in the second equality we used the fact that D(0, sf) = 0 = D′(0, sf). It

is easy to check that ρ(·; sf) in (3.103) is even and so its first moment is zero. A

short calculation shows that the second moment of ρ(·; sf) is equal to 1/C2
f times

the second moment of ρ(·; 0) plus the term R2
fσ

2
u. For our parameters (see below) σu

is so small that we have, to very good approximation,

ρ(z; sf ) = Cfρ(Cfz; 0) . (3.104)

This is just (3.103) with ρc replaced by the delta function. The approximation (3.104)

of (3.103) clearly shows the compression and the meaning of the term ‘compression
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factor C(s)’. We limited our study in [MICRO] to the chicane with the following

parameter values:

Energy of reference particle : Er = 233MeV

Peak current : I = 120A

Bunch charge : Q = 1nC

Normalized transverse emittance : γε0 = 10−6m

Alpha function : α0 = 0

Beta function : β0 = 10m

Linear energy chirp : h = −12.6m−1

Uncorrelated energy spread : σE = 2KeV

Momentum compaction : R56(sf , 0) = 0.057m

Radius of curvature : r0 = 5m

Magnetic length : Lb = 0.5m

Distance 1st− 2nd, 3rd− 4th bend : L1 = 2.5m

Distance 2rd− 3nd bend : L2 = 1m

(3.105)

The external magnetic field B̄ext is approximated by a hard edge model whence

Bext(Z) in (3.3) is approximated by a step function of Z. Thus the lengths L1,

L2 and Lb in (3.105) are in terms of the lab frame variable Z and the total length

of the chicane is 8m. The total arc length traversed by the reference particle is

sf = 8.029m and the compression factor at sf is C(sf) = (1+hR56(sf , 0))−1 = 3.545.

The uncorrelated energy spread σE = 2KeV gives σu = σE/Er = 8.6 · 10−6 whence

(3.104) is a good approximation in the case without self field. In the calculations we

vary λ0 and take A = .05, a = 1180μm and b = 150μm.

Next we present a typical density plot (with self field) computed by our code. In
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Figure 5: Spatial density in grid coordinates (x1, x2) at s = sf for λ0 = 200μm (left)
and λ0 = 100μm (right).

fact, Fig. 5 shows the spatial density in grid coordinates (x1, x2) for λ0 = 200μm

(left) and λ0 = 100μm (right) at s = sf (the grid coordinates are explained in Section

3.4). Here we simply state that we are able to calculate accurately this 2D spatial

density, the basic quantity in our 4D+2D Vlasov-Maxwell system. In Fig. 6 we

show the longitudinal force Fz1 from (3.78), proportional to E‖(·, s) · t(s), at s = sf

for λ0 = 200μm (left) and 100μm (right). Notice that the maximum intensity of Fz1

increases as λ0 decreases.

The results are obtained in the free space case; i.e., neglecting shielding effects

from the vacuum chamber. In our simulations of the FERMI@Elettra first bunch

compressor system we noticed that τB in (3.93) has a negligible effect therefore we

ignored its contribution.
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Figure 6: Longitudinal force in grid coordinates (x1, x2) at s = sf for λ0 = 200μm
(left) and λ0 = 100μm (right).

3.4 The Monte Carlo particle method

3.4.1 Generalities

We have discussed our method for calculating the self field in the lab frame and the

determination of the lab frame charge and current densities from the beam frame

phase-space density. Here we discuss a method of solution of the coupled Vlasov-

Maxwell system similar to traditional particle methods, variously called ‘particle-

in-cell (PIC)’ or ‘macro-particle methods’. We call it the ‘Monte Carlo particle

(MCP) method’, because it uses a Monte Carlo method to determine a smooth

charge distribution from an ensemble of particles. The MCP is self-consistent in the

sense that it takes into account the interaction between the bunch and its self field.

Before we developed the MCP method we considered solving the Vlasov equation

using the method of local characteristics (or ‘semi-Lagrangian method’), which has

been extremely effective in problems with a 2D phase space. This deals with the
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Vlasov equation in a very direct way, defining the phase-space density by its values

on a grid with interpolation to off-grid points. The density is updated by integrating

backward from grid points, with the collective force regarded as constant during a

time step. Since the backward orbits land at off-grid points, this update requires

interpolation. In comparison with usual particle methods, this method offers much

lower noise and the possibility of a relatively direct control of accuracy by monitoring

interpolation error. On the other hand, it is relatively expensive in computation time

and memory, and in the case of a chicane it is technically complicated because the

density is concentrated in a narrow region of phase space that evolves in time in

a manner that is not known a priori [Li]. We are studying ways to deal with this

evolving support, since it would be inefficient to use many grid points where the

density is negligibly small. Possible techniques include changes of variable [VWZ],

an evolving selection of fiducial grid points, and the use of forward characteristics

rather than backward [EPAC08-2]. Although we have high hopes for success in this

direction, at present we stick to the more modest goal of improving the particle

method, in which it is much easier to deal with the support question since one has to

work only with the charge density in 2D rather than the phase-space density in 4D.

In particle methods the connection to the Vlasov equation is unfortunately indirect,

and the control of accuracy relies entirely on the experiment of increasing the number

of particles. Even if one believes that a solution of the Vlasov equation is obtained in

the limit, it is usually too expensive to make a convincing empirical demonstration

of convergence.

An essential ingredient of the MCP method is the technique of density estimation

since, when marching forward in time, for every update of the sample of points the

charge/current density has to be updated. We consider three different methods of

density estimation.

One approach (‘Method 1’) to density estimation is based on orthogonal series
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and we have studied the Fourier series case in some detail following [Ef]. Here ρL

and JL are obtained at every s step by computing the Fourier coefficients of the

truncated Fourier series via Monte Carlo integration of the sample of phase-space

points. Details are also given in [MICRO] and [PAC07-2]. The computational effort

is O(NJ1J2) +O(N1N2J1J2), where N is the number of simulated points, J1, J2 are

the number of Fourier coefficients, and N1, N2 are the number of grid points in x1, x2

respectively (the grid coordinates x1, x2 are explained further below). Typical values

in our microbunching simulations are N = 5×108, J1 = 150 and J2 = 50. Therefore

the computational effort is O(1012) and is of the same order as the computational

effort for the polar coordinate field calculation discussed in item 2 below. Method 1

is done in parallel as outlined in item 1 below.

A second approach (‘Method 2’) employs cloud in cell charge deposition where

at every s step the sample is placed on our fixed grid (see [BPT] and Section 3.5

of [Si]). Here ρL and JL are obtained by computing the Fourier coefficients of the

truncated Fourier series by a simple quadrature. The computational effort in this case

is O(N ) + O(N1N2J1J2). We have found that using N , J1, J2 as above, N1 = 1000

and N2 = 128, gives the same approximation as for Method 1. This computational

effort of O(109) is much smaller than for the orthogonal series method and negligible

with respect to the computational effort for the polar coordinate field calculation

(for the latter, see item 2, below). In Method 2 the Fourier coefficients are computed

in parallel by partitioning the N scattered phase space points into Np groups where

Np is the number of processors and the quadrature is done in parallel by partitioning

the grid into Np groups.

A third approach (‘Method 3’) applies the kernel density estimation technique

to the sample. This approach is still in the testing phase where we are investigat-

ing standard kernels like bivariate Gaussians or bivariate Epanechnikov kernels (all

with a uniform bandwith, H). The computational effort for the bivariate product
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Epanechnikov kernel is O(N Ñ1Ñ2), where N is as before but now Ñ1Ñ2 is the num-

ber of grid points inside the square of diameter 2H centered at the scattered particle

position (x1, x2). For N = 5 × 108, N1 = 1000, N2 = 128 we approximately get

Ñ1 = 24, Ñ2 = 3, O(N Ñ1Ñ2) = O(1010). Thus this method is comparable in speed

to Method 2 and is worthy of further investigation (for further details on the kernel

density estimation technique, see Sections 3.4.3 and A.3). In the kernel density esti-

mator method the densities are computed in parallel by partitioning the N scattered

phase space points into Np groups where Np is the number of processors.

For all three density estimation methods, the initial sample is generated from

pseudo-random numbers [Ca, Ni] by using the Acceptance-Rejection method [Ros],

assuming particles are independent identically distributed according to the initial

phase-space density.

In density estimation Methods 1 and 2 we represent the charge/current density

in the beam frame as a truncated Fourier series, thus giving ourselves a density that

is smooth, of class C∞. Ideally one would use the resulting Fourier series and its

gradient to evaluate the source in the field formula. That is too expensive, however,

since it involves multiple summations of the Fourier series, at points not amenable to

the fast Fourier transform. Instead, we use the Fourier series to put the density and

its gradient on a grid, and then use low order polynomial interpolation for evaluations

at off-grid points. Thus we accomplish something similar to particle-in-cell codes,

but by a different route, and get the gradient as well as the density itself at grid

points. Our method gives low noise, but is costly at high levels of resolution. We

have not yet carried out a careful comparison with more usual methods at similar

levels of cost and resolution.

It is cost effective to make an s-dependent coordinate transformation so that the

2D spatial density can be accurately represented in a grid which does not depend

on s. Since in our studies the uncorrelated energy spread σu and the spread in the
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transverse momentum σpx0 at entrance of the chicane are small, we found that the

coordinate transformation (z, x)↔ (z̃, x̃) via

z = (1 + hR56(s, 0))z̃ −D′(s, 0)x̃ , x = hD(s, 0)z̃ + x̃ (3.106)

gives an almost stationary situation, where particles are at rest in the limit of no self

field, and σu = 0 and σpx0 = 0. The chirp parameter h and D,R56 were introduced

in Section 3.2. The transformation (3.106) is obtained solving (3.79) without self

field, i.e., by solving (3.83) and with initial conditions z = z̃, pz = hz̃, x = x̃, and

px = 0. Since we do density estimation in the unit square [0, 1]× [0, 1], our final grid

transformation (z̃, x̃)↔ (x1, x2) is obtained by a simple scaling and translation.

We now describe our algorithm more concretely and to be specific we choose

Method 1 of the density estimation. Since the reference particle corresponds to

z = 0 and since z = s − βru, the reference particle arrives at the chicane entrance

at u = 0. At s = 0 our bunch effectively has z supported in (−a, a) where the

longitudinal size parameter a was explained in Section 3.2. Thus the particle at the

head of the bunch arrives at s = 0 at the time −a/βr and we take the latter to be

u0 whence at u = u0 the particles have s coordinates in the interval (−2a, 0). The

field formulas (3.50),(3.51) can now be applied (we here confine to (3.51)).

For a small step s→ s+ Δs we proceed as follows:

1. Denoting ρB, τB in the grid coordinates (x1, x2) by ρg, τg respectively, we expand

ρg(x1, x2; s) and τg(x1, x2; s) in a finite Fourier series

ρg(x1, x2; s) =

J1∑
i=0

J2∑
j=0

θij(s)φi(x1)φj(x2), (3.107)

τg(x1, x2; s) =

J1∑
i=0

J2∑
j=0

Θij(s)φi(x1)φj(x2), (3.108)
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where

θij(s) =

∫
A

dx1dx2φi(x1)φj(x2)ρg(x1, x2; s), (3.109)

Θij(s) =

∫
A

dx1dx2φi(x1)φj(x2)τg(x1, x2; s). (3.110)

Here {φi} is the orthonormal basis φ0(x) = 1 and φi(x) =
√

2 cos(iπx) for i ≥ 1,

x ∈ [0, 1]. Note that ρg is now the actual spatial density, in the coordinates

x1, x2, with nonzero σu and σpx0 and with self field.

Since ρg is a probability density the Fourier coefficients θij may be written as

the expected value E of φi(X1)φj(X2) with respect to ρg(·; s)

θij(s) = E{φi(X1)φj(X2)}

=

∫
A

dx1dx2φi(x1)φj(x2)ρg(x1, x2; s), (3.111)

where X = (X1, X2) is the random variable with probability density ρg. To

estimate τg, which is not a probability density, we notice that the Fourier

coefficients Θij may be written as the expected value E of φi(X1)φj(X2)PX

with respect to fg(·; s)

Θij(s) = E{φi(X1)φj(X2)PX}

=

∫
A

dx1dx2

∫
R2

dpzdpxφi(x1)φj(x2)px

× fg(x1, x2, pz, px; s), (3.112)

where X = (X1, X2, PZ , PX) is the random variable with probability density

fg(·; s).
It follows that the natural estimate of E is the sample mean, i.e., we have the

following two Monte Carlo formulas:

θij(s) ≈
1

N
N∑

n=1

φi(X1n)φj(X2n), (3.113)

Θij(s) ≈
1

N
N∑

n=1

φi(X1n)φj(X2n)PXn, (3.114)
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where a realization of the random variable X = (X1, X2, PZ , PX) is obtained

from beam frame scattered phase-space points zi, xi, pzi, pxi at s, i=1,..,N (via

the transformation: (zi, xi, pzi
, pxi

) → (x1i, x2i, pzi
, pxi

)). The Monte Carlo

computation is done in parallel, i.e., the sums in (3.113),(3.114) are each split

into Np pieces where Np is the number of processors. In other words, each

processor only computes the sum over N /Np terms in (3.113),(3.114).

2. The force fields E‖(·, s) · t(s),E‖(·, s) ·n(s), Fx(·, s), which are needed in (3.78),

are computed by using the s-independent grid defined above. That is, given a

grid point (x1, x2), we compute the associated beam frame values z and x, then

compute R = Rr(s)+M(s)(z, x)T . The force fields can then be determined at

these R-values from FL(R, s). Using (3.51) we have

FL(R, s) = − 1

4π

∫ s

u0

dv1[u0,∞)(v)

∫ π

−π

dθS(R̃(θ, v; s), v) , (3.115)

where

R̃(θ, v; s) = R + (s− v)e(θ) . (3.116)

Here we have considered the nonshielding scenario since often the shielding

effect is not important. For some designs shielding could well play a role, so

our code allows it to be included.

To do the double integral in (3.115) we apply a Gauss-Kronrad adaptive algo-

rithm to the outer integral. Gauss-Kronrod picks a v and then we determine the

θ support, (θmin, θmax). The inner θ integral is then done with the trapezoidal

rule on a uniform mesh. For each point (R̃(θ, v; s), v) of demand the source

value S(R̃(θ, v; s), v) is determined by a tri-quadratic interpolation of S-values.

We notice that the Fourier method of item 1 not only gives an analytical rep-

resentation at s of ρg and τg but of ∇ρg and ∇τg as well. A representation of

∂ρg/∂s and ∂τg/∂s is obtained by differentiating the Fourier coefficients with a

finite difference scheme. Even though it is possible to construct the source term
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S by storing the ‘history’ of the Fourier coefficients, i.e. θij and Θij, dθij/ds

and dΘij/ds on a grid in s, we found it is more efficient to store ρg, ∇ρg and

∂ρg/∂s (the same for τg) on a 3D grid in (x1, x2, s). We use a uniform grid in

(x1, x2, s) with N1N2 grid points in (x1, x2).

The computational effort for the calculation of one component of the self field

is O(N1N2NvNθ), where Nv is the number of evaluations for the v integration,

and Nθ is the number of evaluations for the θ integration. Typical values for our

simulations in [MICRO] are N1 = 1000, N2 = 128, Nv = Nθ = 1000, therefore

O(N1N2NvNθ) = O(1012). Note that the field computation is done in parallel

by letting each processor compute E‖(R, s) · t(s),E‖(R, s) · n(s), Fx(R, s) for

only N1N2/Np points R where Np is the number of processors.

3. We use item 2 to push the particles in the interaction picture of (3.88). This

allows us to use an Euler scheme where the integration step Δs is determined

by the strength and smoothness of the self field. The force fields have been

calculated by using a grid in (x1, x2) as outlined in item 2 above. To calculate

the fields at particle positions needed in (3.78) we use a bi-quadratic interpola-

tion. The particle pushing is done in parallel, i.e., each processor only pushes

N /Np particles.

4. The procedure is iterated going back to item 1.

3.4.2 Causality issue

Because the code marches forward in s there is a causality issue as follows. First of

all one notes by (3.115) that FL(R, s) is, as one also expects from relativity, only

affected by source values S(R̃, v) for which (R̃, v) lie on the backward lightcone,

L(R, s), of (R, s) which is defined by

L(R, s) := {(R′, s′) ∈ R3 : |R−R′| = s− s′} . (3.117)

38



Chapter 3. The Vlasov-Maxwell system

In particular according to the discussion in item 2 of Section 3.4.1, the self field

values, which are needed in (3.78) when the algorithm is at s, are affected only by

source values S(R̃, v) for which (R̃, v) lie on L(Rr(s) +M(s)(z, x)T , s). It is easy to

see that L(Rr(s) + M(s)(z, x)T , s) contains points (R′, s′) for which ŝ(R′) < s and

S(R′, s′) 
= 0 and points (R′, s′) for which ŝ(R′) > s and S(R′, s′) 
= 0. Obviously

the points (R′, s′) in L(Rr(s)+M(s)(z, x)T , s) for which ŝ(R′) > s and S(R′, s′) 
= 0

raise a causality issue. Nevertheless we believe that in general the causality issue is

not serious since, as one can easily see, for points (R′, s′) in L(Rr(s)+M(s)(z, x)T , s)

for which ŝ(R′) > s and S(R′, s′) 
= 0 we have that ŝ(R′)− s is less or equal to the

z-size of the bunch. For more details on the causality issue, see [ICAP09, StoT].

Another aspect of the backward light cone is the fact that for points (R′, s′)

in L(Rr(s) + M(s)(z, x)T , s) for which ŝ(R′) < s and S(R′, s′) 
= 0 the differ-

ence s − ŝ(R′) can be much bigger than the z-size of the bunch. For example for

the FERMI@Elettra first bunch compressor system and with the parameter values

(3.105) we have the situation that the reference particle at the end of a dipole is

subjected to a collective force which is even affected by the bunch at the entrance

into that dipole. Thus indeed the code has to store a lot of history of the bunch in

order to compute the collective force, see also item 2 of Section 3.4.1.
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3.4.3 Convergence study

I now discuss a technique which allows a convergence study of the error of various

quantities, computed by the code. We here concentrate on a convergence study

w.r.t. the parameter N , i.e., the particle number. I also present two applications of

this technique to the spatial density, i.e., I present some results we got by density

estimation via Method 3 (=kernel density estimation) resp. Method 2 (=cloud in

cell charge deposition). For more details on density estimation, see Sections 3.4.1

and A.3.

I now outline the technique (for more details, see Section A.4). Let Ψ be a

normed space and let ψ ∈ Ψ be an unknown element approximated by the elements

ψ(N ) ∈ Ψ where ψ(N ) denotes the approximant of ψ computed with N particles.

Underlying the technique is the assumption that, for N →∞, the error ||ψ−ψ(N )||
satisfies

||ψ − ψ(N )|| = O(N−d) , (3.118)

where d > 0 is called the ‘consistency order’ of the approximant ψ(N ). Thus, by

assumption, a c > 0 exists such that for large N we have

||ψ − ψ(N )|| ≈ cN−d . (3.119)

In fact the technique we outline here allows to approximate d by d̃ where

d̃ :=
1

ln(N2/N1)
ln(
||ψ(N1)− ψ(N3)||
||ψ(N2)− ψ(N4)||

) , (3.120)

and where the particle numbers N1,N2,N3,N4 are supposed to be sufficiently large

such that (3.119) is a good approximation for N = Ni (i = 1, 2, 3, 4). Choosing,

in addition, N3/N1 and N4/N2 sufficiently large, we obtain for the relative error,

|1− d̃/d|, of d̃ that

|1− d̃

d
| � (N3/N1)

−d + (N4/N2)
−d

d ln(N2/N1)
. (3.121)
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Thus d̃ is a good approximation of d if N3/N1 and N4/N2 are sufficiently large. This

rule may be followed in practice and it does not involve aprori knowledge of d. In

fact, if one does not know d apriori, then one may apply (3.120) for different sets

of N1,N2,N3,N4 and may stop when d̃ begins to converge to some fixed value, d.

Of course, due to (3.121), choosing also N2/N1 large, may further improve d̃. To

discuss in more detail the quality of d̃, we note that if one imposes, for some ε > 0,

the condition:

(N3/N1)
−d + (N4/N2)

−d

d ln(N2/N1)
≤ ε , (3.122)

then by (3.121) one obtains

|1− d̃

d
| � ε . (3.123)

It is convenient to restrict the choice of N1,N2,N3,N4 to

N2 = k1N1 , N3 = k2N1 , N4 = k1k2N1 , k2 ≥ k1 > 1 , (3.124)

which leaves N1, k1, k2 as the only free parameters. Note that k1, k2 are not neces-

sarily integers and that (3.124) gives us the ordering

N4 > N3 ≥ N2 > N1 . (3.125)

Thus for (3.124) the particle numbers N1,N4 are the smallest resp. largest whence

the minimization of N4/N1 under the condition (3.122) is an important issue here.

With (3.124) the condition (3.122) reads as

2k−d
2

d ln(k1)
≤ ε , (3.126)

whence, for (3.124), the condition (3.126) leads to (3.123).

We now need more detail for two special cases of (3.124), Choices 1 and 2. Choice

1 is that special case of (3.124) which minimizes N4/N1 under the condition (3.126)
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and Choice 2 is that special case of (3.124) which minimizes N4/N1 under the con-

ditions (3.126) and k1 = 2. We begin with Choice 1. Since N4/N1 = k1k2 we have

to minimize k1k2 whence we define

(k1k2)opt := inf{k1k2 : k2 ≥ k1 > 1,
2k−d

2

d ln(k1)
≤ ε} . (3.127)

Choice 1 branches into Choice 1a where

ε <
2

e
, (3.128)

and Choice 1b where

ε ≥ 2/e . (3.129)

For Choice 1a we obtain from (3.127)

(k1k2)opt = (k1)opt(k2)opt = (
2e

ε
)1/d , (3.130)

(k1)opt := exp(1/d) , (k2)opt := (
2

ε
)1/d . (3.131)

Note that, for Choice 1a,

N4 > N3 > N2 > N1 . (3.132)

For Choice 1b we obtain from (3.127)

(k1k2)opt = (k1)opt(k2)opt , (3.133)

(k1)opt = (k2)opt , (3.134)

where (k1)opt is the unique solution of

2(k1)
−d
opt

d ln((k1)opt)
= ε , (k1)opt > 1 . (3.135)

Note that, for Choice 1b,

N4 > N3 = N2 > N1 . (3.136)
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We now consider Choice 2. We thus define

(k1k2)opt,k1=2 := inf{2k2 : k2 ≥ 2,
2k−d

2

d ln(2)
≤ ε} . (3.137)

Choice 2 branches into Choice 2a where

ε <
21−d

d ln(2)
, (3.138)

and Choice 2b where

ε ≥ 21−d

d ln(2)
. (3.139)

Clearly, for Choice 2a,

(k1k2)opt,k1=2 = 2(k2)opt,k1=2 = 2(
2

εd ln(2)
)1/d , (3.140)

(k2)opt,k1=2 := (
2

εd ln(2)
)1/d . (3.141)

Also, by (3.124),(3.138),(3.141), we have, for Choice 2a, that (3.132) holds. Moreover,

for Choice 2b,

(k1k2)opt,k1=2 = (k2)
2
opt,k1=2 = 4 , (3.142)

(k2)opt,k1=2 := 2 . (3.143)

By (3.124),(3.143) we have, for Choice 2b, that (3.136) holds. Note also that, except

for the rather uninteresting Choice 2b, we observe that (k1k2)opt and (k1k2)opt,k1=2

are strictly decreasing functions of d whence the computational cost of d̃ increases

with decreasing d (we will see this confirmed in our applications below).

I now present two applications of the above technique of approximating d by d̃

to the spatial density ρg. In both situations Ψ = L2(R2) and ψ is the spatial density

in grid coordinates at some fixed s, i.e.,

ψ = ρg(·; s) . (3.144)
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Recall that the relation of ρg with the beam frame spatial density ρB is discussed

in Section 3.4.1. Note also that we choose the same initial condition for fB as in

Section 3.3 with the additional restriction that the initial modulation is zero, i.e.,

that A = 0 in (3.99). We use, for the approximant ψ(N ) of ψ, the abbreviation

ψ(N ) = ρg,N (·; s) , (3.145)

where ρg,N denotes the density estimate of ρg for N particles. Note that the explicit

form of ρg,N depends on the choice of the density estimator. Since Ψ = L2(R2), we

have for arbitrary particle numbers N ,N ′, by (3.144),(3.145),

||ψ − ψ(N )||2 =

∫
R2

dx1dx2

(
ρg(x1, x2; s)− ρg,N (x1, x2; s)

)2

, (3.146)

||ψ(N )− ψ(N ′)||2 =

∫
R2

dx1dx2

(
ρg,N (x1, x2; s)− ρg,N ′(x1, x2; s)

)2

. (3.147)

In the first application ρg,N is computed by the kernel density estimation method (re-

ferred to ‘Method 3’ in Section 3.4.1) and in the second application ρg,N is computed

by the cloud in cell charge deposition method (referred to ‘Method 2’ in Section

3.4.1). Since for the first application we want a situation where we know d, we will

restrict our first application to the case s = 0. For both applications we compute

the integral on the rhs of (3.147) by the midpoint rule whence

||ψ(N )− ψ(N ′)||2 ≈ 1

N1N2

N1∑
i1=1

N2∑
i2=1

(
ρg,N (

i1
N1

,
i2
N2

; s)− ρg,N ′(
i1
N1

,
i2
N2

; s)

)2

,

(3.148)

where the grid on [0, 1] × [0, 1] has N1N2 points and where we also used the fact

that ρg(·; s) is supported in [0, 1]× [0, 1]. Note that for both applications we choose

N1 = N2 = 128. Since for the first application we have s = 0, we here even know

ψ whence, for s = 0, we compute the integral on the rhs of (3.146) by the midpoint

rule, i.e.,

||ψ − ψ(N )||2 ≈ 1

N1N2

N1∑
i1=1

N2∑
i2=1

(
ρg(

i1
N1

,
i2
N2

; 0)− ρg,N (
i1
N1

,
i2
N2

; 0)

)2

. (3.149)
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I now consider the first application in more detail which, at the same time, illustrates

the kernel density estimation method. Thus here ρg,N (·; 0) is to be computed by the

kernel density estimation method. First I have to show that d = 1/3 and then

I present some results about d̃. Thus the emphasis in the first application is on

analyzing d̃ in a situation where d is known apriori. For details on the kernel density

estimation method, see Section A.3. We begin with

ρg,N (x1, x2; 0) :=
1

H2N
N∑

j=1

KC1,2D,P (
x1 − x(j)

1

H
,
x2 − x(j)

2

H
) , (3.150)

where the sample (x
(1)
1 , x

(1)
2 )T , ..., (x

(N )
1 , x

(N )
2 )T , which is generated from pseudo-random

numbers by using the Acceptance-Rejection method, is distributed according to the

initial spatial density ρg(·; 0) and where H > 0 is called the ‘bandwith’ and the

‘kernel’ KC1,2D,P is given by

KC1,2D,P (x1, x2) :=
225

256
(1− (x1)

2)2(1− (x2)
2)21[−1,1](x1)1[−1,1](x2) , (3.151)

with 1[−1,1] being the indicator function of the interval [−1, 1]. Note that∫
R2 dx1dx2KC1,2D,P (x1, x2) = 1 whence

∫
R2 dx1dx2ρg,N (x1, x2; 0) = 1. For kernels dif-

ferent from KC1,2D,P (x1, x2), see Section A.3. Note also that KC1,2D,P is continuously

differentiable whence ρg,N (·; 0) is continuously differentiable which is an important

property for being effective in our code. Moreover KC1,2D,P is essentially ‘optimal’

among those kernels which are continuously differentiable, but the ‘optimality’ is a

topic which is beyond the scope of this thesis (see however the textbooks on density

estimation in the reference list). To come to a situation where d = 1/3, the bandwith

H in (3.150) must not be arbitrary since it has to be optimized to the value HMISE,

as follows. We first have to discuss MISE(H). Let (x̃
(1)
1 , x̃

(1)
2 )T , ..., (x̃

(N )
1 , x̃

(N )
2 )T be

R2-valued random vectors which are independent identically distributed with prob-

ability density ρg(·; 0). We define

ρ̃g,N (x1, x2; 0) :=
1

H2N
N∑

j=1

KC1,2D,P (
x1 − x̃(j)

1

H
,
x2 − x̃(j)

2

H
) , (3.152)

ψ̃(N ) := ρ̃g,N (·; 0) , (3.153)
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whence, since pseudo-random numbers approximate random numbers, we obtain the

approximate equality:

ψ(N ) = ρg,N (·; 0) ≈ ρ̃g,N (·; 0) = ψ̃(N ) , (3.154)

where we also used (3.145),(3.153). Since s = 0 we have, by (3.144), ψ = ρg(·; 0)

whence, by (3.146),(3.154),

ISE(H) := ||ψ − ψ̃(N )||2 ≈ ||ψ − ψ(N )||2

=

∫
R2

dx1dx2

(
ρg(x1, x2; 0)− ρg,N (x1, x2; 0)

)2

, (3.155)

where ISE(H) depends on H since ψ̃(N ) depends on H via (3.152),(3.153). One

approximates ISE(H) by its expectation value, MISE(H), i.e.,

ISE(H) ≈ E(ISE(H)) =: MISE(H) , (3.156)

and approximates MISE(H) by its large-N -asymptote AMISE(H), i.e.,

MISE(H) ≈ AMISE(H) :=
H4

4
μ2(KC1,2D,P )

∫
R2

dx1dx2

(
Δρg(x1, x2; 0)

)2

+
1

NH2

∫
R2

dx1dx2K
2
C1,2D,P (x1, x2) , (3.157)

where the positive constant μ(KC1,2D,P ) is determined by

μ(KC1,2D,P ) =
∫

R2 dx1dx2(x1)
2KC1,2D,P (x1, x2) and where Δρg(·; 0) is the Laplacian

of ρg(·; 0). One defines

HMISE := argminH>0(MISE(H)) , (3.158)

and approximates

HMISE ≈ HAMISE := argminH>0(AMISE(H))

=

(
2
∫

R2 dx1dx2K
2
C1,2D,P (x1, x2)

Nμ2(KC1,2D,P )
∫

R2 dx1dx2[Δρg(x1, x2; 0)]2

)1/6

, (3.159)
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leading to

MISE(HMISE) ≈ AMISE(HMISE)

≈ 3

4
N−2/3

(
16μ4(KC1,2D,P )[

∫
R2

dx1dx2K
2
C1,2D,P (x1, x2)]

4

·[
∫

R2

dx1dx2(Δρg(x1, x2; 0))2]2
)1/6

. (3.160)

Note that, by (3.159),HMISE = O(N−1/6). We conclude from (3.155),(3.156),(3.160)

that

||ψ − ψ(N )||2 ≈ ISE(HMISE) ≈MISE(HMISE)

≈ 3

4
N−2/3

(
16μ4(KC1,2D,P )[

∫
R2

dx1dx2K
2
C1,2D,P (x1, x2)]

4

·[
∫

R2

dx1dx2[Δρg(x1, x2; 0)]2]2
)1/6

. (3.161)

Note that, by (3.161), ||ψ−ψ(N )|| = O(N−1/3) so that, by (3.118), we have shown,

as promised, that d = 1/3. To finish off the first application, we now present some

results on d̃. Of course when we compute the ρg,Ni
(·; 0) in d̃, we have to use the

bandwith HMISE. We compute HMISE by using (3.149),(3.155),(3.156), (3.158) and

by using the fact that we know ρg(·; 0):

HMISE = argminH>0(MISE(H)) ≈ argminH>0(ISE(H))

≈ argminH>0(||ψ − ψ(N )||2)

≈ argminH>0

(
1

N1N2

N1∑
i1=1

N2∑
i2=1

(
ρg(

i1
N1

,
i2
N2

; 0)− ρg,N (
i1
N1

,
i2
N2

; 0)

)2
)
. (3.162)

Note that, if s > 0, then we could not use the generalization of (3.162) from s = 0

to s > 0 since do not know ρg(·; s) for s > 0. One wayout would be to approximate

HMISE without the knowledge of ρg(·; s) by using the technique of least squares cross

validation which is outlined in Section A.3. However, here I stick to s = 0 and I did

computations with the following particle numbers:

N = 8 · 105, 4 · 106, 8 · 106, 16 · 106, 32 · 106, 64 · 106, 80 · 106, 128 · 106 . (3.163)
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First of all, before discussing d̃, it is good to have numerical evidence for (3.159),(3.161).

Using (3.149),(3.162) we obtain

N = 8 · 105 =⇒ (HMISE = 0.025 , ||ψ − ψ(N )|| = 0.0382)

N = 4 · 106 =⇒ (HMISE = 0.02 , ||ψ − ψ(N )|| = 0.0219)

N = 8 · 106 =⇒ (HMISE = 0.018 , ||ψ − ψ(N )|| = 0.017)

N = 16 · 106 =⇒ (HMISE = 0.016 , ||ψ − ψ(N )|| = 0.0145)

N = 32 · 106 =⇒ (HMISE = 0.014 , ||ψ − ψ(N )|| = 0.0115)

N = 64 · 106 =⇒ (HMISE = 0.012 , ||ψ − ψ(N )|| = 0.00926)

N = 80 · 106 =⇒ (HMISE = 0.012 , ||ψ − ψ(N )|| = 0.00871)

N = 128 · 106 =⇒ (HMISE = 0.011 , ||ψ − ψ(N )|| = 0.00761) ,

(3.164)

where ψ = ρg(·; 0) and ψ(N ) = ρg,N (·; 0). Fig.7 plots ln(HMISE) versus ln(N ),

confirming that HMISE = O(N−1/6). In fact the eight circles in Fig.7 are data

from (3.164) and the dashed line in Fig.7 is the curve: HMISE = cN−1/6 where c is

fitted by the data point (N , HMISE) = (8 · 105, 0.025), i.e., c = 0.025 · (8 · 105)1/6.

Fig.8 plots ln(||ψ−ψ(N )||) versus ln(N ), confirming that the L2-error of ψ satisfies

||ψ − ψ(N )|| = O(N−1/3). In fact the eight circles in Fig.8 are data from (3.164)

and the dashed line in Fig.8 is the curve: ||ψ−ψ(N )|| = cN−1/3 where c is fitted by

the data point (N , ||ψ − ψ(N )||) = (8 · 105, 0.0382), i.e., c = 0.0382 · (8 · 105)1/3.

We are now ready to discuss d̃ and we do that in the same situation as Fig.’s

7 and 8, i.e., the situation when ψ = ρg(·; 0) and ψ(N ) = ρg,N (·; 0) with ρg,N (·; 0)

given by (3.150) and where N is from (3.163). Using (3.120),(3.148) we approximate
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d̃ by using the midpoint rule:

d̃ ≈ 1

ln(N2/N1)
ln(

√√√√√√√√
∑N1

i1=1

∑N2

i2=1

(
ρg,N1(

i1
N1
, i2

N2
; 0)− ρg,N3(

i1
N1
, i2

N2
; 0)

)2

∑N1

i1=1

∑N2

i2=1

(
ρg,N2(

i1
N1
, i2

N2
; 0)− ρg,N4(

i1
N1
, i2

N2
; 0)

)2 ) .

(3.165)

To choose the proper size of the particle numbers N1,N2,N3,N4 in (3.165) we first

apply the theory outlined at the beginning of this section, i.e., we discuss Choices 1

and 2. Note that with the particle numbers in (3.163), the maximum possible value

of N4/N1 is merely 160. If d = 1/3 and ε = 0.1 then (3.130), (3.131) give us, for

Choice 1a,

(k1)opt ≈ 20.1 , (k2)opt = 8000 , (k1k2)opt ≈ 160700 , (3.166)

whence N4/N1 ≈ 160700. If d = 1/3 and ε = 0.1 then (3.140), (3.141) give us, for

Choice 2a,

(k2)opt,k1=2 ≈ 648600 , (k1k2)opt,k1=2 ≈ 1297200 , (3.167)

whence N4/N1 ≈ 1297200. If d = 1/3 and ε = 0.3 then (3.130), (3.131) give us, for

Choice 1a,

(k1)opt ≈ 20.1 , (k2)opt ≈ 296 , (k1k2)opt ≈ 5950 , (3.168)

whence N4/N1 ≈ 5950. If d = 1/3 and ε = 0.3 then (3.140), (3.141) give us, for

Choice 2a,

(k2)opt,k1=2 ≈ 24020 , (k1k2)opt,k1=2 ≈ 48040 , (3.169)

whence N4/N1 ≈ 48040. We see that even for the modest choice ε = 0.3 the theory

demands N4/N1 ≈ 5950 which is considerably larger than 160. In other words,

d = 1/3 is so small that rather large particle numbers are suggested. However the
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values of N4/N1, suggested by our theory, are merely sufficient for the validity of

(3.123), not necessary as we will see now. In fact, computing d̃ for the modest particle

numbers (3.163) we obtain, by using (3.165),

(N1 = 8 · 105 , N2 = 8 · 106 , N3 = 8 · 106 , N4 = 80 · 106) =⇒ d̃ = 0.369 ,

(N1 = 4 · 106 , N2 = 8 · 106 , N3 = 64 · 106 , N4 = 128 · 106) =⇒ d̃ = 0.351 .

(3.170)

Note that d̃ = 0.369 gives |1 − d̃/d| = 0.11 and d̃ = 0.351 gives |1 − d̃/d| = 0.05.

Thus indeed the modest particle numbers (3.163) give already rather good results

for d̃. This indeed gives evidence that the values of N4/N1, demanded by our theory,

are sufficient but not necessary for the validity of (3.123). Note that the particle

numbers in (3.170) are selected from (3.163) via Choices 1,2, as follows. For the first

example in (3.170) we have 10 = k1 = N2/N1 = N3/N1 = k2 and

2k−d
1

d ln(k1)
=

2(N2/N1)
−d

d ln(N2/N1)
=

6(10)−1/3

ln(10)
≈ 1.2 ,

whence, by (3.135), ε ≈ 1.2, so that (3.129) holds which implies that the first example

in (3.170) belongs to Choice 1b. For the second example in (3.170) we have k1 =

N2/N1 = 2, k2 = N3/N1 = 16 and, by (3.141),

ε =
2k−d

2

d ln(2)
=

2(N3/N1)
−d

d ln(2)
=

6(16)−1/3

ln(2)
≈ 3.44 ,

whence (3.138) holds so that the second example in (3.170) belongs to Choice 2a.

This concludes our first application. In retrospective it is clear why for the first

application we restricted ourselves to the case s = 0. In fact, having s = 0 guarantees

(i) that the sample (x
(1)
1 , x

(1)
2 )T , ..., (x

(N )
1 , x

(N )
2 )T approximates a sequence of random

vectors which are independent identically distributed with probability density ρg(·; 0)

and (ii) that HMISE can be computed.

50



Chapter 3. The Vlasov-Maxwell system

105 106 107 108 109
10−3

10−2

10−1

Figure 7: Loglog plot of the bandwith HMISE versus particle number N
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Figure 8: Loglog plot of the error ||ψ − ψ(N )|| versus particle number N
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I now consider the second application where ρg,N is computed by the cloud in cell

charge deposition method (referred to ‘Method 2’ in Section 3.4.1) for the parameter

values J1 = J2 = 40. Here we deal with a situation where we neither know d

nor where we know if a meaningful d exists at all. Note that we choose the same

initial condition for fB as for the first application. We choose the particle numbers

N1,N2,N3,N4 in (3.120) via Choice 2 with N1 = 8 · 106 and we vary k2 from 2 to 32

with the aim to see if d̃ converges to some d when k2 grows. Thus we use the particle

numbers 8·106, 16·106, 32·106, 64·106, 128·106, 256·106, 512·106. Fig.9 plots d̃ versus

k2 when s = 0 and Fig.10 plots d̃ versus k2 when s = sf . Fig.9 indicates d ≈ 0.5

while Fig.10 indicates that d is around 0.35. Since the theory of the cloud in cell

charge deposition method is beyond the scope of this thesis and since the purpose

of Fig.’s 9 and 10 is to illustrate the application of (3.120), we leave the d-values

0.5, 0.35 uncommented.

Figure 9: d̃ versus k2 when k1 = 2 and s = 0
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Figure 10: d̃ versus k2 when k1 = 2 and s = sf
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Chapter 4

Summary of Vlasov-Maxwell

system and outlook

We have demonstrated a procedure with some new features for self-consistent simu-

lation with application to a bunch compressor. Although it is based on tracking an

ensemble of particles, as in usual macro-particle or PIC codes, the method of smooth-

ing the charge distribution is quite different, using density estimation methods. The

resulting smooth distribution is used in an accurate solution of the field equations

by applying exact field formulas. We hope that the resulting time evolution of the

spatial density approximates that which would be obtained from a solution of the

Vlasov-Maxwell system on the 4D phase space, but there is no direct check on accu-

racy of such an approximation. However, the evident lack of noise in the simulation

is encouraging.

We anticipate improvements in the code regarding treatment of the spatial den-

sity, but at present the most costly part is the field calculation. We intend to review

the choice of integration variables and the integration algorithms to see if the field

evaluation can be speeded up. Parts of the integration, for large retarded time in-
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tervals (see (3.50),(3.51)) may have been done more accurately than necessary.

We mentioned that the MCP method can be time consuming. We are attempt-

ing to improve the Monte Carlo integrations by trying variance reduction techniques,

which build on the Central Limit Theorem [Ca, Ros], and also by trying quasi-random

sequences (also called ‘low-discrepancy sequences’) in place of pseudo-random se-

quences [Ca, Ni]. Quasi-random sequences allow one to break the ‘curse of dimen-

sionality’ in grid-based multi-dimensional integration, giving a true error bound (i.e.,

not probabilistic) of order (logN )k−1/N , with only logarithmic dependence on the

dimension k of the space. We are also attempting to improve the Monte Carlo

integrations by considering a FFT for nonequidistant points offered by the subrou-

tine library NFFT [NFFT]. Moreover we want to extend the convergence studies of

Section 3.4.3.

Furthermore we intend to take further advantage of the exact field formulas. For

example (3.44),(3.45) will allow us to study the energy balance between the bunch

and the self field by applying Poynting’s theorem. Moreover one of Maxwell’s eight

equations (3.10), i.e., the equation

c∂uBY = −∂ZEX + ∂XEZ ,

carries useful information about E‖ and B⊥ since, at Y = 0, it yields to

c∂uB⊥ = −∂ZEL,X + ∂XEL,Z ,

which can be used to reduce the computational cost of the field computation and/or

as a double check since the field formulas (3.50),(3.51) for EL,X , EL,Z , B⊥ are exact.
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Chapter 5

Introduction to spin-orbit tori

I now come to the second part of this thesis which consists of Chapters 5-10 and

Appendices B-G. It presents the topic of spin-orbit tori as a mathematical theory

and it is based on the map formalism equations of motion (6.1),(6.2).

5.1 Physical context and mathematical approach

I begin with some brief general remarks on the physical context for the orientation

of the reader. More details can be found in [BEH04, Hof, MSY, Vo].

Spin is of central importance for the understanding of the behavior of fundamental

particles and their interactions. This is made clear, for example, in [SPIN09] where

up-to-date accounts of experimental and theoretical work are given. In particular,

the differential cross sections for particle-particle interactions depend on the spin

states of the particles. These interactions are typically studied by colliding a beam

of spin-1/2 particles (e.g. electrons or protons) either with another beam of spin-1/2

particles or with nuclei located at a fixed ‘target’. Various considerations, such as the

need for high energies, often dictate that the particles circulate in a beam consisting
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of a train of separate bunches in a so-called storage ring. Typically the motion of

a bunch for 109 turns around the ring is of interest. The particle interactions to

be studied in such a storage ring take place at the centers of detectors mounted

at specially configured interaction points. The task of Accelerator Physics is to

provide and describe the transport of the bunches through the interaction points

and it requires mathematical tools which are different from those needed to describe

the collision processes in the interaction points (the latter tools are from Quantum

Field Theory). This thesis deals exclusively with the Accelerator Physics aspects

and its tools are from Dynamical Systems Theory. Descriptions of storage rings

can be found in standard text books. See for example [CT, Wi]. However, to

summarize, the common feature of a storage ring is that the electrically charged

particles are confined by combinations of electric and magnetic fields to move in

bunches on approximately circular orbits in a vacuum tube. The dimensions of a

bunch are millimeters whence they are very small compared to the average radius

of the ring which can be kilometers. A bunch typically contains around N = 1011

particles. Accelerator Physics involves various levels of description depending on

how accurately one wants to study the bunches. So I now have to characterize

the level needed for this thesis. At this level a phase-space variable ũ and a spin

variable S̃ provide a classical description of a particle located at ũ ∈ R6 with spin

value S̃ ∈ R3. Experiments aimed at exploiting the influence of spin on particle-

particle collisions usually require that the bunches be spin polarized. This means

that the polarization P̃ := (1/N)
∑N

i=1 S̃i, namely the average over the spin vectors

S̃1, ..., S̃N of the bunch be non-zero. Thus the task of Polarized Beam Physics is to

provide and describe the transport of bunches through the interaction points such

that |P̃ | is ‘sufficiently’ large. Note that in the definition of P̃ the spin vectors have

to be normalized, i.e., |S̃i| = 1. Nevertheless for the purposes of this work there is

no need to assume that the spin vectors are normalized. For the purposes of this

thesis I ignore all interactions between the particles, the emission of electromagnetic
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radiation by the particles and the effects of the electric and magnetic fields set up in

the vacuum pipe by the particles themselves. This leads to a classical Hamiltonian

description (for a derivation of the Hamiltonian from Quantum Physics, see [BH98]).

Furthermore I shall neglect the extremely small Stern-Gerlach force acting from S̃

onto ũ [BEH04] (for details on the relativistic Stern-Gerlach force in Accelerator

Physics, see e.g. [He96]). Then the particle motion is described by the equation for

the Lorentz force and the spin motion by the Thomas-Bargmann-Michel-Telegdi (T-

BMT) equation [Ja]. Thus the equations of motion for the combined ũ,S̃ system are

no longer Hamiltonian (albeit the equations of motion for ũ are still Hamiltonian).

Although dynamical systems are usually analyzed by taking time as the indepen-

dent variable, this is usually not convenient for storage rings since there, the vacuum

tube and the electric and magnetic guide fields have a fixed, 1-turn periodic, ap-

proximately circular spatial layout. It is then common practice to define the angular

distance, θ = 2πs/L, around the ring where s is the distance around the ring and

L is the circumference. The equations of motion for ũ and S̃ are then transformed

into forms in which θ is the independent variable. The one-turn periodicity of the

positions of the electric and magnetic guide fields then becomes a 2π–periodicity in θ

of the equations of motion for ũ and S̃. As a next step one constructs the curvilinear

closed orbit, i.e., the orbit along which the particle motion is one-turn periodic and

one defines coordinates with respect to this orbit. Then ũ consists of three pairs of

canonical variables. For example, two of the pairs can describe transverse motion

and one pair can describe longitudinal (synchrotron) motion within a bunch. One

of this latter pair quantifies the deviation of the particle energy from the energy of

a ‘reference particle’ fixed at the center of a bunch and the other describes the time

delay w.r.t. the reference particle [BHR]. With respect to the average radius of the

closed orbit and the nominal particle energy, the canonical position variable and the

energy variable are very small.
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Spin and particle motion in storage rings is usually described using either the

‘flow formalism’ or the ‘map formalism’. In the flow formalism ũ and S̃ are functions

of θ: ũ = ũ(θ), S̃ = S̃(θ) and in the map formalism one samples S̃ and ũ at a fixed

θ turn by turn.

In this thesis I focus on the map formalism which I now derive from the flow

formalism. The magnetic and electric fields in storage rings are usually set up so

that the motion of the particles is close to integrable. In the following I shall assume

that it is exactly integrable. Once the spin motion has been classified on this basis,

the effect of non-integrability can be included as a perturbation. I therefore choose

ũ to consist of d pairs of action–angle variables, i.e., ũ =

⎛
⎝ φ̃

J̃

⎞
⎠, where φ̃, J̃ ∈ Rd

and where d = 3 is the case of main interest. Then in the flow formalism one writes

dφ̃

dθ
= ω̃(J̃) , φ̃(θ0) = φ0 , (5.1)

dJ̃

dθ
= 0 , J̃(θ0) = J0 , (5.2)

dS̃

dθ
= A(θ, φ̃, J̃)S̃ , S̃(θ0) = S0 , (5.3)

where the d components of ω̃(J̃) are called the ‘orbital tunes’ and A is a real skew–

symmetric 3 × 3 matrix, i.e., A12 = −A21,A13 = −A31 and A23 = −A32. The

function A is derived from the rotation rate vector of the T-BMT equation [BEH04]

and it is 2π-periodic in θ and in the d components of φ̃. Of course, (5.3) is an

incarnation of the T–BMT equation. Analogously (5.1),(5.2) are an incarnation of

the Lorentz force law. One can call the pair (ω̃,A) the ‘spin-orbit system’ in the flow

formalism and it was studied in [BEH04].

To proceed from the flow formalism to the map formalism I write the solution of
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(5.1),(5.2),(5.3) as

φ̃(θ) = φ0 + (θ − θ0)ω̃(J0) , (5.4)

J̃(θ) = J0 , (5.5)

S̃(θ) = Ψ̃(θ, θ0;φ0, J0)S0 , (5.6)

where Ψ̃ is the principal solution matrix for dS̃/dθ = A(θ, φ0 + (θ − θ0)ω̃(J0), J0)S̃

and where Ψ̃(θ, θ0;φ0, J0) is 2π-periodic in the d components of φ0 and Ψ̃ is SO(3)-

valued. For the definition of SO(3), see after (6.2). It follows from (5.4),(5.5),(5.6)

that

Ψ̃(θ2, θ0;φ0, J0) = Ψ̃(θ2, θ1;φ0 + (θ1 − θ0)ω̃(J0), J0)Ψ̃(θ1, θ0;φ0, J0) ,

whence, for integers m,n,

Ψ̃(θ0 + 2π(n+m), θ0;φ0, J0)

= Ψ̃(θ0 + 2πn, θ0;φ0 + 2πmω̃(J0), J0)Ψ̃(θ0 + 2πm, θ0;φ0, J0) , (5.7)

where I used the fact that, due to the 2π-periodicity of A(θ, ·, ·) in θ,

Ψ̃(θ + 2πm, θ0 + 2πm;φ0, J0) = Ψ̃(θ, θ0;φ0, J0) . (5.8)

Without loss of generality one can take θ0 = 0 and so, by letting

φ(n) := φ̃(2πn) , (5.9)

J(n) := J̃(2πn) , (5.10)

S(n) := S̃(2πn) , (5.11)

I obtain from (5.4),(5.5),(5.6)

φ(n+ 1) = φ(n) + 2πω̃(J(n)) , φ(0) = φ0 , (5.12)

J(n + 1) = J(n) , J(0) = J0 , (5.13)

S(n + 1) = Ψ̃(2π, 0;φ(n), J(n))S(n) , S(0) = S0 . (5.14)
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The initial value problem (5.12),(5.13), (5.14) characterizes the ‘spin-orbit system’

(ω̃, Ψ̃(2π, 0; ·, ·)) taken in the map formalism. Letting

ω := ω̃(J0) , (5.15)

Ψ(n; x) := Ψ̃(2πn, 0; x, J0) , (5.16)

I obtain from (5.12),(5.13), (5.14)

φ(n+ 1) = φ(n) + 2πω , φ(0) = φ0 , (5.17)

S(n+ 1) = A(φ(n))S(n) , S(0) = S0 , (5.18)

where

A(·) := Ψ̃(2π, 0; ·, J0) , (5.19)

and from (5.7) the ‘cocycle condition’

Ψ(n+m;φ) = Ψ(n;φ+ 2πmω)Ψ(m;φ) . (5.20)

Note that A(·) = Ψ(1; ·). The initial value problem (5.17),(5.18) characterizes the

‘spin-orbit torus’ (ω,A) taken in the map formalism. Thus (5.17),(5.18) are the

basic equations for this second part of the thesis. We will see in Section 6.1 that Ψ

is uniquely determined by ω and A, whence I will use for Ψ the notation Ψω,A. In

this work I will assume that A is continuous and accordingly continuity is assumed

in many other definitions as well. For example, the generators of the invariant spin

fields (see Definition 6.2) and the transfer fields (see Definition 7.2) between spin-

orbit tori are continuous functions. In contrast, in [BEH04] A is of class C1 since

Ψ̃(·, J0) is of class C1 (as well as the invariant spin fields and the transfer fields).

Note that assuming mere continuity in the present work is fruitful since I here deal

with the map formalism (in contrast, in the flow formlism of [BEH04] it is natural

to impose the C1-property since one has to deal with differential equations).

Although accelerator physicists tend to concentrate on studying spin motion in

real storage rings, many of the issues surrounding the so-called invariant spin field
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(introduced in Section 6.3) and the spin-orbit resonance (introduced in Sections 7.4

and 8.4) depend just on the structure of the initial value problem (5.17),(5.18) and

can be treated in isolation from the original physical system. This is the strategy to

be adopted here and it clears the way for the focus on purely mathematical matters,

in particular for the exploitation of theorems from Topology and Fourier Analysis.

For example, the Homotopy Lifting Theorem (see also Section 6.4) facilitates the

study of continuous functions (in particular it allows to apply the so-called quaternion

formalism to functions like Ψ(n; ·) in (5.16)). Another example is Fejér’s multivariate

theorem which facilitates the study of so-called quasiperiodic functions (in particular

it allows, via Theorem 8.6, to characterize the set of the so-called spin tunes of second

kind).

Now that the background to this work has been presented as well as an introduc-

tion to the map formalism, I finish this chapter with an outline of the structure of the

following chapters. For thorough overviews of the importance of the invariant spin

field and the so-called amplitude-dependent spin tune for classifying spin motion in

storage rings see [BEH04, Hof, Vo]. Note that the spin tunes of first kind introduced

in Section 7.4 are the amplitude-dependent spin tunes at a fixed, but arbitrary value

of the ‘amplitude’ J0.

5.2 Synopsis

Chapters 5-10 and Appendices B-G are structured as follows.

In Chapter 6 I introduce the most basic concepts. In particular, in Section 6.1

I introduce the spin-orbit torus (ω,A) where ω is the orbital tune vector and A

is a 1-turn spin transfer matrix which is modeled after the situation of (5.19). I

also introduce in Section 6.1 the symbol SOT (d, ω) for the set of all spin-orbit tori

which have the orbital tune vector ω ∈ Rd and the symbol SOT (d) for the set of
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all spin-orbit tori which have an orbital tune vector in Rd. I then derive the n-turn

spin transfer matrix Ψω,A from ω and A and establish some basic relations between

the Ψω,A(n; ·) for different values of the integer n. This leads naturally in Section

6.2 to the definition of the Z-action, Lω,A, on Rd+3 which is a function associated

with every spin-orbit torus (ω,A) ∈ SOT (d, ω) encoding the information about the

spin-orbit torus in a very useful form. Some group theoretical properties of Lω,A

are discussed too. Also the Z-action Lω on Rd is introduced which formalizes the

orbital translations on Rd associated with each (ω,A) ∈ SOT (d, ω). In Section 6.3

I consider a distribution or field of spins constructed by attaching a spin to each

φ0 ∈ Rd at n = 0 and thereby introduce the polarization fields (and, as a special

subclass, the spin fields) associated with every (ω,A). I also define the Z-action

L
(PF )
ω,A which governs the evolution of the polarization fields. Polarization fields are

important tools to study the polarization of a bunch (see also Section 5.1), however

this aspect of polarization fields plays no role in this work. Chapter 6 is closed with

Section 6.4 where the impact of Homotopy Theory on the present work is outlined

and where some related concepts and facts are mentioned which are needed in this

work. In particular I show how to exploit the 2π-periodicity of some functions and I

point out how Homotopy Theory is related with the SO(3)-index. The SO(3)-index

is based on the quaternion formalism of S3 which is employed in this work to deal

with continuous SO(3)-valued functions.

One is particularly interested in spin-orbit tori for which spin precesses around a

fixed axis and perhaps even at a fixed rate. Such a fixed rate leads to the definition

of spin tune of first kind. Moreover to fully exploit those spin-orbit tori one needs

a transformation group which allows to transform the spin motion from one spin-

orbit torus to another. Thus in Chapter 7 I introduce the transformation group

(=group action), Rd,ω, on SOT (d, ω). The group action Rd,ω is motivated by some

observations made at the beginning of Section 7.1 of how spin-orbit tori should be

transformed into each other in an efficient way. This leads to the notion of the Rd,ω-
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orbit. Roughly speaking, an Rd,ω-orbit of a spin-orbit torus, (ω,A), is the set of spin-

orbit tori which can be reached from (ω,A) by varying the parameters ofRd,ω over the

underlying group, Cper(R
d, SO(3)). Thus with Chapter 7 I begin to consider the set

SOT (d, ω) as a whole and we will see that spin-orbit tori, which belong to the same

Rd,ω-orbit, share many of their properties. The way in which spin-orbit trajectories

and polarization fields transform with Rd,ω from one spin-orbit torus to another is

stated in Theorem 7.3 of Section 7.1. The aim of studying reference frames in which

spins precess around a fixed axis, possibly at a fixed rate, prompts the definition

in Section 7.2 of trivial, almost trivial and weakly trivial spin-orbit tori to embrace

these cases. Section 7.2 also shows how Homotopy Theory impacts on weakly trivial

spin-orbit tori via the SO3(2)-index. Then in Section 7.3 I use Rd,ω acting on trivial,

almost trivial and weakly trivial spin-orbit tori to classify spin-orbit tori into so-

called coboundaries, almost coboundaries, weak coboundaries, and those which are

not weak coboundaries. Thus I deal with four major subsets of SOT (d, ω) (where

some of them overlap - see the inclusions (7.18)). The terminology of ‘coboundary’

and ‘almost coboundary’ is borrowed from Dynamical Systems Theory since, given

a spin-orbit torus (ω,A) in SOT (d, ω), the function Ψω,A is a SO(3)-cocycle over

the topological Z-space (Rd, Lω). Section 7.3 displays the close connection between

the concepts of weak coboundary and invariant spin field (ISF) and the impact of

Homotopy Theory on weak coboundaries. In Section 7.4 I define for every spin-orbit

torus a (possibly empty) set of spin tunes of first kind (and the associated spin-orbit

resonances) which are reincarnations of the spin tunes introduced by Yokoya [Yo1]

and show that this set is nonempty iff the spin-orbit torus is an almost coboundary.

Spin tunes of the first kind are always associated with almost coboundaries so that

they are always associated with invariant spin fields. In Section 7.5 I present the

celebrated uniqueness theorem of Yokoya [Yo1], which relates the uniqueness issue

of the invariant spin field with the condition of spin-orbit resonance of first kind. In

Section 7.6 I put the present work, and weak coboundaries in particular, into the
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context of Polarized Beam Physics. Thus I relate the present work with other work of

Polarized Beam Physics. In Section 7.7 I address the question of whether two weakly

trivial spin-orbit tori belong to the same Rd,ω-orbit. In particular the relevance of

the small divisor problem and Diophantine sets of orbital tunes is pointed out.

In Chapter 8 I widen and deepen the study of spin-orbit tori by using the tool of

quasiperiodic functions. In particular I show that, off orbital resonance, the existence

of just one quasiperiodic spin trajectory ensures the existence of an ISF. Then in

Section 8.2 I consider reference frames, called ‘simple precession frames’, in which

spins precess around an axis which can be any spin trajectory and I define a phase

advance for spin motion in such a frame. In Section 8.3 I introduce special simple

precession frames, called ‘uniform precession frames’, for which the phase advance is

the same from turn to turn and show their connection with the so-called generalized

Floquet Theorem. Armed with the concept of the uniform precession frame I define,

in Section 8.4, for every spin-orbit torus a (possibly empty) set of spin tunes of

second kind (and the associated spin-orbit resonances) and show that the spin tunes

of second kind are identical with the spin tunes of first kind in most situations. In

this work the spin tunes of second kind mainly serve to analyze the spin tunes of

first kind. In Section 8.5 I resume the theme of Section 7.7 and, on the basis of

Corollary 8.12, I am able to outline an algorithm employed in the code SPRINT for

computing spin tunes of first and second kind. In Section 8.6 I show how Homotopy

Theory has an impact on the individual values of the spin tunes of first kind, i.e.,

how it affects the structure of the sets Ξ1(ω,A). Section 8.7 returns to the question,

already addressed in Section 7.3, of whether the existence of an ISF implies that a

spin-orbit torus can be transformed to become a weakly trivial one.

Chapter 9 reconsiders the basic Z-actions Lω,A and L
(PF )
ω,A used in Chapters 6,7,8

and introduces further associated Z-actions. In particular, in Section 9.1 it is shown

how the peculiar structure of the cocycle condition (see (5.20) and (6.6)) follows from

65



Chapter 5. Introduction to spin-orbit tori

the fact that Lω,A is a skew-product of the orbital Z-action Lω. In Section 9.2 I show

that the Z-action Lω,A is an extension of the Z-action L
(T )
ω,A. I thereby relate the

orbital translations on Rd to the corresponding orbital translations on the d-torus

Td. Thus Section 9.2 gives a brief glimpse into the Td-treatment of spin-orbit tori. In

Section 9.3 I widen the perspective by showing how a single principal SO(3)-bundle,

λSOT (d), underlies SOT (d). It leads in Section 9.3.5 to Theorem 9.5a, which is a

special case of Zimmer’s Reduction Theorem. As an application of this I obtain

Theorem 9.5b which shows the concept of the invariant spin field in a new light.

The appendices, B-F, provide material needed in Chapters 6-9. While most of the

material of Appendices B-E is standard, these appendices provide sufficient precision

and make this part of the thesis essentially self contained. Appendix F contains those

proofs which are not given elsewhere. Appendix G contains a guide which will help

the reader with some subjects appearing in this part of the thesis.

5.3 Scope and limitations

I now mention the possible merits and shortcomings of this part of the thesis.

The intention and flavor of this work is to present a piece of Mathematical Physics.

In fact an abundance of mathematical definitions is introduced, which transfigure the

topic of spin-orbit tori into a mathematical theory. Accordingly, an abundance of

lemmas, propositions, theorems, corollaries is stated and the proofs are, without

exception, intended to be rigorous.

Three important issues related with this work, but not covered by it at all, are the

spinor formalism, the synthesis of families of spin-orbit tori into spin-orbit systems

and the use of Borel algebras. Note that the spinor formalism deals with spinor valued

functions which are associated with the spin trajectories and spinor valued functions
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which are associated with the polarization fields (in contrast, the present work uses

the 3D formalism where the spin lives in R3). Note also that both associations can be

performed via liftings w.r.t. the so-called complex Hopf bundle whose projection has

domain S3 and range S2. It turns out that that the spinor formalism can be pursued

along similar lines as the quaternion formalism in Sections C.2,C.3 (the latter is based

on the Hurewicz fibration (S3, p2, SO(3))). In fact if in the quaternion formalism one

replaces the Hurewicz fibration (S3, p2, SO(3)) by the complex Hopf bundle (the latter

is a Hurewicz fibration, too) then one obtains the spinor formalism [He] (for Hurewicz

fibrations, see Appendix C). In contrast, the issue of the synthesis of families of

spin-orbit tori into spin-orbit systems seems to have a less geometrical and more

analytical flavor. While in this work the emphasis is on continuous functions, large

parts of spin-orbit theory can be formulated by using Borel measurable functions

[He]. Such an approach is feasible for the statistical description of spin-orbit tori

(e.g., the study of the polarization) and it allows to apply more tools from Ergodic

Theory, e.g., Birkhoff’s Ergodic Theorem [EH].

This work puts some effort into the taxonomy of spin-orbit tori, in particular,

due to their importance, some effort into the taxonomy of weak coboundaries. A

minor shortcoming is that many results focus on the generic case where (1, ω) is

nonresonant. However since the nongeneric case can be reduced to the generic case,

it would be easy to modify and prove many of my results for the nongeneric case

[He]. The following conjecture, which I call the ‘ISF-conjecture’, plays a fruitful role

in Polarized Beam Physics. The ISF-conjecture, which, at least to my knowledge

(see also Section 7.6), is unsettled, goes as follows: “If a spin-orbit torus (ω,A) is

off orbital resonance, then it has an invariant spin field”. Albeit no attempt is made

in this work to settle the ISF-conjecture, the present work presents some conditions

which transform the ISF-conjecture into equivalent conjectures. For example, by

Theorems 7.9,7.10, a (ω,A) ∈ SOT (d, ω) with d = 1 is a weak coboundary iff it has

an ISF. Note finally that numerical procedures exist which ‘solve’ the ISF problem
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numerically (see Section 7.6).
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Chapter 6

The spin-orbit tori

In this section I introduce the most basic concepts and facts needed for this work.

6.1 Introducing the spin-orbit tori (ω,A)

The main purpose of this section is to state Definition 6.1 which introduces the

basic entity of this work, the ‘spin-orbit torus’. The orbital motion underlying the

definition of (ω,A) is a translational motion in Rd, where d is the number of degrees

of freedom (whenever I write Rk, this implies that k is a positive integer).

As pointed out in Chapter 5, the orbital motion in the present work is assumed

to be integrable. So its simplest formulation is by choosing the orbital variables as

angles φ1, ..., φd which are the components of φ ∈ Rd. Accordingly the orbital motion

is a constant translation of φ per turn. In contrast, the spin motion is modeled by

A after the situation of (5.19), i.e., after the T—BMT equation so that the spin

variable S is R3-valued and its motion is a rotation which is affected by the orbital

motion and can therefore be very complicated. For more details on the T—BMT

aspect see the remarks after Definition 6.1.
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In this work the spin-orbit trajectories

⎛
⎝ φ

S

⎞
⎠ : Z→ Rd+3 are required to satisfy

the following map formalism equations of motion

φ(n+ 1) = φ(n) + 2πω , (6.1)

S(n+ 1) = A(φ(n))S(n) , (6.2)

where n ∈ Z and ω ∈ Rd, A ∈ Cper(R
d, SO(3)). It is clear from Section 5.1 that

arbitrary initial values φ(0) ∈ Rd, S(0) ∈ R3 are allowed.

Here Z denotes the set of integers and Cper(R
d, SO(3)) denotes the set of 2π–

periodic and continuous functions from Rd into SO(3) (for the general definition of

Cper(R
d, X) with topological space X, see Section C.1). Note that a function on

Rd is called ‘2π–periodic’ if it is 2π–periodic in each of its d arguments. The set

SO(3) consists of those real 3×3–matrices R with det(R) = 1 for which RTR = I3×3

where RT denotes the transpose of R and I3×3 denotes the 3× 3 unit matrix. As is

common, the topology of SO(3) is defined as the relative topology from R3×3 whence

each of the nine components of A are continuous functions from Rd into R. Thus

these components are functions in Cper(R
d,R) where Cper(R

d,Rk) denotes the set of

2π–periodic and continuous functions from Rd into Rk. That the 2π–periodicity of

A has to be imposed follows from (5.19). Loosely speaking, A is 2π–periodic since

φ1, ..., φd are angle variables.

The terminology ‘orbital motion’ is common in Polarized Beam Physics and it

should not be confused with the mathematical meaning of ‘orbital’ in the context of

group actions where one deals with orbit spaces (see Appendix B). For the present

work Rd is the appropriate carrier of the orbital motion but if one would go deeper

into the matter of spin-orbit tori then the d-torus Td is an important alternative.

To give a brief glimpse into this matter see Section 9.2 where I employ the orbital

motion on Td. While for the most part of this work Rd is the arena of the orbital

motion, the d-torus Td plays an ubiquitous role in this work in the study of the sets
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Cper(R
d, X) as is outlined in Section 6.4.

The system (6.1),(6.2) is autonomous because its r.h.s. does not explicitly de-

pend on n (it depends on n only via φ(n) and S(n)!). I summarize the three basic

facts about the system (6.1),(6.2): it is autonomous and nonlinear, it is uniquely

determined by ω and A, and the ‘orbital trajectories’ φ(·) are unaffected by the ‘spin

trajectories’ S(·).

By induction in n one obtains from (6.1),(6.2) that every spin-orbit trajectory⎛
⎝ φ

S

⎞
⎠ satisfies, for n ∈ Z,

⎛
⎝ φ(n)

S(n)

⎞
⎠ =

⎛
⎝ φ(0) + 2πnω

Ψω,A(n;φ(0))S(0)

⎞
⎠ , (6.3)

where, for φ ∈ Rd,

Ψω,A(0;φ) := I3×3 ,

Ψω,A(n;φ) := A(φ+ 2π(n− 1)ω) · · ·A(φ+ 2πω)A(φ) , (n = 1, 2, ...) ,

Ψω,A(n;φ) = AT (φ+ 2πnω) · · ·AT (φ− 4πω)AT (φ− 2πω) , (n = −1,−2, ...) .

(6.4)

The function Ψω,A : Z × Rd → SO(3) defined by (6.4) is uniquely determined by

ω and A. Clearly A(·) = Ψω,A(1; ·) and Ψω,A(n; ·) ∈ Cper(R
d, SO(3)). For every

φ(0) ∈ Rd, S(0) ∈ R3 the initial value problem of (6.1),(6.2) has the unique solution

(6.3). It also follows easily from (6.4) that a function Ψ : Z × Rd → SO(3), which

satisfies for n ∈ Z, φ ∈ Rd the initial value problem

Ψ(n+ 1;φ) = A(φ+ 2πnω)Ψ(n;φ) , Ψ(0;φ) = I3×3 , (6.5)

satisfies Ψ = Ψω,A. Note also that, by (6.4), for m,n ∈ Z, φ ∈ Rd,

Ψω,A(n+m;φ) = Ψω,A(n;φ+ 2πmω)Ψω,A(m;φ) . (6.6)

I call S in (6.3) the ‘spin trajectory over φ(0)’. We are led to:
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Definition 6.1 (Spin-orbit torus) Given a ω ∈ Rd, a pair (ω,A) is called a ‘d-

dimensional spin-orbit torus’ if A ∈ Cper(R
d, SO(3)). I call ω the ‘orbital tune vector’

of the spin-orbit torus. The function Ψω,A : Z×Rd → SO(3) is defined by (6.4) and

Ψω,A(n; ·) is called the ‘n-turn spin transfer matrix of (ω,A)’. I denote, for ω ∈ Rd,

the set of those spin-orbit tori, whose orbital tune vector is ω, by SOT (d, ω). The

set of all d-dimensional spin-orbit tori I denote by SOT (d) and the set of all spin-

orbit tori by SOT . A function

⎛
⎝ φ

S

⎞
⎠ : Z → Rd+3 is called a ‘spin-orbit trajectory

of (ω,A)’ if it satisfies (6.1),(6.2). Accordingly φ is called an ‘orbital trajectory of

(ω,A)’ and S is called a ‘spin trajectory of (ω,A) over φ(0)’. �

In the remaining parts of this section I give some comments on Definition 6.1.

Clearly, for a given ω ∈ Rd, there are as many elements in the set SOT (d, ω) and

as many equations of moton (6.1),(6.2) as there are elements in Cper(R
d, SO(3)). To

put this into perspective one has to recall that the spin-orbit tori are modeled after

the situation of (5.19), i.e., after the T—BMT equation. Therefore the spin-orbit

tori obtained from (5.19) constitute only a small subset of SOT . Thus in effect

the present work demonstrates that important features of the spin-orbit tori can be

studied without using (5.19), i.e., without referring to the actual T—BMT equation

at all. For example, while the uniqueness theorem of Yokoya (see Section 7.5) holds

for a vast set of spin-orbit tori, only a small (but, of course very important) subset

of those spin-orbit tori is connected with (5.19) and the T—BMT equation.

Since Ψω,A(n;φ) ∈ SO(3), the angle between two spin trajectories over the same

φ(0) is a constant of motion. Of course the Euclidean norm |S(n)| of S(n) is a

constant of motion, too.

It follows from (6.6) that, for n ∈ Z, φ ∈ Rd, we have the useful formula

ΨT
ω,A(n;φ) = Ψω,A(−n;φ+ 2πnω) . (6.7)
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Picking, for (ω,A) ∈ SOT (d, ω), a φ0 ∈ Rd, then the equation of spin motion (6.2)

for the corresponding orbital trajectory φ(n) = φ0 + 2πnω reads as

S(n+ 1) = A(φ0 + 2πnω)S(n) . (6.8)

Of course, every function S : Z → R3, which satisfies (6.8), is a spin trajectory

over φ0 of (ω,A) (and vice versa). Moreover if S : Z → R3 satisfies (6.8), then the

function

⎛
⎝ φ

S

⎞
⎠, with φ(n) = φ0 + 2πnω, is a spin-orbit trajectory of (ω,A).

While the system of equations of motion (6.1),(6.2) for

⎛
⎝ φ

S

⎞
⎠ is autonomous

and nonlinear, the equation of motion (6.8) for S is linear and non-autonomous.

Furthermore, if (ω,A) ∈ SOT (d, ω) and if ω, ω′ ∈ Rd differ only by an element

of Zd then, due to the 2π–periodicity of A, the spin-orbit tori (ω,A), (ω′, A) are

essentially the same since the associated equation of motion (6.8) is the same for

both.

To interpret Definition 6.1 along the lines of Section 5.1 in the context of the map

formalism for polarized beams in storage rings, the reader should view φ(n) as the

value of the orbital angle variable and S(n) as the value of the spin variable after n

‘turns’ around the storage ring. This means that n can be as large as 109 whence the

present section is definitely not the last word to be said about spin-orbit trajectories.

In particular the numerical calculation of Ψω,A(n; ·) for large n is a challenging task.

Furthermore this calculation can be hampered by the circumstance that A is only

approximately known. These circumstances warrant the more involved discussion of

spin-orbit tori in this work.
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6.2 Introducing the Z-action Lω,A associated with

every spin-orbit torus (ω,A)

Since the equations of motion (6.1),(6.2) are autonomous, each spin-orbit torus (ω,A)

is associated with a Z-action Lω,A which determines the evolution of the spin-orbit

trajectories as follows (for details on group actions in general and Z-actions in par-

ticular, see Appendix B). Defining the function Lω,A : Z × Rd+3 → Rd+3, for

n ∈ Z, φ ∈ Rd, S ∈ R3, by

Lω,A(n;φ, S) :=

⎛
⎝ φ+ 2πnω

Ψω,A(n;φ)S

⎞
⎠ , (6.9)

I obtain from (6.3) that, for every spin-orbit trajectory

⎛
⎝ φ

S

⎞
⎠ of (ω,A) and every

n ∈ Z, ⎛
⎝ φ(n)

S(n)

⎞
⎠ = Lω,A(n;φ(0), S(0)) . (6.10)

Clearly, by (6.4),(6.6),(6.9), we have, for m,n ∈ Z, φ ∈ Rd, S ∈ R3,

Lω,A(0;φ, S) =

⎛
⎝ φ

S

⎞
⎠ , (6.11)

Lω,A(m+ n;φ, S) = Lω,A(m;Lω,A(n;φ, S)) , (6.12)

Lω,A(m+ n;φ, S) = Lω,A(n;Lω,A(m;φ, S)) . (6.13)

One concludes from (6.11),(6.12) that Lω,A is a left Z-action on Rd+3 and from

(6.11),(6.13) that Lω,A is a right Z-action on Rd+3. In fact since the group Z is

Abelian, every left Z-action is a right Z-action and every right Z-action is a left

Z-action. Left actions are also called ‘actions’. Since Lω,A is a Z-action on Rd+3,

one calls (Rd+3, Lω,A) a ‘Z-space’. In a more loose sense, Lω,A would be called
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the ‘general solution map’ of (6.1),(6.2). Note that Lω,A(n; ·) is continuous whence

(Rd+3, Lω,A) is a topological Z-space. Note also that, because Lω,A is a Z-action,

we have, for n = 1, 2, ..., that Lω,A(n; ·) is the n-fold composition of Lω,A(1; ·) and,

for n = −1,−2, ..., that Lω,A(n; ·) is the |n|-fold composition of Lω,A(−1; ·). While

all these details on Lω,A are trivial, they are meant for setting the stage for later

chapters where I have to study more group actions.

If ω ∈ Rd then I define the function Lω : Z× Rd → Rd, for n ∈ Z, φ ∈ Rd, by

Lω(n;φ) := φ+ 2πnω . (6.14)

Clearly Lω is a Z-action on Rd and moreover (Rd, Lω) is a topological Z-space.

In Section 9.1 it will be shown how the peculiar structure of (6.6) follows from

the fact that Lω,A is a so-called skew-product of the orbital Z-action Lω.

Given a spin-orbit torus (ω,A) in SOT (d, ω), it follows from (6.6) and Ap-

pendix B that Ψω,A is a SO(3)-cocycle over the topological Z-space (Rd, Lω) whence

(Lω,Ψω,A) ∈ COC(Rd,Z, SO(3)). I thus have a natural injection

ρSOT (d) : SOT (d)→ COC(Rd,Z, SO(3)), defined for (ω,A) ∈ SOT (d) by

ρSOT (d)(ω,A) := (Lω,Ψω,A) . (6.15)

6.3 Introducing the polarization fields of every spin-

orbit torus (ω,A) and the associated Z-action

L
(PF )
ω,A

Each spin-orbit torus is associated with a set of functions, called ‘polarization fields’,

which are introduced in this section. The evolution of the polarization fields of a

spin-orbit torus (ω,A) is determined by the Z-action L
(PF )
ω,A introduced below.

75



Chapter 6. The spin-orbit tori

In this work the main impact of polarization fields is that invariant spin fields

(which are special polarization fields) show up in Theorem 7.9, i.e., polarization fields

impact the group action Rd;ω on SOT (d, ω). This group action, to be introduced

in Section 7.1, allows to study SOT (d, ω) as a whole and exploits some fundamen-

tal symmetry properties of SOT (d, ω) leading in particular to a definition of spin

tune (see Definition 7.11). Not pursued in this work (and only briefly mentioned in

Sections 5.1 and 7.6) is a second purpose of polarization fields being an important

tool in the statistical treatment of the polarization [EH]. The statistical treatment

is needed for coping with the fact that a storage ring bunch contains many particles

(typically 1011).

To motivate the concept of polarization field, consider an initial assignment of

spins G : Rd → R3, i.e., a spin attached to every point φ0 ∈ Rd. Under the Z-action

Lω,A the point

⎛
⎝ φ0

G(φ0)

⎞
⎠ evolves to

⎛
⎝ φ0 + 2πnω

Ψω,A(n;φ0)G(φ0)

⎞
⎠ at n-th turn. Denoting

φ0 + 2πnω by φ and Ψω,A(n;φ0)G(φ0) by SG(n, φ) one obtains

SG(n, φ) = Ψω,A(n;φ− 2πnω)G(φ− 2πnω) . (6.16)

The 2π–periodicity of G has to be imposed for the same reason as mentioned in

Section 6.1, namely because the components of φ are angle variables. One is thus

led to:

Definition 6.2 (Polarization field, spin field) Let (ω,A) be a spin-orbit torus. I call

a function SG : Z×Rd → R3 a ‘polarization field of (ω,A)’, if it satisfies (6.16) for

all φ, n and if G ∈ Cper(R
d,R3). The function G will be called the ‘generator of SG’.

I call a polarization field SG ‘invariant’ if SG(n, ·) is independent of n. A polar-

ization field SG with |SG(n, φ)| = 1 is called a ‘spin field’. An invariant polarization

field which is a spin field is called an ‘invariant spin field (ISF)’. �

Remark:
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(1) It follows from Definition 6.1 and (6.16) that if SG is an invariant polarization

field then, for n ∈ Z, φ ∈ Rd,

G(φ) = Ψω,A(n;φ− 2πnω)G(φ− 2πnω) . (6.17)

This has an interesting implication in the case when the components of ω

are rational since then I can choose n in (6.17) sufficiently large such that the

components of nω are integers. Then (6.17) becomes, due to the 2π-periodicity

of Ψω,A(n; ·) and G, an eigenvalue value problem for G(φ):

G(φ) = Ψω,A(n;φ)G(φ) . (6.18)

It also follows that if the components of ω are not rational then, by rational

approximation of ω, one obtains an approximation of an invariant polarization

field by solutions of eigenvalue problems. �

By (6.5),(6.16) I get the following equation of motion for a polarization field SG

SG(n+ 1, φ) = A(φ− 2πω)SG(n, φ− 2πω) . (6.19)

If SG is a polarization field then SG(0, ·) = G(·) ∈ Cper(R
d,R3) and SG(n, ·) ∈

Cper(R
d,R3). Clearly, the equation of motion (6.19) for SG is linear and autonomous.

Defining the function L
(PF )
ω,A : Z× Cper(R

d,R3)→ Cper(R
d,R3) by

L
(PF )
ω,A (n;G) := SG(n, ·) = Ψω,A(n; · − 2πnω)G(· − 2πnω) , (6.20)

it follows easily from (6.6),(6.16) that L
(PF )
ω,A is a Z-action on Cper(R

d,R3), i.e., that

(Cper(R
d,R3), L

(PF )
ω,A ) is a Z-space. Thus by (6.16)

SG(n, ·) = L
(PF )
ω,A (n−m;SG(m, ·)) . (6.21)

Loosely speaking, L
(PF )
ω,A is the transport map associated with (6.19). Clearly, every

G ∈ Cper(R
d,R3) gives a unique polarization field SG for a given spin-orbit torus. In
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particular, each d-dimensional spin-orbit torus has as many polarization fields as the

set Cper(R
d,R3) has elements. We see that the role which the Z-action L

(PF )
ω,A plays

for polarization fields, is analogous to the role which the Z-action Lω,A plays for spin-

orbit trajectories. Note also that G is a fixpoint of L
(PF )
ω,A iff the polarization field SG

is invariant. Since L
(PF )
ω,A is a group action of the group Z one easily concludes:

Proposition 6.3 Let (ω,A) be a spin-orbit torus. A polarization field SG of (ω,A)

is invariant iff

L
(PF )
ω,A (1;G) = G . (6.22)

In other words, SG is invariant, iff for all φ,

G(φ) = A(φ− 2πω)G(φ− 2πω) . (6.23)

�

Proof of Theorem 9.5: See Section F.30. �

Note that (6.23) will be interpreted by Theorem 9.5b as a symmetry property of

(ω,A) along the lines of reduction theory.

A polarization field SG is a spin field iff |G(φ)| = 1 for all φ. Defining the 2-

sphere S2 := {x ∈ R3 : |x| = 1} and equipping it with the relative topology from

R3 we see that the set Cper(R
d, S2) of 2π–periodic and continuous functions from Rd

into S2 is equal to the set of 2π–periodic, normalized (w.r.t. the Euclidean norm),

and continuous functions from Rd into R3. Thus for every spin field SG we have

SG(n, ·) ∈ Cper(R
d, S2). Clearly each ISF is a polarization field.

Due to Definition 6.2, every polarization field SG fulfills three different conditions:

the ‘dynamical’ condition (6.16), the ‘kinematical’ condition that G is 2π–periodic,

and the ‘regularity’ condition that G is continuous. In contrast to the dynamical and
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kinematical conditions, the regularity condition is a matter of choice. The regularity

of G can basically vary between the extremes ‘no regularity condition’ and ‘G being

real analytic’. In this work I choose G to be continuous since the spin-orbit tori are

built on continuity, i.e., the Ψω,A(n; ·) are continuous functions.

Since the equation of motion (6.19) for SG is linear, L
(PF )
ω,A (n; ·) is a homomorphism

of the additive group Cper(R
d,R3), i.e., for n ∈ Z, G,G′ ∈ Cper(R

d,R3),

L
(PF )
ω,A (n;G+ G′) = L

(PF )
ω,A (n;G) + L

(PF )
ω,A (n;G′) . (6.24)

Eq. (6.24) allows, by the technique of twisted cocycles [HK1, HK2, Zi1], to define co-

homology groups for any spin-orbit torus, which give further insight into SOT (d, ω)

in general and into the ISF conjecture in particular [He]. However this is beyond the

scope of the present work.

6.4 Homotopy Theory relevant for spin-orbit tori

Throughout this work I will see some impact of Homotopy Theory on the theory

of spin-orbit tori and in this section I introduce some basic features (the details are

worked out in Appendix C).

Let X be a path-connected topological space. In the context of spin-orbit tori,

one is especially interested in X = SO(3) and X = S2 (recall that spin transfer

matrices are SO(3)-valued functions and that spin fields are S2-valued functions).

The use of Homotopy Theory for Cper(R
d, X) is twofold. Firstly, I use it by applying

the Homotopy Lifting Theorem (see Lemma C.6 in Section C.1) which in turn is used

in many of those proofs of this work which involve the sets Cper(R
d, X). Secondly,

Homotopy Theory gives us the useful equivalence relation �2π
X on Cper(R

d, X), as

follows. To explain this equivalence relation I first note, by Proposition C.4, that

any two functions in Cper(R
d, X) are homotopic w.r.t. X, i.e., [Rd, X] is a singleton.
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In other words, the equivalence relation �X on Cper(R
d, X) is of little use. However,

since the functions in Cper(R
d, X) are 2π-periodic, one can associate, as detailed in

Section C.3, every function g ∈ Cper(R
d, X) with a function G := FACd(g;X) ∈

C(Td, X) which is uniquely determined by g via the relation G ◦ p4,d = g. Thus

I call two functions g0, g1 ∈ Cper(R
d, X) ‘2π-homotopic w.r.t. X’, written g0 �2π

X

g1, if FACd(g0;X), FACd(g1;X) are homotopic w.r.t. X, i.e., if FACd(g0;X) �X

FACd(g1;X). Clearly �2π
X is an equivalence relation on Cper(R

d, X) and I denote

the set of equivalence classes by [Rd, X]2π. Obviously the function which maps the

�X -equivalence class of a F ∈ C(Td, X) to the �2π
X -equivalence class of F ◦ p4,d,

is a bijection from [Td, X] onto [Rd, X]2π. Thus every statement about [Rd, X]2π

corresponds to a statement about [Td, X].

The point to be made here is that for the topological spaces X of interest, in gen-

eral two functions in C(Td, X) are not homotopic w.r.t. X whence, in general, two

functions in Cper(R
d, X) are not 2π-homotopic w.r.t. X, i.e., [Rd, X]2π is not a sin-

gleton. In particular we will see below that, for no positive integer d, is [Rd, SO(3)]2π

a singleton and that, by Proposition C.18c and Theorem C.24, [Rd, S2]2π is not a

singleton for any d ≥ 2. The meaning of this is, loosely speaking, that, among

the functions in Cper(R
d, X), the ones which are especially simple are the g which

are ‘2π-nullhomotopic w.r.t. X’, i.e., for which FACd(g;X) is nullhomotopic w.r.t.

X (the latter condition means that FACd(g;X) is homotopic w.r.t. X to a con-

stant function). Note that, by Proposition C.18c, all 2π-nullhomotopic functions in

Cper(R
d, X) are 2π-homotopic w.r.t. X, i.e., belong to the same element of [Rd, X]2π.

Thus if [Rd, X]2π is not a singleton then Cper(R
d, X) contains functions which are not

2π-nullhomotopic w.r.t. X. As we will see in this work, the fact that [Rd, SO(3)]2π

and, for d ≥ 2, [Rd, S2]2π are not singletons, contributes to the structural richness of

the sets SOT (d, ω). Note that, in the context of polarized beams in storage rings,

the case d = 3 is the most important one whereas the cases d = 1, 2 come next in

terms of importance.
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I wrap up this brief section by mentioning several important facts and concepts

valid for the case X = SO(3) and it first of all has to be pointed out that in my

study of SO(3)-valued functions in Appendix C the ‘quaternion formalism’ is em-

ployed which consists in representing SO(3)-valued functions by S3-valued functions.

For every positive integer d there is a function Ind3,d : Cper(R
d, SO(3))→ {1,−1}d,

defined by Definition C.14 and called the ‘SO(3)-index’, which, due to Proposi-

tion C.18e, has the property that, if g0, g1 ∈ Cper(R
d, SO(3)) and g0 �2π

SO(3) g1,

then Ind3,d(g0) = Ind3,d(g1). Since, by Theorem C.15a, the function Ind3,d is onto

{1,−1}d one observes that [Rd, SO(3)]2π is not a singleton. Moreover, for d = 1, 2,

the function Ind3,d completely determines [Rd, SO(3)]2π since, by Theorem C.22c, we

have, for g0, g1 ∈ Cper(R
d, SO(3)), that g0 �2π

SO(3) g1 iff Ind3,d(g0) = Ind3,d(g1). For

the most important case, d = 3, the structure of [Rd, SO(3)]2π is even richer. In fact,

Definition C.21 gives a function DEG : Cper(R
3, SO(3)) → Z, which is onto Z and,

due to Theorem C.22f, has the property that, for g0, g1 ∈ Cper(R
3, SO(3)), we have

g0 �2π
SO(3) g1 iff DEG(g0) = DEG(g1) and Ind3,3(g0) = Ind3,3(g1). Thus, for d = 3,

[Rd, SO(3)]2π has infinitely many elements. One also concludes that, for d = 1, 2, 3,

the SO(3)-index and the function DEG are sufficient to determine the equivalence

class of every g ∈ Cper(R
d, SO(3)) w.r.t. the equivalence relation �2π

SO(3) whence to

determine the equivalence class of every F ∈ C(Td, SO(3)) w.r.t. the equivalence

relation �SO(3).

Before I state the following proposition, note that I consider {1,−1} as a multi-

plicative group with identity 1 and {1,−1}d as the d-fold direct product of the group

{1,−1}. The following proposition is the most basic result of how Homotopy Theory

impacts spin-orbit tori via the SO(3)-index.

Proposition 6.4 If (ω,A) ∈ SOT (d, ω) then, for an arbitrary integer n, we have

Ind3,d(Ψω,A(n; ·)) = (Ind3,d(A))n , (6.25)
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where (Ind3,d(A))n denotes the n-th power of Ind3,d(A) w.r.t. the group multiplica-

tion in {1,−1}d.

Proof of Proposition 6.4: See Section F.1. �
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Transforming spin-orbit tori

In this chapter I study the right group action Rd,ω on SOT (d, ω) for the group

Cper(R
d, SO(3)) and the associated equivalence relation ∼d,ω by which two spin-orbit

tori SOT (d, ω) are equivalent iff they belong to the same Rd,ω-orbit. The right group

action Rd,ω is an outgrowth of the observation (see Section 7.1) that spin-orbit tori

can be transformed into each other in a natural way. In fact in each SOT (d, ω) one

has a large family of pairs of spin-orbit tori whose topological Z-spaces (Rd+3, Lω,A)

are conjugate by conjugating homeomorphisms which form a family LT labelled by

the T ∈ Cper(R
d, SO(3)). In particular I obtain in Section 7.1 a transformation law

for spin-orbit tori and polarization fields.

The right group action Rd,ω allows to define the spin tune (spin tune of first kind)

in an elegant way. We will see that two spin-orbit tori which belong to the same

Rd,ω-orbit, share important properties, e.g., they have the same spin tunes of first

kind (see Proposition 7.12) and either both of them have an ISF or both of them

have no ISF (see Theorem 7.3e). In other words, spin-orbit tori, whose topological

Z-spaces (Rd+3, Lω,A) are conjugate by a homeomorphism LT , resemble each other.

Thus to a large extent the study of SOT (d, ω) reduces to the study of just one
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spin-orbit torus per Rd,ω-orbit.

This, of course, raises the question, of whether an Rd,ω-orbit contains spin-orbit

tori which are more ‘simply structured’ than others. Indeed (see also Section 7.6)

it is widely believed and based on numerical evidence that, generically, the spin-

orbit tori of practical relevance are ‘weak coboundaries’ (see Definition 7.6) which

means that each of them lies on the same Rd,ω-orbit as a ‘weakly trivial’ spin-orbit

torus (see Definition 7.4). Thus, generically, many features of spin-orbit tori can

be studied on weakly trivial spin-orbit tori, which indeed are simply structured.

Note also that the SO(3)-indices and the SO3(2)-indices associated with a weakly

trivial spin-orbit torus carry important topological information (see Proposition 7.5).

There is strong evidence that, generically, the spin-orbit tori of practical relevance

are not only weak coboundaries but also ‘almost coboundaries’ (see Definition 7.6).

As their name suggests, almost coboundaries lie on the same Rd,ω-orbit as ‘almost

trivial’ spin-orbit tori. Most importantly, almost coboundaries are those spin-orbit

tori which carry spin tunes (in fact, spin tunes of first kind - see Definition 7.11).

‘Coboundaries’ (see Definition 7.6) are those almost coboundaries which are on spin-

orbit resonance of first kind. Coboundaries, by definition, lie on the same Rd,ω-orbit

as ‘trivial’ spin-orbit tori, which indeed are the simplest spin-orbit tori of all (see

Definition 7.4).

7.1 Introducing the transformations of spin-orbit

tori and the right group action Rd,ω on SOT (d, ω)

In this section I introduce the right group action Rd,ω and the associated equivalence

relation ∼d,ω.

The motivation for Rd,ω comes from the practical need to transform spin trajecto-
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ries in order to simplify (analytical and numerical) computations. The archetypical

way to transform a spin trajectory goes, in the context of spin-orbit tori, as fol-

lows. Let a spin-orbit torus (ω,A) be given with a spin trajectory S(·) over some φ0.

Then a function t : Z → SO(3) transforms S(·) into the function S ′ : Z → R3 via

S ′(n) := tT (n)S(n) (using tT instead of t is just a convention). Of course, since S(·)
satisfies the equation of motion (6.8), one observes that S ′(·) satisfies the equation

of motion

S ′(n+ 1) = tT (n+ 1)A(φ0 + 2πnω)t(n)S ′(n) , (7.1)

where n ∈ Z. Clearly S ′(·) has many features of a spin motion, e.g., |S ′(n)| = |S(n)|
is independent of n and S ′(n) is uniquely determined by S ′(0) and n. Perhaps

surprisingly however, in general S ′(·) is not a spin trajectory of any spin-orbit torus!

This follows from the fact that A(φ0 + 2πnω) is an ω-quasiperiodic function of n

whereas tT (n + 1)A(φ0 + 2πnω)t(n) in general is not a quasiperiodic function of n

at all, since t may not be quasiperiodic. Thus in general there is no spin-orbit torus

(ω′, A′) with the spin trajectory S ′(·), i.e., which satisfies tT (n+1)A(φ0+2πnω)t(n) =

A′(φ0 + 2πnω′) since A′(φ0 + 2πnω′) is a ω′-quasiperiodic function of n while, in

general, tT (n + 1)A(φ0 + 2πnω)t(n) is not a quasiperiodic function of n. Note that

quasiperiodic functions play a major role in Chapter 8 and are defined in Section

D.1.

Part d) of the following proposition now comes as a relief.

Proposition 7.1 a) Let T ∈ Cper(R
d, SO(3)). Then the function LT : Rd+3 → Rd+3,

defined by

LT (φ, S) := (φ, T T (φ)S) , (7.2)

is a homeomorphism onto Rd+3 and its inverse L−1
T is defined by L−1

T (φ, S) :=

(φ, T (φ)S), i.e., L−1
T = LT T .
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b) Let (ω,A) ∈ SOT (d, ω) and T ∈ Cper(R
d, SO(3)). Then, for n ∈ Z, φ ∈ Rd, S ∈

R3,

(
LT ◦ Lω,A(n; ·) ◦ L−1

T

)⎛⎝ φ

S

⎞
⎠ =

⎛
⎝ φ+ 2πnω

T T (φ+ 2πnω)Ψω,A(n;φ)T (φ)S

⎞
⎠ . (7.3)

Moreover (ω,A′) ∈ SOT (d, ω) where

A′(φ) := T T (φ+ 2πω)A(φ)T (φ) . (7.4)

Also

Ψω,A′(n;φ) = T T (φ+ 2πnω)Ψω,A(n;φ)T (φ) . (7.5)

Furthermore, LT is a continuous Z-map from the topological Z-space (Rd+3, Lω,A) to

the topological Z-space (Rd+3, Lω,A′), i.e., for n ∈ Z,

Lω,A′(n; ·) = LT ◦ Lω,A(n; ·) ◦ L−1
T . (7.6)

Thus the topological Z-spaces (Rd+3, Lω,A) and (Rd+3, Lω,A′) are conjugate.

c) (Transformation rule of spin-orbit trajectories) Let (ω,A) ∈ SOT (d, ω) and T ∈

Cper(R
d, SO(3)). If

⎛
⎝ φ(·)

S(·)

⎞
⎠ is a spin-orbit trajectory of the spin-orbit torus (ω,A),

then

⎛
⎝ φ(·)

S ′(·)

⎞
⎠ is a spin-orbit trajectory of the spin-orbit torus (ω,A′) where A′ is

given by (7.4) and where, for n ∈ Z,⎛
⎝ φ(n)

S ′(n)

⎞
⎠ := LT (φ(n), S(n)) =

⎛
⎝ φ(n)

T T (φ(n))S(n)

⎞
⎠ . (7.7)

d) (Transformation rule of spin trajectories) Let (ω,A) ∈ SOT (d, ω) and T ∈
Cper(R

d, SO(3)). Let also φ0 ∈ Rd and let t : Z → SO(3) be defined by t(n) :=

T (φ0 + 2πnω). If S(·) is a spin trajectory, over φ0, of the spin-orbit torus (ω,A)

then S ′(·), defined by S ′(n) := tT (n)S(n), is a spin trajectory, over φ0, of the spin-

orbit torus (ω,A′) where A′ is given by (7.4).
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Proof of Proposition 7.1: See Section F.2. �

With Proposition 7.1b we see, for every ω ∈ Rd, that every T ∈ Cper(R
d, SO(3))

associates any (ω,A) ∈ SOT (d, ω) with onother (ω,A′) ∈ SOT (d, ω). This I cast

into the following definition:

Definition 7.2 Let ω ∈ Rd. I define the function Rd,ω : Cper(R
d, SO(3))×SOT (d, ω)→

SOT (d, ω) by Rd,ω(T ;ω,A) := (ω,A′) where (ω,A) ∈ SOT (d, ω), T ∈ Cper(R
d, SO(3)),

and where A′ ∈ Cper(R
d, SO(3)) is given by (7.4). If Rd,ω(T ;ω,A) = (ω,A′) then I

call T a ‘transfer field from (ω,A) to (ω,A′)’. �

The following theorem states the basic properties of Rd,ω.

Theorem 7.3 a) Let (ω,A), (ω,A′) ∈ SOT (d, ω) and T ∈ Cper(R
d, SO(3)) such

that Rd,ω(T ;ω,A) = (ω,A′). Then (7.5) holds for all n ∈ Z, φ ∈ Rd.

b) Let ω ∈ Rd. Then, for T ∈ Cper(R
d, SO(3)), (ω,A) ∈ SOT (d, ω),

LRd,ω(T ;ω,A) = LT ◦ Lω,A(n; ·) ◦ L−1
T . (7.8)

Furthermore Cper(R
d, SO(3)) is a group under pointwise multiplication of SO(3)-

valued functions and Rd,ω is a right Cper(R
d, SO(3))-action on SOT (d, ω).

c) (Transformation rule of spin-orbit trajectories) Let (ω,A) ∈ SOT (d, ω) and

T ∈ Cper(R
d, SO(3)). If

⎛
⎝ φ(·)

S(·)

⎞
⎠ is a spin-orbit trajectory of the spin-orbit torus

(ω,A), then

⎛
⎝ φ(·)

S ′(·)

⎞
⎠, defined by (7.7), is a spin-orbit trajectory of the spin-orbit

torus Rd,ω(T ;ω,A).

d) (Transformation rule of polarization fields) Let (ω,A) ∈ SOT (d, ω) and T ∈
Cper(R

d, SO(3)). Let also SG be a polarization field of the spin-orbit torus (ω,A).
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Then S ′, defined by

S ′(n, φ) := T T (φ)SG(n, φ) , (7.9)

is a polarization field of the spin-orbit torus Rd,ω(T ;ω,A) and the generator of S ′ is

T TG. Thus for every n ∈ Z, G ∈ Cper(R
d,R3)

L
(PF )
ω,A′ (n;G) = T TL

(PF )
ω,A (n;TG) . (7.10)

If the polarization field SG is invariant, then so is S ′. If the polarization field SG is

a spin field, then so is S ′.

e) Let (ω,A), (ω,A′) ∈ SOT (d, ω) belong to the same Rd,ω-orbit. Then either both

spin-orbit tori have an ISF or neither of them.

f) Let (ω,A), (ω,A′) ∈ SOT (d, ω) belong to the same Rd,ω-orbit. Then, for every

integer n, Ψω,A(n; ·),Ψω,A′(n; ·) have the same SO(3)-index, i.e., Ind3,d(Ψω,A(n; ·)) =

Ind3,d(Ψω,A′(n; ·)). If d = 1, 2 then, for every integer n, Ψω,A(n; ·) �2π
SO(3) Ψω,A′(n; ·).

Proof of Theorem 7.3: See Section F.3. �

If (ω,A), (ω,A′) ∈ SOT (d, ω) lie on the same Rd,ω-orbit then I write (ω,A) ∼d,ω

(ω,A′). It follows from Theorem 7.3b that∼d,ω is an equivalence relation on SOT (d, ω).

It also follows from Theorem 7.3b that, for each T ∈ Cper(R
d, SO(3)), the function

Rd,ω(T ; ·) is a bijection from SOT (d, ω) onto SOT (d, ω). Clearly each Rd,ω(T ; ·)
transforms spin-orbit tori into spin-orbit tori and the associated transformation of

spin-orbit trajectories and polarization fields is given by parts c),d) of Theorem 7.3

respectively.

Since Cper(R
d, SO(3)) is a group under pointwise multiplication of SO(3)-valued

functions, the constant function in Cper(R
d, SO(3)) whose constant value is I3×3, is

the unit element of the group. If there is no danger of confusion, I denote the unit

element by I3×3. Furthermore the inverse of f ∈ Cper(R
d, SO(3)) is the transpose fT
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since (fTf)(φ) = fT (φ)f(φ) = I3×3. Since the group SO(3) is not Abelian, so is the

group Cper(R
d, SO(3)).

As announced at the beginning of Chapter 7, spin-orbit tori on the same Rd,ω-

orbit share some important properties and with parts e,f of Theorem 7.3 we have got

a first glimpse on that and more in that vein will follow. This raises the following

issue. While, by Proposition 7.1b, spin-orbit tori on the same Rd,ω-orbit have conju-

gate topological Z-spaces (Rd+3, Lω,A) this does not exclude more general conjugacy

relations in SOT (d, ω). Although I here cannot pursue more general conjugacy re-

lations, it is in fact conceivable that there are pairs of spin-orbit tori in SOT (d, ω)

whose topological Z-spaces (Rd+3, Lω,A) are conjugate but which do not lie on the

same Rd,ω-orbit. Nevertheless it is questionable whether those pairs of spin-orbit tori

would share properties like the one in Theorem 7.3e.

Since the group Cper(R
d, SO(3)) is not Abelian, it is easy to see that Rd,ω is

not a left Cper(R
d, SO(3))-action on SOT (d, ω). However, as every right action has

its ‘dual’ left action, I could use the left Cper(R
d, SO(3))-action Ld,ω on SOT (d, ω)

defined by Ld,ω(T ;ω,A) := Rd,ω(T T ;ω,A) and the subsequent theory would be just

‘dual’ to the theory based on Rd,ω. Nevertheless I stick, for convenience, with Rd,ω.

Remark:

(1) That Rd,ω is so useful in this work is due to the fact that the equations of

motion (6.1), (6.2) are autonomous. In a more general situation where the ring

is not a storage ring but where the beam is accelerated, (6.1), (6.2) maybe

generalized to a non-autonomous system of the form

φ(n+ 1) = φ(n) + 2πω , S(n+ 1) = A(n;φ(n))S(n) . (7.11)

Accordingly the definition of SOT (d, ω) would be modified and the right group

action Rd,ω would be modified to a right G-action where G consists of functions

T : Z× Rd → SO(3) where T (n, ·) ∈ Cper(R
d, SO(3)). �
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7.2 Introducing weakly trivial spin-orbit tori

As mentioned at the beginning of Chapter 7, simply structured spin-orbit tori will

play an important role in this work and the following definition specifies what a

‘simply structured’ spin-orbit torus is.

Definition 7.4 (Trivial, almost trivial, weakly trivial spin-orbit tori) A spin-orbit

torus (ω,A) is called ‘trivial’ if Ψω,A(n;φ) = I3×3. The set of trivial spin-orbit tori in

SOT (d, ω) is denoted by T (d, ω). A spin-orbit torus (ω,A) is called ‘almost trivial’

if Ψω,A is SO3(2)-valued and if, for every integer n, Ψω,A(n;φ) is independent of

φ where SO3(2) ⊂ SO(3) is defined by Definition C.2. I denote the set of almost

trivial spin-orbit tori in SOT (d, ω) by AT (d, ω). A spin-orbit torus (ω,A) is called

‘weakly trivial’ if Ψω,A is SO3(2)-valued and the set of weakly trivial spin-orbit tori

in SOT (d, ω) is denoted by WT (d, ω). �

It is clear by (6.4) that a spin-orbit torus (ω,A) is trivial iff A = I3×3.

I now draw some simple consequences from Definition 7.4. Firstly, for each ω ∈
Rd, there exists exactly one trivial spin-orbit torus (ω,A), i.e., T (d, ω) = {(ω, I3×3)}.
Secondly

T (d, ω) ⊂ AT (d, ω) ⊂ WT (d, ω) ⊂ SOT (d, ω) . (7.12)

Thirdly it is clear by Definition 6.2 that every weakly trivial spin-orbit torus has the

constant ISF’s SG = e3 and SG = −e3 where ei denotes the i-th unit vector (see

Definition C.2).

For the following proposition, I note that the topology of SO3(2) is defined as

the relative topology from R3×3 (see also Definition C.2). Thus if (ω,A) ∈ WT (d, ω)

then, for every n ∈ Z, the function Ψω,A(n; ·) belongs to Cper(R
d, SO3(2)) whence

has a unique phase function (which is an element of Cper(R
d,R)) and has a unique
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SO3(2)-index (which is an element of Zd). Note that the SO3(2)-index is defined by

Definition C.12. Note also that, for Cper(R
d, SO3(2)), each of the d components of

Ind2,d(g) can be interpreted, in an obvious way, as a winding number in the plane

R2. However this aspect of the SO3(2)-index plays no role in this work. Denoting

the fractional part of a real number x by �x�, I obtain

Proposition 7.5 a) (Structure of weakly trivial spin-orbit tori) Let (ω,A) ∈ WT (d, ω).

Then, for every positive integer n,

Ψω,A(n;φ) = exp

(
J [nNTφ+ πn(n− 1)NTω + 2π

n−1∑
j=0

g(φ+ 2πjω)]

)
, (7.13)

where N := Ind2,d(A), g := PHF (A) and J is defined by (C.1). Also, for every

n ∈ Z,

Ind2,d(Ψω,A(n; ·)) = nInd2,d(A) . (7.14)

Thus defining f : Z × Rd → R by f(n, ·) := PHF (Ψω,A(n; ·)), I have f(1, ·) = g(·)
and, for every n ∈ Z,

Ψω,A(n;φ) = exp(J [nNTφ+ 2πf(n, φ)]) . (7.15)

Moreover Ψω,A(n; ·) is 2π-nullhomotopic w.r.t. SO(3) iff Ind3,d(Ψω,A(n; ·)) = (1, ..., 1)T .

Furthermore the SO(3)-index of Ψω,A(n; ·) reads as Ind3,d(Ψω,A(n; ·))
= ((−1)nN1 , ..., (−1)nNd)T .

b) (Structure of almost trivial spin-orbit tori) If (ω,A) ∈ AT (d, ω), then, for n ∈
Z, φ ∈ Rd,

Ψω,A(n;φ) = Ψω,A(n; 0) = exp(J 2πnν) , (7.16)

where ν := PH(A) (recall Definition C.2). Moreover if (ω,A) ∈ AT (d, ω) then,

for every n ∈ Z, Ind2(Ψω,A(n; ·)) = 0 and PHF (Ψω,A(n; ·)) is the constant function
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in Cper(R
d,R) whose value is �nν� where ν := PH(A). Furthermore, a (ω,A) ∈

AT (d, ω) is trivial iff PH(A) = 0.

c) (The one-turn criterion) Let (ω,A) ∈ SOT (d, ω). Then (ω,A) ∈ WT (d, ω) iff A

is SO3(2)-valued. Moreover (ω,A) ∈ AT (d, ω) iff A is SO3(2)-valued and constant.

d) Let (ω,A), (ω,A′) ∈ WT (d, ω). If n is an even integer then Ψω,A(n; ·) �2π
SO(3)

Ψω,A′(n; ·). If n is an odd integer then Ψω,A(n; ·) �2π
SO(3) Ψω,A′(n; ·) iff Ind3,d(A) =

Ind3,d(A
′). For every integer n, (ω,A) ∼d,ω (ω,A′) implies Ψω,A(n; ·) �2π

SO(3) Ψω,A′(n; ·).

Proof of Proposition 7.5: See Section F.4. �

Note that the last claim in Proposition 7.5a confirms Proposition 6.4. Note also

that, by Proposition 7.5c and (6.4), there are as many weakly trivial spin-orbit tori

in every SOT (d, ω) as there are elements in Cper(R
d, SO3(2)) and that there are as

many almost trivial spin-orbit tori in every SOT (d, ω) as there are elements in [0, 1).

7.3 Introducing weak coboundaries

Recalling Section 6.2, given a spin-orbit torus (ω,A) in SOT (d, ω), the function

Ψω,A is a SO(3)-cocycle over the topological Z-space (Rd, Lω). This terminology

comes from Dynamical Systems Theory and, in fact, from this terminology I also

borrow the terms ‘coboundary’ and ‘almost coboundary’ which will be introduced

now (the weaker notion ‘weak coboundary’ is my terminology). Note also that, in

this terminology, if (ω,A), (ω,A′) lie on the same Rd,ω-orbit then the SO(3)-cocycles

Ψω,A,Ψω,A′ are called ‘cohomologous’.

Definition 7.6 (Coboundary, almost coboundary, weak coboundary)

A spin-orbit torus (ω,A) ∈ SOT (d, ω) is called a ‘coboundary’ if it belongs to the

Rd,ω-orbit of the trivial spin-orbit torus (ω, I3×3). I denote the set of coboundaries
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in SOT (d, ω) by CB(d, ω). A spin-orbit torus (ω,A) ∈ SOT (d, ω) is called an

‘almost coboundary’ if it belongs to the Rd,ω-orbit of a spin-orbit torus in AT (d, ω).

I denote the set of almost coboundaries in SOT (d, ω) by ACB(d, ω). A spin-orbit

torus (ω,A) ∈ SOT (d, ω) is called a ‘weak coboundary’ if it belongs to the Rd,ω-

orbit of a spin-orbit torus in WT (d, ω). I denote the set of weak coboundaries in

SOT (d, ω) by WCB(d, ω). �

Thus a spin-orbit torus (ω,A) is called a ‘coboundary’ iff Ψω,A is a coboundary in

the terminology of Dynamical Systems Theory and is called an ‘almost coboundary’

iff Ψω,A is an almost coboundary in the terminology of Dynamical Systems Theory.

Note also that the terminology coboundary is also borrowed from Nonabelian Group

Cohomology.

Recalling Section 7.1, ∼d,ω is an equivalence relation on SOT (d, ω) whence, by

Definitions 7.4,7.6,

T (d, ω) ⊂ CB(d, ω) , AT (d, ω) ⊂ ACB(d, ω) , WT (d, ω) ⊂ WCB(d, ω) ,(7.17)

CB(d, ω) ⊂ ACB(d, ω) ⊂ WCB(d, ω) ⊂ SOT (d, ω) . (7.18)

For the relevance of coboundaries, almost coboundaries, and weak coboundaries, see

Section 7.6.

Proposition 7.7 a) Let (ω,A) ∈ WCB(d, ω) and T ∈ Cper(R
d, SO(3)) with (ω,A′) :=

Rd,ω(T ;ω,A) ∈ WT (d, ω). If N := Ind2,d(A
′) then

Ind3,d(Ψω,A(n; ·)) = ((−1)nN1 , ..., (−1)nNd)T for arbitrary integer n.

b) Let (ω,A) ∈ ACB(d, ω). Then, for every n ∈ Z, Ψω,A(n; ·) is 2π-nullhomotopic

w.r.t. SO(3) and Ind3,d(Ψω,A(n; ·)) = (1, ..., 1)T .

Proof of Proposition 7.7: See Section F.5. �
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Lemma 7.8 a) Let R be in SO(3) and Re3 = e3. Then R ∈ SO3(2).

b) A spin-orbit torus (ω,A) is weakly trivial iff A(φ)e3 = e3.

Proof of Lemma 7.8: See Section F.6. �

The following theorem expresses the most important property of weak cobound-

aries.

Theorem 7.9 Let (ω,A) ∈ SOT (d, ω). Then, for every T ∈ Cper(R
d, SO(3)), we

have Rd,ω(T ;ω,A) ∈ WT (d, ω) iff the third column, Te3, of T is the generator of an

ISF of (ω,A). Moreover (ω,A) ∈ WCB(d, ω) iff there exists a T ∈ Cper(R
d, SO(3))

such that Te3 is the generator of an ISF of (ω,A).

Proof of Theorem 7.9: See Section F.7. �

Theorem 7.9 shows that the existence of an ISF is a necessary condition for a

spin-orbit torus to be a weak coboundary. However Theorem 7.10, below, shows that

this is not a sufficient condition.

As we just learned from Theorem 7.9, every weak coboundary has an ISF. I now

address the converse question: is a spin-orbit torus a weak coboundary, if it has an

ISF? A partial answer is given by the following theorem which uses some concepts

introduced in Section 6.4 and which are borrowed from Homotopy Theory.

Theorem 7.10 Let G ∈ Cper(R
d, S2) and let (ω,A) ∈ SOT (d, ω) such that G is the

generator of an ISF SG of (ω,A). Then the following hold.

a) If G is 2π-nullhomotopic w.r.t. S2 then (ω,A) ∈ WCB(d, ω) and a T ∈ Cper(R
d, SO(3))

exists such that Rd,ω(T ;ω,A) ∈ WT (d, ω) and G = Te3.

b) If d = 1 then (ω,A) ∈ WCB(1, ω) and a T ∈ Cper(R, SO(3)) exists such that

R1,ω(T ;ω,A) ∈ WT (1, ω) and G = Te3.
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c) If d = 2 then a T ∈ Cper(R
2, SO(3)) exists such that R2,ω(T ;ω,A) ∈ WT (2, ω)

and G = Te3 iff G is 2π-nullhomotopic w.r.t. S2.

Proof of Theorem 7.10: See Section F.8. �

LetG ∈ Cper(R
d, S2) and let (ω,A) ∈ SOT (d, ω) such thatG is the generator of an

ISF of (ω,A). It is clear by Theorem 7.10a that if (ω,A) is not a weak coboundary,

then G is not 2π-nullhomotopic w.r.t. S2. That this situation does occur, is the

content of Theorem 8.17 (of course, due to Theorem 7.10b, this situation only occurs

if d ≥ 2).

Let G ∈ Cper(R
d, S2) and let (ω,A) ∈ SOT (d, ω) such that G is the generator

of an ISF of (ω,A). If S0 ∈ S2 exists such that neither S0 nor −S0 belong to the

image G then it follows easily from Theorem 7.9 that (ω,A) ∈ WCB(d, ω) (and

thus, by Theorem 7.10c, that, for d = 2, G is 2π-nullhomotopic w.r.t. S2). This

also implies that if (ω,A) ∈ SOT (d, ω) has an ISF SG then the question, whether

(ω,A) ∈ WCB(d, ω), is connected with the issue of ‘how complete’ the image of G

covers the sphere S2.

7.4 Introducing spin tune and spin-orbit resonance

of first kind

Definition 7.11 (Spin tune of first kind, spin-orbit resonance of first kind) Let

(ω,A) ∈ SOT (d, ω). Then the subset Ξ1(ω,A) of [0, 1) is defined by

Ξ1(ω,A) := {PH(A′) : (ω,A′) ∈ AT (d, ω) & (ω,A′) ∼d,ω (ω,A)} . (7.19)

I call ν a ‘spin tune of first kind of (ω,A)’ if ν ∈ Ξ1(ω,A).

I say that (ω,A) is ‘on spin-orbit resonance of first kind’ iff 0 ∈ Ξ1(ω,A). I say
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that (ω,A) is ‘off spin-orbit resonance of first kind’ iff Ξ1(ω,A) is nonempty and

0 
∈ Ξ1(ω,A). �

Definition 7.11 will be discussed, in the Physics context, in Section 7.6.

It is clear that if (ω,A) ∈ AT (d, ω) then, since (ω,A) ∼d,ω (ω,A), PH(A) ∈
Ξ1(ω,A). Of course, Ξ1(ω,A) is nonempty iff (ω,A) is an almost coboundary. Thus

(ω,A) has no spin tune of first kind iff (ω,A) is not an almost coboundary.

By Proposition 7.5 it is clear that there is a vast supply of spin-orbit tori which

have spin tunes of first kind. On the other hand in Section 7.7 I will find a vast supply

of spin-orbit tori which have no spin tune of first kind (see Remark 1 in Section 8.5).

In Section 8.4 (see Proposition 8.9a) we will observe that the sets Ξ1(ω,A) have

a simple structure and (see Proposition 8.10c) I will show that the definition of the

spin-orbit resonance of first kind is equivalent to the familiar condition (8.15). These

results, as several others, go beyond Chapter 7 since they rely on the machinery of

quasiperiodic functions worked out in Chapter 8.

Proposition 7.12 a) Let (ω,A), (ω,A′) ∈ SOT (d, ω). If (ω,A) ∼d,ω (ω,A′), then

Ξ1(ω,A) = Ξ1(ω,A
′). If (ω,A) ∈ ACB(d, ω) then (ω,A) ∼d,ω (ω,A′) iff Ξ1(ω,A) =

Ξ1(ω,A
′).

b) (ω,A) ∈ SOT (d, ω) is on spin-orbit resonance of first kind iff (ω,A) ∈ CB(d, ω).

Moreover, (ω,A) ∈ SOT (d, ω) is off spin-orbit resonance of first kind iff (ω,A) ∈
(ACB(d, ω) \ CB(d, ω)).

c) Let (ω,A), (ω,A′) ∈ SOT (d, ω) with (ω,A) ∼d,ω (ω,A′). Then either both spin-

orbit tori are coboundaries or neither of them, and either both are almost cobound-

aries or neither of them, and either both are weak coboundaries or neither of them.

d) Let (ω,A) ∈ SOT (d, ω). Then (ω,A) ∈ ACB(d, ω) iff there exists a (ω,A′) ∈
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SOT (d, ω) such that Ψω,A(n;φ) is independent of φ and (ω,A) ∼d,ω (ω,A′).

Proof of Proposition 7.12: See Section F.9. �

Propositions 7.12a, 7.12c give again properties shared by spin-orbit tori which

belong to the same Rd,ω-orbit.

It follows from Proposition 7.12d that (ω,A) is an almost coboundary iff Ψω,A is

an almost coboundary in the terminology of [KR].

Concerning Proposition 7.12d, I also note that, by (6.4), Ψω,A(n;φ) is independent

of φ for all integers n iff A(φ) is independent of φ. Moreover it is easy to see that if

A(φ) is independent of φ, then the function Ψω,A(n) of n is a group homomorphism

from the additive group Z into the multiplicative group SO(3), i.e., Ψω,A(n +m) =

Ψω,A(n)Ψω,A(m). In particular this is the case for almost trivial (ω,A).

7.5 Yokoya’s uniqueness theorem

If a spin-orbit torus has an ISF SG then also −SG is an ISF. Thus for spin-orbit tori

which have an ISF, the question arises of whether they have more than two ISF’s.

The following celebrated theorem gives a partial answer (its importance is pointed

out in Section 7.6).

Theorem 7.13 (Yokoya’s uniqueness theorem) Let (ω,A) ∈ SOT (d, ω) and let

(1, ω) be nonresonant. Let (ω,A) have an ISF SG and an ISF which is different

from SG and −SG. Then (ω,A) is on spin-orbit resonance of first kind.

Proof of Theorem 7.13: See Section F.10. �

97



Chapter 7. Transforming spin-orbit tori

7.6 Putting weak coboundaries into perspective

I now can begin to put things into perspective. On the basis of numerical and

experimental evidence from storage rings, it is widely believed that the practically

relevant spin-orbit tori are almost coboundaries (whence weak coboundaries) which

is a strong motivation for many of the concepts introduced in Chapter 7. Part of

the numerical evidence comes from the code SPRINT which, among other things,

contains a numerical procedure which transforms a given almost coboundary into

a weakly trivial spin-orbit torus and then transforms this weakly trivial spin-orbit

torus into an almost trivial spin-orbit torus which then yields a spin tune of first

kind (for more details on this code, see Section 8.5).

Nevertheless one knows of counterexamples, since one has discovered [BV], by

numerical means, spin-orbit tori on orbital resonance which do not have an ISF,

i.e., which, by Theorem 7.9, are not weak coboundaries (and these results were

subsequently confirmed by analytical means). However, I am not aware of a spin-

orbit torus off orbital resonance which does not have an ISF. It is therefore useful

here to state the following conjecture, which I call the ‘ISF-conjecture’: ‘If a spin-

orbit torus (ω,A) is off orbital resonance, then it has an ISF’. While, at least to my

knowledge, the ISF-conjecture is unsettled, it is definitely true that spin-orbit tori

exist off orbital resonance, which are not weak coboundaries (see Theorem 8.17).

Spin tunes of first kind are important tools in the simulation and analysis of

polarized beams in storage rings since spin-orbit resonances of first kind impose

serious limitations on the polarization in a storage ring. On the other hand, by

Theorem 7.13, one sees that, off orbital resonance and off spin-orbit resonance of

first kind, the invariant spin field is unique up to a sign, i.e., only two ISF’s exist in

that situation. Thus in this case one can expect that the invariant spin field is an

important characteristic of (ω,A) and so it perhaps comes as no surprise that, off
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orbital resonance and off spin-orbit resonance of first kind, the invariant spin field

allows to compute the maximal possible polarization in a storage ring [BEH04, Hof,

Vo]. This makes the invariant spin field an important tool in the statistical treatment

of spin-orbit motion.

This is the right place to make also some remarks on the relation of the con-

cept of spin tune of first kind with other works. Let (ω,A) ∈ WCB(d, ω) and T ∈
Cper(R

d, SO(3)). Then, in the context of the flow formalism, T is called, in the ter-

minology of [BEH04], an ‘invariant frame field’ of (ω,A) if Rd,ω(T ;ω,A) ∈ WT (d, ω)

and T is called a ‘uniform invariant frame field’ of (ω,A) if Rd,ω(T ;ω,A) ∈ AT (d, ω).

The point to be made here is that in Yokoya’s fundamental paper [Yo1], uniform in-

variant frame fields are used (in the context of the flow formalism) to define spin

tunes so that indeed spin tunes of first kind are reincarnations of Yokoya’s spin

tunes. In contrast, the spin tunes, defined for the flow formalism in [BEH04] and

their counterparts in the map formalism (introduced in Section 8.4 of the present

work), are the spin tunes of second kind which are based on the tool of quasiperiodic

functions and are nonetheless essentially equal to the spin tunes of first kind. In fact,

by Proposition 8.9a, the spin tunes of first and second kind are identical for almost

coboundaries. In this work the main purpose of the spin tunes of second kind is to

enhance the knowledge of the spin tunes of first kind. Note also that [Yo1] builds

on earlier work by Derbenev and Kondratenko [DK72, DK73] and that [BEH04] can

be roughly characterized as refining [Yo1] by employing quasiperiodic functions. In

turn, the present work refines [BEH04] by employing right and left group actions

allowing thus to systematically build up a transformation theory of spin-orbit tori.
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7.7 Transformations between weakly trivial spin-

orbit tori

Clearly each SOT (d, ω) is the disjoint union of the Rd,ω-orbits. Thus of obvious

interest is the issue of how this foliation looks, e.g., how it depends on d and ω.

Since (recall Section 7.6) I am mainly interested in almost coboundaries (or, slightly

more generally, weak coboundaries), I will only study the subset of SOT (d, ω) which

consists of the Rd,ω-orbits of weak coboundaries. Thus I have to deal with the

following question: when do two weakly trivial spin-orbit tori in SOT (d, ω) belong

to the same Rd,ω-orbit? Perhaps surprisingly, this question can be pursued rather

easily. As a matter of fact I only treat the generic case where spin-orbit tori are

off orbital resonance (the case on orbital resonance can be tackled by the same

techniques). Therefore in this section I state and prove Theorem 7.14 which gives

sufficient and necessary conditions for two weakly trivial spin-orbit tori to be on the

same Rd,ω-orbit. I also point out (see Remark 1 of this section) how these conditions

are related to small-divisor problems and Diophantine sets of orbital tunes. Corollary

7.15 then shows how things further simplify if one of the spin-orbit tori is almost

trivial. In Sections 8.4, 8.5 I will, by using the machinery of quasiperiodic functions,

obtain results related with, and going beyond, Theorem 7.14 and Corollary 7.15. In

particular in Section 8.5 I will see the practical importance of the material from the

present section.

Defining

J ′ :=

⎛
⎜⎜⎜⎝

1 0 0

0 −1 0

0 0 −1

⎞
⎟⎟⎟⎠ , (7.20)

and using

J ′JJ ′ = −J , (7.21)
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I obtain:

Theorem 7.14 Let (1, ω) be nonresonant and (ω,Ai) ∈ WT (d, ω) where i = 1, 2.

Thus, by Proposition 7.5a, I have, for φ ∈ Rd, i = 1, 2,

Ai(φ) = exp(J [MT
i φ+ 2πfi(φ)]) , (7.22)

where Mi := Ind2(Ai), fi := PHF (Ai). Then, abbreviating the zeroth Fourier co-

efficient by fi,0 := (1/2π)d
∫ 2π

0
· · ·
∫ 2π

0
fi(φ)dφ1 · · · dφd and defining f̃i := fi − fi,0 ∈

Cper(R
d,R), the following hold:

a) If T ∈ Cper(R
d, SO3(2)) such that Rd,ω(T ;ω,A1) = (ω,A2) then, after abbreviating

N := Ind2(T ), g := PHF (T ), I get

M1 = M2 , (7.23)

(f1,0 − f2,0 −NTω) ∈ Z , (7.24)

and, for all φ ∈ Rd,

g(φ+ 2πω)− g(φ) = f̃1(φ)− f̃2(φ) . (7.25)

If T ∈ Cper(R
d, SO3(2)) such that Rd,ω(TJ ′;ω,A1) = (ω,A2) then, after abbreviating

N := Ind2(T ), g := PHF (T ), I get

M1 = −M2 , (7.26)

(f1,0 + f2,0 −NTω) ∈ Z , (7.27)

and, for all φ ∈ Rd,

g(φ+ 2πω)− g(φ) = f̃1(φ) + f̃2(φ) . (7.28)

b) If (ω,A1) ∼d,ω (ω,A2) then a T ∈ Cper(R
d, SO3(2)) exists such that either

Rd,ω(T ;ω,A1) = (ω,A2) or Rd,ω(TJ ′;ω,A1) = (ω,A2).

101



Chapter 7. Transforming spin-orbit tori

c) (ω,A1) ∼d,ω (ω,A2) iff the following criterion holds:

Either

M1 = M2 and g ∈ Cper(R
d,R), N ∈ Zd exist such that (7.24), (7.25) hold,

or

M1 = −M2 and g ∈ Cper(R
d,R), N ∈ Zd exist such that (7.27), (7.28) hold.

In the former case Rd,ω(T ;ω,A1) = (ω,A2) where

T (φ) := exp(J [NTφ+ 2πg(φ)]) , (7.29)

and in the latter case Rd,ω(TJ ′;ω,A1) = (ω,A2) where T is given by eq. (7.29).

Proof of Theorem 7.14: See Section F.11. �

Note that the nontrivial part of the proof of Theorem 7.14 is part b).

Remarks:

(1) Perhaps the most important conclusion from Theorem 7.14 is that the spin-

orbit tori (ω,A1), (ω,A2) need not belong to the same Rd,ω-orbit. To make this

point clear, let (1, ω) be nonresonant and let me adopt the notation of Theorem

7.14.

If M2
1 −M2

2 
= 0, f1,0 − f2,0 
∈ Yω, and f1,0 + f2,0 
∈ Yω then, by Theorem 7.14c,

one has (ω,A1) 
∼d,ω (ω,A2) (recall the definition (D.1) of Yω). In addition,

a small divisor problem enhances this effect as follows. Even if M1 −M2 =

0 and f1,0 − f2,0 ∈ Yω, in general one cannot solve eq. (7.25) for g since

the Fourier coefficients of a provisional g are in general hampered by a small

divisor problem preventing them to decay sufficiently fast to make g an element

of Cper(R
d,R). Note also that these Fourier coefficients are, except for the

zeroth Fourier coefficient, uniquely determined by f̃1, f̃2. Analogously, even if
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M1 +M2 = 0 and f1,0 + f2,0 ∈ Yω, in general one cannot solve eq. (7.28) for g

due to an analogous small divisor problem. Note however that if one restricts

ω to some appropriate Diophantine sets, then one can solve eq. (7.25),(7.28)

(whence, in that case, (ω,A1) ∼d,ω (ω,A2)). For further details on Diophantine

sets and related references, see [DEV].

We conclude, for nonresonant (1, ω), that the right group action Rd,ω is not

transitive (recall the definition of ‘transitive’ in Appendix B). This comes as

a relief since ∼d,ω would be rather useless if all spin-orbit tori in SOT (d, ω)

would lie on the same Rd,ω-orbit. Note also that, even without Theorem 7.14,

it is obvious that the Rd,ω-orbits of (ω,A1) and (ω,A2) contain many spin-orbit

tori.

Of course, by the definition of weak coboundaries, I also conclude for nonreso-

nant (1, ω) that weak coboundaries in SOT (d, ω) need not belong to the same

Rd,ω-orbit.

(2) Let me again adopt the notation of Theorem 7.14 and let (1, ω) be nonres-

onant and (ω,A1) ∼d,ω (ω,A2). Theorem 7.14b does not claim that every

T ∈ Cper(R
d, SO(3)) with Rd,ω(T ;ω,A1) = (ω,A2) is either in Cper(R

d, SO3(2))

or of the form T = T ′J ′ with T ′ ∈ Cper(R
d, SO3(2)). However the proof of

Theorem 7.14b implies that, if (ω,A1), (ω,A2) are not coboundaries, then ev-

ery T ∈ Cper(R
d, SO(3)) with Rd,ω(T ;ω,A1) = (ω,A2) is of this simple form,

i.e., either T ∈ Cper(R
d, SO3(2)) or T = T ′J ′ with T ′ ∈ Cper(R

d, SO3(2)). �

Note also that Theorem 7.14c confirms Proposition 7.5d.

The following corollary reconsiders the situation of Theorem 7.14 in the special

case when the spin-orbit torus (ω,A2) is almost trivial.

Corollary 7.15 Let (1, ω) be nonresonant and (ω,A1) ∈ WT (d, ω), (ω,A2) ∈ AT (d, ω).
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Thus, by Proposition 7.5, we have, for φ ∈ Rd,

A1(φ) = exp(J [MT
1 φ+ 2πf1(φ)]) , (7.30)

A2(φ) = exp(J 2πν) , (7.31)

where M1 := Ind2(A1), f1 := PHF (A1), ν := PH(A2) ∈ [0, 1). Then, abbreviating

the zeroth Fourier coefficient of f1 by f1,0 := (1/2π)d
∫ 2π

0
· · ·
∫ 2π

0
f1(φ)dφ1 · · · dφd and

defining f̃1 := f1 − f1,0 ∈ Cper(R
d,R), the following hold:

a) If T ∈ Cper(R
d, SO3(2)) such that Rd,ω(T ;ω,A1) = (ω,A2) then, after abbreviating

N := Ind2(T ), g := PHF (T ), I get

M1 = 0 , (7.32)

(f1,0 − ν −NTω) ∈ Z , (7.33)

and, for all φ ∈ Rd,

g(φ+ 2πω)− g(φ) = f̃1(φ) . (7.34)

If T ∈ Cper(R
d, SO3(2)) such that Rd,ω(TJ ′;ω,A1) = (ω,A2) then we have eq. (7.32)

and, after abbreviating N := Ind2(T ), g := PHF (T ), I get

(f1,0 + ν −NTω) ∈ Z , (7.35)

and, for all φ ∈ Rd, I get eq. (7.34).

b) (ω,A1) ∼d,ω (ω,A2) iff the following criterion holds:

Either

M1 = 0 and g ∈ Cper(R
d,R), N ∈ Zd exist such that (7.33), (7.34) hold,

or

M1 = 0 and g ∈ Cper(R
d,R), N ∈ Zd exist such that (7.34), (7.35) hold.
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In the former case Rd,ω(T ;ω,A1) = (ω,A2) where T is given by eq. (7.29) and in

the latter case Rd,ω(TJ ′;ω,A1) = (ω,A2) where T is given by eq. (7.29).

Proof of Corollary 7.15: See Section F.12. �
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Quasiperiodic functions as tools

for studying spin-orbit tori

Quasiperiodic functions on Z come up naturally for spin-orbit tori since, as already

pointed out at the beginning of Section 7.1, the expression A(φ0 + 2πnω), occurring

in the equation of spin motion (6.8), is an ω-quasiperiodic function of n. Note that

quasiperiodic functions are defined in Section D.1. In Sections 8.1-8.4 I develop the

basic machinery of quasiperiodic functions needed for spin-orbit tori. While some of

the results of Sections 8.1-8.4 are interesting per se (notably Theorems 8.1,8.3,8.5),

their main purpose is to improve, in Sections 8.5-8.7, on the themes which I started

in Chapter 7. Thus the tranformation theory of spin-orbit tori, developed in Chapter

7, stays in the foreground also in the present section. In particular I stick with my

credo mentioned in Section 7.6, that the emphasis is on weak coboundaries.
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8.1 Relations between polarization fields and spin

trajectories

The following theorem is about the characteristic curves of polarization fields.

Theorem 8.1 a) Let (ω,A) ∈ SOT (d, ω). Let SG be a polarization field for this

spin-orbit torus and let φ0 ∈ Rd. Then the ‘characteristic curve’ S : Z → R3,

defined by S(n) := SG(n, φ0 + 2πnω), is a spin trajectory over φ0 for (ω,A). If the

polarization field SG is invariant, then S(n) = G(φ0 + 2πnω) and the spin trajectory

S is ω-quasiperiodic.

b) Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant (for the definition of ‘non-

resonant’, see Section D.1). Let (ω,A) have, for some φ0 ∈ Rd, an ω–quasiperiodic

spin trajectory S over φ0. Then (ω,A) has a unique invariant polarization field SG

such that, for all integers n,

S(n) = G(φ0 + 2πnω) . (8.1)

If in addition S is normalized to 1, i.e., |S(n)| = 1 then SG is an ISF of (ω,A).

Proof of Theorem 8.1: See Section F.13. �

Note that by Theorem 8.1, and off orbital resonance, a nonzero ω–quasiperiodic spin

trajectory over φ0 exists for every φ0, if a nonzero ω–quasiperiodic spin trajectory

exists over some φ0.

Since for every spin trajectory S the function |S| is constant, it follows from

Theorem 8.1b that if, off orbital resonance, at least one nonzero ω–quasiperiodic

spin trajectory exists, then (ω,A) has an ISF.

In spite of Theorem 8.1b, every spin trajectory S over a φ0 is the characteristic

curve of infinitely many polarization fields. In fact, every polarization field SG for
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which G(φ0) = S(0) also satisfies, for every integer n, S(n) = SG(n, φ0 + 2πnω) =

Ψω,A(n;φ0)G(φ0). However it follows from Theorem 8.1b that, in the special case

when (1, ω) is nonresonant and S is ω–quasiperiodic, there is among those infinitely

many polarization fields SG, which satisfy S(n) = SG(n, φ0 + 2πnω), only one that

is invariant.

Recalling Section 7.6, I do not try to solve the ISF-conjecture. Thus by Theorem

8.1b I leave open the question of whether nonzero ω–quasiperiodic spin trajectories

exist off orbital resonance.

However, as mentioned in Section 7.6, relevant spin-orbit tori are almost cobound-

aries whence, by Theorem 7.9 and Theorem 8.1a, they have nonzero ω–quasiperiodic

spin trajectories.

Since, for every spin trajectory S, |S| is constant, it follows from Theorem 8.1b

that if, off orbital resonance, at least one nonzero ω–quasiperiodic spin trajectory

exists, then (ω,A) has an ISF.

Moreover, it follows from the proof of Theorem 8.1b that the invariant polariza-

tion field SG is uniquely determined by S(0). One takes advantage of this fact if

one computes the ISF by the technique of stroboscopic averaging (for remarks on

stroboscopic averaging, see Section 8.5).

8.2 Simple precession frames

With the right group action Rd,ω introduced in Chapter 7, we arrive, in the present

section, at the concept of the simple precession frame. We recall from Defini-

tion 7.2 that if (ω,A), (ω,A′) ∈ SOT (d, ω) and T ∈ Cper(R
d, SO(3)) such that

Rd,ω(T ;ω,A) = (ω,A′) then (7.4) holds. Thus picking a φ0 ∈ Rd, the function
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t : Z→ SO(3), defined by t(n) := T (φ0 + 2πnω), satisfies

tT (n+ 1)A(φ0 + 2πnω)t(n) = A′(φ0 + 2πnω) . (8.2)

Let in addition (ω,A′) ∈ WT (d, ω). Then by Lemma 7.8b, eq. (8.2) implies

t(n + 1)e3 = A(φ0 + 2πnω)t(n)e3 . (8.3)

Comparing (6.8),(8.3), one finds that the third column of t is a spin trajectory of

(ω,A) over φ0. This leads to the following definition.

Definition 8.2 (Simple precession frame)

Let (ω,A) ∈ SOT (d, ω) and let φ0 ∈ Rd. A function t : Z → SO(3) is called

a ‘simple precession frame (SPF) of (ω,A) over φ0’ if its third column is a spin

trajectory over φ0, i.e., if (8.3) holds for all integers n. �

By the remarks before Definition 8.2 it is clear that if T ∈ Cper(R
d, SO(3)) and

Rd,ω(T ;ω,A) ∈ WT (d, ω) then T (φ0 + 2πnω), as a function of n, is an SPF over φ0.

Thus the ‘characteristic curves’ of T are SPF’s (for more details on this, see Theorem

8.3 below).

If t is an SPF over φ0 then, by (8.3), e3 = tT (n + 1)A(φ0 + 2πnω)t(n)e3. Hence,

by Lemma 7.8a, a function λ : Z→ [0, 1) exists such that for all n

tT (n+ 1)A(φ0 + 2πnω)t(n) = exp(2πλ(n)J ) . (8.4)

Clearly λ is unique. I call λ the ‘differential phase function’ of t. We see that

t ‘transforms’ A(φ0 + 2πnω) via (8.4) into the matrix exp(2πλ(n)J ) which has a

simple block diagonal form and this is the origin of the term ‘simple’. Defining the

function μ : Z→ [0, 1) by

μ(n) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if n = 0

�λ(0) + ... + λ(n− 1)� if n > 0

�−λ(−1)− ...− λ(n)� if n < 0

, (8.5)
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I obtain, by (6.4),(8.4), that, for n ∈ Z,

Ψω,A(n;φ0) = t(n) exp(2πμ(n)J )tT (0) . (8.6)

Note that μ is uniquely determined by Ψω,A, φ0, t via (8.6) and satisfies �μ(n+ 1)−
μ(n)� = λ(n) so that I call μ the ‘integral phase function’ of t. Clearly a function

t : Z→ SO(3) is an SPF over φ0 iff a function μ : Z→ R exists such that (8.6) holds

for all integers n.

Remarks:

(1) Let (ω,A) ∈ SOT (d, ω) and let φ0 ∈ Rd. If f is an arbitrary function f : Z→ R

and if R is a constant SO(3)–matrix then, by using (8.4) and the remarks on

(6.5), the function t, defined by t(n) := Ψω,A(n;φ0)R exp(−J 2πf(n)), is an

SPF over φ0 with the differential phase function λ(n) = �f(n + 1) − f(n)�.
One sees by this construction that, for every φ0, a large abundance of SPF’s,

over φ0, exists.

(2) I here discuss a sometimes useful property of SPF’s. Let (ω,A) ∈ SOT (d, ω)

and let t be an SPF of (ω,A) over some φ0 with differential phase function

λ. Let j be an integer and let the function t′ : Z → SO(3) be defined by

t′(n) := t(n+ j). It follows from (8.3) that for all integers n

t′(n+ 1)e3 = t(n + 1 + j)e3 = A(φ0 + 2π(n+ j)ω)t(n+ j)e3

= A(φ0 + 2π(n+ j)ω)t′(n)e3 ,

whence, by (6.8), the third column of t′ is a spin trajectory over φ0 + 2πjω.

Thus t′ is an SPF over φ0 + 2πjω. I also obtain from (8.4) that for all n

t′T (n+ 1)A(φ0 + 2π(n+ j)ω)t′(n) = tT (n+1 + j)A(φ0 + 2π(n+ j)ω)t(n+ j) =

exp(2πλ(n + j)J ). Hence the differential phase function λ′ of t′ is given by

λ′(n) := λ(n + j). If t is ω–quasiperiodic and t̃ is an ω-generator of t then

t̃(·+ 2πjω) is an ω-generator of t′ whence t′ is ω–quasiperiodic. �
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Since an ω–quasiperiodic SPF t is SO(3)-valued, it follows from Definition D.1

that t has an ω-generator t̃ which is R3×3-valued, albeit in general not SO(3)-valued.

Nevertheless, the situation simplifies when (1, ω) is nonresonant, as Part b) of the

following theorem shows.

Theorem 8.3 a) Let (ω,A) ∈ WCB(d, ω) and (ω,A′) := Rd,ω(T ;ω,A) ∈ WT (d, ω)

with T ∈ Cper(R
d, SO(3)). Then, for an arbitrary φ0 ∈ Rd the function t : Z →

SO(3), defined by t(n) := T (φ0 + 2πnω), is an ω–quasiperiodic SPF of (ω,A) over

φ0. Furthermore the differential phase function λ of t satisfies, for n ∈ Z,

λ(n) = �N
T
1 φ0

2π
+NT

n ω + f(1, φ0 + 2πnω)�

= �N
T
1 φ0

2π
+ nNT

1 ω + f(1, φ0 + 2πnω)� , (8.7)

and the integral phase function μ of t satisfies, for n ∈ Z,

μ(n) = �N
T
n φ0

2π
+ f(n, φ0)� = �nN

T
1 φ0

2π
+ f(n, φ0)� , (8.8)

where Nn := Ind2(Ψω,A′(n; ·)), f(n, ·) := PHF (Ψω,A′(n; ·)).

b) Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant. Let also (ω,A) have

an ω–quasiperiodic SPF t over some φ0. Then a unique T ∈ Cper(R
d,R3×3) exists

such that, for all integers n, t(n) = T (φ0 + 2πnω). Moreover T ∈ Cper(R
d, SO(3)).

Furthermore, (ω,A) ∈ WCB(d, ω) and Rd,ω(T ;ω,A) ∈ WT (d, ω).

Proof of Theorem 8.3: See Section F.14. �

As mentioned in Section 7.6, relevant spin-orbit tori are weak coboundaries whence,

by Theorem 8.3a, they have ω–quasiperiodic SPF’s. However as Theorem 8.17

shows there are spin-orbit tori off orbital resonance which are not weak cobound-

aries whence, by Theorem 8.3b, they have no ω–quasiperiodic SPF.
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8.3 Uniform precession frames

In this section I introduce ‘uniform precession frames’ which are special SPF’s. As

one shall see in the next section, uniform precession frames lead to the definition of

the ‘spin tune of second kind’.

Definition 8.4 (Uniform precession frame)

Let (ω,A) ∈ SOT (d, ω) and let φ0 ∈ Rd. Let also t be a simple precession frame

of (ω,A) over φ0 and let its differential phase function be denoted by λ. Then t is

called a ‘uniform precession frame (UPF) over φ0’ if λ(n) is independent of n. The

constant value, say ν, of λ is then called the ‘uniform precession rate (UPR) of t’.

Thus by (8.4)

tT (n+ 1)A(φ0 + 2πnω)t(n) = exp(2πνJ ) , (8.9)

and, by (8.5), the integral phase function μ of t reads as μ(n) = �nν� and whence by

(8.6)

Ψω,A(n;φ0) = t(n) exp(J 2πnν)tT (0) . (8.10)

I denote by Ξ2(ω,A, φ0) the set of those UPR’s which correspond to an ω–quasiperiodic

UPF over φ0 and I define Ξ2(ω,A) :=
⋃

φ0∈Rd Ξ2(ω,A, φ0). �

It follows from Definition 8.4 that a function t : Z → SO(3) is a UPF over φ0 iff a

ν ∈ [0, 1) exists such that either (8.9) or (8.10) holds for all n ∈ Z.

Of course any UPR is uniquely determined by the corresponding UPF but the

converse is not true, i.e., different UPF’s can have the same UPR. It is also clear

that Ξ2(ω,A, ·) is 2π-periodic.

Remarks:
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(1) Let (ω,A) ∈ SOT (d, ω) and let t be a UPF of (ω,A) over some φ0 ∈ Rd. Let

ν denote the UPR of t and let j be an integer. From Remark 2 of Section 8.2

we know that the function t′ : Z → SO(3), defined by t′(n) := t(n + j), is

an SPF over φ0 + 2πjω and that its differential phase function λ′ is given by

λ′(n) := λ(n + j) = ν, where λ is the differential phase function of t. Thus

λ′ has the constant value ν whence t′ is a UPF over φ0 + 2πjω with UPR ν.

It also follows from Remark 2 of Section 8.2 that t′ is ω–quasiperiodic if t is

ω–quasiperiodic. Thus, for every integer j, Ξ2(ω,A, φ0 +2πjω) = Ξ2(ω,A, φ0).

(2) Let (ω,A) ∈ SOT (d, ω) and φ0 ∈ Rd. By Remark 1 of Section 8.2 we know

that Ψω,A(·;φ0) is an SPF over φ0 with the differential phase function λ(n) = 0.

Thus Ψω,A(·;φ0) is an UPF over φ0 with UPR 0. �

Theorem 8.5 a) Let (ω,A) ∈ SOT (d, ω). If ν ∈ Ξ2(ω,A, φ0) for some φ0 ∈ Rd

then every spin trajectory of (ω,A) over φ0 is (ω, ν)–quasiperiodic.

b) Let (ω,A) ∈ ACB(d, ω) and (ω,A′) := Rd,ω(T ;ω,A) ∈ AT (d, ω) with T ∈
Cper(R

d, SO(3)). Then for an arbitrary φ0 ∈ Rd the function t : Z→ SO(3), defined

by t(n) := T (φ0+2πnω), is an ω–quasiperiodic UPF over φ0 with UPR ν = PH(A′).

c) Let (ω,A) ∈ SOT (d, ω) be a and let (1, ω) be nonresonant. Let (ω,A) have

an ω–quasiperiodic UPF t over some φ0 ∈ Rd with UPR ν. Then a unique T ∈
Cper(R

d,R3×3) exists such that, for all integers n, t(n) = T (φ0+2πnω). Moreover T ∈
Cper(R

d, SO(3)). Furthermore, (ω,A) ∈ ACB(d, ω) and (ω,A′) := Rd,ω(T ;ω,A) ∈
AT (d, ω) with PH(A′) = ν ∈ Ξ1(ω,A).

Proof of Theorem 8.5: See Section F.15. �

As mentioned in Section 7.6, I am mainly interested in spin-orbit tori that are almost

coboundaries whence, by Theorem 8.5b, they have ω–quasiperiodic UPF’s. However,
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as mentioned after Theorem 8.3, there are spin-orbit tori off orbital resonance which

have no ω–quasiperiodic SPF whence they have no ω–quasiperiodic UPF.

Theorem 8.5a enables to do spectral analysis of spin trajectories as follows. In

fact if ν ∈ Ξ2(ω,A, φ0) and S is a spin trajectory of (ω,A) over φ0 then, by Lemma

D.4d and Remark 1 in Section D.3, the spectrum of each component Si of S is a

subset of Y(ω,ν) (the spectrum of a complex valued function on Z is defined in Section

D.3).

It is enlightening and easy to obtain a connection between Floquet theory and

UPF’s as follows. I say that (ω,A) ∈ SOT (d) satisfies the generalized Floquet

Theorem over φ0 ∈ Rd if a quasiperiodic SO(3)–valued function p and a real 3 × 3

matrix B exist such that p(0) = I3×3 and such that, for all integers n, Ψω,A(n;φ0) =

p(n) exp(nB). In fact it follows from Definition 8.4 that if t is an ω–quasiperiodic

UPF over φ0 with UPR ν then the generalized Floquet Theorem holds over φ0 since

one can define p and B by p(n) := t(n)tT (0), B := 2πνt(0)J tT (0). In particular

one concludes from Theorem 8.5b that if (ω,A) is an almost coboundary then the

generalized Floquet Theorem is satisfied over every φ0 ∈ Rd.

The following theorem (Theorem 8.6) reveals the structure of the sets Ξ2(ω,A, φ0)

(and this in turn will reveal, in the next section, the structure of the sets Ξ1(ω,A)).

To prepare for the following theorem let (ω,A) ∈ SOT (d, ω) and let φ0 ∈ Rd.

I first recall from Definition D.1 that, for ω ∈ Rd, Yω is defined by Yω := {mTω+

n : m ∈ Zd, n ∈ Z}. For the following theorem I need the equivalence relation

∼ω on [0, 1) by which elements ν1, ν2 ∈ [0, 1) are equivalent iff there exist (ε, y) ∈
{1,−1} × Yω such that ν2 = εν1 + y. The equivalence class of a ν ∈ [0, 1) is denoted

by [ν]ω. Clearly

[ν]ω = {(εν + y) ∈ [0, 1) : ε ∈ {1,−1}, y ∈ Yω}

= {�εν + y� : ε ∈ {1,−1}, y ∈ Yω} = {�εν + jTω� : ε ∈ {1,−1}, j ∈ Zd} . (8.11)
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To get a feel for the equivalence relation ∼ω I now show that if ν is in Ξ2(ω,A, φ0)

then

[ν]ω ⊂ Ξ2(ω,A, φ0) . (8.12)

In fact if ν ∈ Ξ2(ω,A, φ0) then by Definition 8.4 an ω–quasiperiodic UPF t exists

over φ0 which has UPR ν. I pick a y ∈ Yω and define the function t′ : Z→ SO(3) by

t′(n) := t(n) exp(−J 2πny). Clearly t′ is an ω–quasiperiodic function. Furthermore

for n ∈ Z we have, by (8.9),

t′T (n + 1)A(φ0 + 2πnω)t′(n)

= exp(J 2π(n+ 1)y)tT (n + 1)A(φ0 + 2πnω)t(n) exp(−J 2πny)

= exp(J 2π(n+ 1)y) exp(2πνJ ) exp(−J 2πny) = exp(J 2π(ν + y)) .

Thus t′ is an ω–quasiperiodic UPF over φ0 with UPR �ν + y�. I define the function

t′′ : Z→ SO(3) by t′′(n) := t(n) exp(J 2πny)J ′, where J ′ is given by (7.20). Clearly

t′′ is an ω–quasiperiodic function. Furthermore for n ∈ Z we have by (8.9)

t′′T (n+ 1)A(φ0 + 2πnω)t′′(n)

= J ′ exp(−J 2π(n+ 1)y)tT (n+ 1)A(φ0 + 2πnω)t(n) exp(J 2πny)J ′

= J ′ exp(−J 2π(n+ 1)y) exp(2πνJ ) exp(J 2πny)J ′ = J ′ exp(J 2π(ν − y))J ′

= exp(J ′JJ ′2π(ν − y)) = exp(−J 2π(ν − y)) = exp(J 2π(−ν + y)) ,

where in the fifth equality I used (7.21). Thus t′′ is an ω–quasiperiodic UPF over

φ0 with UPR �−ν + y�. I have therefore shown that if ν ∈ Ξ2(ω,A, φ0) and ε ∈
{1,−1}, y ∈ Yω then �εν + y� ∈ Ξ2(ω,A, φ0) so that, by (8.11), the inclusion (8.12)

holds, as was to be proven. While obtaining (8.12) was elementary, the following

theorem strengthens this inclusion to an equality. Since the proof of Theorem 8.6

involves rather sophisticated properties of quasiperiodic functions, this indicates that

(8.13) is a much deeper property than (8.12).
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Theorem 8.6 (Structure of Ξ2(ω,A, φ0)) Let (ω,A) ∈ SOT (d, ω) and let φ0 ∈ Rd.

If ν ∈ Ξ2(ω,A, φ0) then

Ξ2(ω,A, φ0) = [ν]ω . (8.13)

Proof of Theorem 8.6: See Section F.16. �

8.4 Introducing spin tune and spin-orbit resonance

of second kind

In this work the main purpose of UPF’s and UPR’s is to enhance the knowledge of

the spin tunes and spin-orbit resonances of first kind. The following theorem gives a

first glance at the relation between spin tunes of first kind and UPR’s, in particular

between Ξ1(ω,A) and Ξ2(ω,A, φ0).

Theorem 8.7 a) Let (ω,A) be a spin-orbit torus. If ν ∈ Ξ1(ω,A) then [ν]ω ⊂
Ξ1(ω,A). Moreover, if y ∈ ([0, 1) ∩ Yω) then [y]ω = [0, 1) ∩ Yω. Furthermore either

([0, 1) ∩ Yω) ⊂ Ξ1(ω,A) or Ξ1(ω,A) ∩ Yω = ∅.

b) Let (ω,A) ∈ SOT (d, ω). Then for all φ0 ∈ Rd

Ξ1(ω,A) ⊂ Ξ2(ω,A, φ0) . (8.14)

Moreover, if Ξ1(ω,A) is nonempty, then, for all φ0 ∈ Rd, Ξ1(ω,A) = Ξ2(ω,A, φ0).

c) Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant. Then, for all φ0 ∈ Rd,

Ξ1(ω,A) = Ξ2(ω,A, φ0).

d) Let (ω,A), (ω,A′) ∈ SOT (d, ω) with (ω,A) ∼d,ω (ω,A′) and let φ0 ∈ Rd. Then

Ξ2(ω,A
′, φ0) = Ξ2(ω,A, φ0).
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Proof of Theorem 8.7: See Section F.17. �

In the case of most practical interest, i.e., when (ω,A) is an almost coboundary,

the sets Ξ1(ω,A) and Ξ2(ω,A, φ0) are equal by Theorem 8.7b. The following defini-

tion of spin tune of second kind transfers the spin tune definition in [BEH04] from

the flow formalism to the map formalism.

Definition 8.8 (Spin tune of second kind, spin-orbit resonance of second kind) Let

(ω,A) ∈ SOT (d, ω). Then (ω,A) is said to be ‘well–tuned’ if all Ξ2(ω,A, φ0) are

nonempty and equal, where φ0 varies over Rd. Otherwise (ω,A) is said to be ‘ill–

tuned’. Of course, if (ω,A) is well–tuned, then, due to Definition 8.4 all Ξ2(ω,A, φ0)

are equal to Ξ2(ω,A), where again φ0 varies over Rd. For a well–tuned spin-orbit

torus I call the elements of Ξ2(ω,A) ‘spin tunes of second kind’.

If the spin-orbit torus is well–tuned then it is said to be ‘on spin-orbit resonance

of second kind’ if 0 is a spin tune of second kind and it is said to be ‘off spin-orbit

resonance of second kind’ if 0 is not a spin tune of second kind. �

Proposition 8.9 a) Let (ω,A) ∈ SOT (d, ω). If (ω,A) ∈ ACB(d, ω) then (ω,A) is

well–tuned and the spin tunes of first and second kind are the same. If ν ∈ Ξ1(ω,A)

then Ξ1(ω,A) = [ν]ω. If (ω,A) is well–tuned and if ν is a spin tune of second kind

then, for all φ0 ∈ Rd, Ξ2(ω,A) = Ξ2(ω,A, φ0) = [ν]ω.

b) Let (ω,A), (ω,A′) ∈ SOT (d, ω) and (ω,A) ∈ ACB(d, ω). Then either Ξ1(ω,A) ∩
Ξ1(ω,A

′) = ∅ or Ξ1(ω,A) = Ξ1(ω,A
′). In the former case (ω,A) 
∼d,ω (ω,A′) and in

the latter case (ω,A) ∼d,ω (ω,A′), (ω,A′) ∈ ACB(d, ω).

c) If (ω,A) is a spin-orbit torus and if (1, ω) is nonresonant then the following hold.

The spin-orbit torus (ω,A) is well–tuned iff (ω,A) ∈ ACB(d, ω). If (ω,A) is well–

tuned then Ξ1(ω,A) = Ξ2(ω,A).

d) For every spin-orbit torus (ω,A) the following hold. If ν is a spin tune of second
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kind of (ω,A) then each spin trajectory of (ω,A) is (ω, ν)–quasiperiodic. If ν is a spin

tune of first kind of (ω,A) then each spin trajectory of (ω,A) is (ω, ν)–quasiperiodic.

e) A (ω,A) ∈ SOT (d, ω) is well–tuned iff the Ξ2(ω,A, φ0) have a common element

when φ0 varies over Rd.

f) If (ω,A) ∈ SOT (d, ω) then the following hold. The set Ξ1(ω,A) and the sets

Ξ2(ω,A, φ0), where φ0 varies over Rd, have countably many elements. The spin-

orbit torus is ill–tuned if Ξ2(ω,A) has uncountably many elements.

g) If (ω,A), (ω,A′) ∈ SOT (d, ω) with (ω,A) ∼d,ω (ω,A′) then the following hold.

Either both spin-orbit tori (ω,A), (ω,A′) are well–tuned or both of them are ill-tuned.

Moreover if the spin-orbit tori (ω,A), (ω,A′) are well-tuned then they have the same

spin tunes of second kind.

Proof of Proposition 8.9: See Section F.18. �

Remark:

(1) An important conclusion from Proposition 8.9a is that two almost coboundaries

(ω,A), (ω,A′) ∈ ACB(d, ω) need not belong to the same Rd,ω-orbit, as follows.

In fact, picking ν ∈ Ξ1(ω,A), ν ′ ∈ Ξ1(ω,A
′) such that [ν]ω 
= [ν ′]ω, we have,

by Proposition 8.9a, that Ξ1(ω,A
′) = [ν ′]ω 
= [ν]ω = Ξ1(ω,A) whence, by

Proposition 7.12a, (ω,A) 
∼d,ω (ω,A′).

I now address the topic of spin-orbit resonances of first and second kind.

Proposition 8.10 a) If a spin-orbit torus is on spin-orbit resonance of first kind

then it is on spin-orbit resonance of second kind. If a spin-orbit torus is off spin-orbit

resonance of first kind then it is off spin-orbit resonance of second kind.

b) Let (ω,A) be a spin-orbit torus. Then (ω,A) is on spin-orbit resonance of second

kind iff all of its spin trajectories are ω–quasiperiodic.
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c) A (ω,A) ∈ SOT (d, ω) is on spin-orbit resonance of first kind iff Ξ1(ω,A) =

[0, 1) ∩ Yω. Furthermore a (ω,A) ∈ SOT (d, ω) is on spin-orbit resonance of first

kind iff (ω,A) has a spin tune ν of first kind such that m ∈ Zd, n ∈ Z exist with

ν = mTω + n . (8.15)

d) A (ω,A) ∈ SOT (d, ω) is on spin-orbit resonance of second kind iff, for all φ0 ∈
Rd, Ξ2(ω,A, φ0) = [0, 1) ∩ Yω. Furthermore a (ω,A) ∈ SOT (d, ω) is on spin-orbit

resonance of second kind iff it has a spin tune ν of second kind such that m ∈ Zd, n ∈
Z which satisfy (8.15).

e) If (ω,A), (ω,A′) ∈ SOT (d, ω) are on spin-orbit resonance of first kind, then

(ω,A) ∼d,ω (ω,A′).

f) If (ω,A), (ω,A′) ∈ SOT (d, ω) with (ω,A) ∼d,ω (ω,A′) then the following hold.

Either both of (ω,A), (ω,A′) are on spin-orbit resonance of second kind or neither of

them. Furthermore either both of them are off spin-orbit resonance of second kind or

neither of them.

g) (Yokoya’s uniqueness theorem revisited) Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be

nonresonant. Let (ω,A) have an ISF SG and an ISF which is different from SG and

−SG. Then (ω,A) is on spin-orbit resonance of second kind.

Proof of Proposition 8.10: See Section F.19. �

8.5 The SPRINT theorem and a corresponding

spin tune algorithm

I now resume the theme of Section 7.7 and pose a question about the circumstances

for which a weakly trivial spin-orbit torus is an almost coboundary. As a matter of
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fact, as in Section 7.7, I confine to the case off orbital resonance for which Theorem

8.11 answers the question. On the basis of Theorem 8.11 I then prove the ‘SPRINT

Theorem’ (Corollary 8.12) and demonstrate its practical importance by outlining,

after Corollary 8.12, an algorithm, used in the code SPRINT, to compute spin tunes

of first and second kind.

Theorem 8.11 Let (1, ω) be nonresonant and (ω,A1) ∈ WT (d, ω). Thus, by Propo-

sition 7.5a, eq. (7.30) holds for φ ∈ Rd, where M1 := Ind2(A1), f1 := PHF (A1).

Then, abbreviating the zeroth Fourier coefficient of f1 by

f1,0 := (1/2π)d
∫ 2π

0
· · ·
∫ 2π

0
f1(φ)dφ1 · · · dφd and defining f̃1 := f1 − f1,0 ∈ Cper(R

d,R),

the following hold:

a) (ω,A1) ∈ ACB(d, ω) iff the following conditions are satisfied: M1 = 0 and a

g ∈ Cper(R
d,R) exists such that (7.34) is true for all φ ∈ Rd.

b) Let M1 = 0 and let g ∈ Cper(R
d,R) exist such that (7.34) holds for all φ ∈ Rd

(thus, by Theorem 8.11a, (ω,A1) ∈ ACB(d, ω)). Then picking a N ∈ Zd and defining

T ∈ Cper(R
d, SO3(2)) by (7.29), the following hold. The spin-orbit torus (ω,A2) :=

Rd,ω(T ;ω,A1) is almost trivial and, for φ ∈ Rd, we have

A2(φ) = exp(J 2πν2) , (8.16)

where ν2 := �f1,0−NTω�. Moreover ν2 ∈ Ξ1(ω,A1). The spin-orbit torus (ω,A3) :=

Rd,ω(TJ ′;ω,A1) is almost trivial and, for φ ∈ Rd, we have

A3(φ) = exp(J 2πν3) , (8.17)

where ν3 := �−f1,0 +NTω�. Moreover ν3 ∈ Ξ1(ω,A1).

c) Let (ω,A1) ∈ ACB(d, ω). Then (ω,A1) is well-tuned and

[�f1,0�]ω = Ξ1(ω,A1) = Ξ2(ω,A1) . (8.18)
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Proof of Theorem 8.11: See Section F.20. �

Remark:

(1) Clearly, those spin-orbit tori in Theorem 8.11a, with M1 
= 0, are not almost

coboundaries. Another consequence of Theorem 8.11a is the following. Let

(1, ω) be nonresonant and let (ω,A1), (ω,A2) ∈ WT (d, ω) such that M1,M2 
=
0 and M2

1 − M2
2 
= 0 where Mi := Ind2(Ai) (i = 1, 2). Thus, by Theorem

7.14c, one observes that (ω,A1) 
∼d,ω (ω,A2). Moreover, by Theorem 8.11a,

(ω,A1), (ω,A2) are not almost coboundaries whence Ξ1(ω,A1) = Ξ1(ω,A2) =

∅. Therefore (ω,A1), (ω,A2) provide an example of two spin-orbit tori in the

same SOT (d, ω) and with identical Ξ1 but which are not on the same Rd,ω-

orbit. Thus this example shows that, in general, the converse of the first claim

in Proposition 7.12a is not true. �

The following corollary to Theorem 8.11 I call the ‘SPRINT Theorem’ since it

presents the facts used by the code SPRINT for the numerical calculation of spin

tunes (of first and second kind) via stroboscopic averaging (for details on this code,

see the remarks after Corollary 8.12). Note that the notation A1,M1, f1, f1,0 used in

Corollary 8.12 serves to facilitate the comparison with Theorem 8.11.

Corollary 8.12 (The SPRINT Theorem) Let (ω,A) ∈ ACB(d, ω) and let (1, ω) be

nonresonant. Let us choose a T ∈ Cper(R
d, SO(3)) such that (ω,A1) := Rd,ω(T ;ω,A) ∈

WT (d, ω). Thus, by Proposition 7.5a, eq. (7.30) holds for φ ∈ Rd, where M1 :=

Ind2(A1), f1 := PHF (A1). Abbreviating the zeroth Fourier coefficient of f1 by

f1,0 := (1/2π)d
∫ 2π

0
· · ·
∫ 2π

0
f1(φ)dφ1 · · · dφd, the following hold:

a) The spin-orbit tori (ω,A) and (ω,A1) are well-tuned and their spin tunes of first

and second kind satisfy

[�f1,0�]ω = Ξ1(ω,A) = Ξ2(ω,A) = Ξ1(ω,A1) = Ξ2(ω,A1) . (8.19)
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b) We have M1 = 0 and, for φ ∈ Rd, n = 1, 2, ...,

Ψω,A1(n;φ) = exp

(
J 2π

n−1∑
j=0

f1(φ+ 2πjω)

)
. (8.20)

Moreover, the zeroth Fourier coefficient of f1 reads as

f1,0 = lim
n→∞

1

n

n−1∑
j=0

f1(2πjω) . (8.21)

c) The function t : Z → SO(3), defined by t(n) := T (2πnω), is an ω-quasiperiodic

SPF of (ω,A) over 0 ∈ Rd and for n = 1, 2, ... we have

Ψω,A(n; 0) = t(n) exp

(
J 2π

n−1∑
j=0

f1(2πjω)

)
tT (0) . (8.22)

The function S : Z→ S2, defined by S(n) := Ψω,A(n; 0)t(0)e1 is a spin trajectory of

(ω,A) over 0 ∈ Rd. Moreover for n = 1, 2, ...,

exp

(
i2π

n−1∑
j=0

f1(2πjω)

)
= (e1 + ie2)T tT (n)S(n) . (8.23)

where, as usual, i denotes the complex root of −1 lying in the upper complex plane.

Proof of Corollary 8.12: See Section F.21. �

Corollary 8.12 is of practical interest for the numerical calculation of spin tunes

(of first and second kind) via stroboscopic averaging in the code SPRINT [EPAC98,

BHV98, Hof, Vo, BHV00, BEH00]. Note that SPRINT also employs a second

method, which is due to Yokoya [Yo2] and different from stroboscopic averaging,

but which is of no relevance for the point I want to make here. Thus in the following

paragraph I sketch, by using the notation of Corollary 8.12, that particular algorithm

in SPRINT which computes, via stroboscopic averaging, spin tunes of first and sec-

ond kind. Note that SPRINT performs this algorithm not just for a single spin-orbit

torus but for a whole family of spin-orbit tori (which constitute the spin-orbit system
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to be dealt with in a storage ring). This important circumstance, which is explained

in Remark 2 of this section, is essential for putting the algorithm into perspective.

Now I outline the algorithm as it is used, up to some modifications which do

not matter here, by the code SPRINT. Let (ω,A) ∈ SOT (d, ω) be an almost

coboundary and let it be off orbital resonance, i.e., let (1, ω) be nonresonant. As

a first step the algorithm computes an ISF SG of (ω,A) via the technique of stro-

boscopic averaging, which is a certain way of summing tracking data. As a matter

of fact, the algorithm merely computes SG at the points φ = 0 and φ = 2πNω

for some sufficiently large positive integer N , i.e., it computes the points G(0) and

G(2πNω) in S2. From that, by a simple orthonormalization procedure, the algo-

rithm computes a T ∈ Cper(R
d, SO(3)) whose third column is G. In fact, the

algorithm merely computes T at the points φ = 0 and φ = 2πNω, i.e., com-

putes the points T (0) = t(0) and T (2πNω) = t(N) in SO(3). Note incidentally

that, by Theorem 7.9, one has Rd,ω(T ;ω,A) ∈ WT (d, ω). So, let us abbreviate

(ω,A1) := Rd,ω(T ;ω,A) ∈ WT (d, ω) because we are in the situation of Corollary

8.12. On the other hand the algorithm computes in a recursive way, via spin track-

ing, the points S(1), ..., S(N) in S2 where S(n) := Ψω,A(n; 0)t(0)e1. Now Corollary

8.12 comes into play since the algorithm uses the data t(N), S(N) to compute a spin

tune as follows. If N is sufficiently large (order of magnitude N = 100000), then, by

Corollary 8.12b, we have

Nf1,0 ≈
N−1∑
j=0

f1(2πjω) ,

whence by Corollary 8.12c,

exp(i2πN�f1,0�) = exp(i2πNf1,0) ≈ exp

(
i2π

N−1∑
j=0

f1(2πjω)

)

= (e1 + ie2)T tT (N)S(N) .
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Thus for large N a (unique) ν ∈ [0, 1) exists such that

exp(i2πNν) = (e1 + ie2)T tT (N)S(N) , (8.24)

�f1,0� ≈ ν . (8.25)

To summarize: Solving (8.24) for ν ∈ [0, 1) the algorithm obtains an approximation

of �f1,0�. However, by Corollary 8.12a, �f1,0� is a spin tune of first and second kind of

(ω,A). Thus ν is an approximation of a spin tune of first and second kind of (ω,A)

which completes my outline of the algorithm.

In retrospect one sees that the algorithm, being a blend of concepts and facts

established in Chapters 7 and 8, computes t(N), S(N) and applies (8.24). The

computation of t(N), S(N) is done by tracking, i.e., by solving the equations of

motion (6.1),(6.2) in a recursive way.

Remark:

(2) We recall from the Introduction (see Section 5.1) that, in the situation of

a storage ring, one is not only faced with a single spin-orbit torus but with a

continuous family of spin-orbit tori labelled by an action-parameter J , i.e., with

a spin-orbit system. Then the spin tune �f1,0� unfolds into a family of spin tunes

paramterized by J . This function �f1,0� of J is called the ‘amplitude dependent

spin tune (ADST)’ and experience shows that it is piecewise continuous in J .

The piecewise continuity in J is due to the continuity of ω in J and to the fact

that T is constructed in a way such that it depends piecewise continuously on

the parameter J . The latter is achieved, thanks to the stroboscopic averaging

technique, by constructing the above mentioned ISF SG (whose generator G is

the third column of T ) such that G is a piecewise continuous function of the

parameter J and by performing the orthonormalization procedure, which leads

from G to T , in a piecewise continuous way.
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Of course, the code SPRINT has to discretize the continuous J-values into

a grid, and, once having choosen this grid sufficiently dense, SPRINT nicely

exhibits the piecewise continuous dependence of �f1,0� on J . �

A completely different method of computing spin tunes is based on the spectral

analysis of spin trajectories which is briefly outlined in Section 8.3. This method is

outlined in even greater detail, for the flow formalism, in [BEH04].

8.6 The impact of Homotopy Theory on spin tunes

of first kind

In this section I state and prove Theorem 8.15. Parts c) and d) of this theorem display

how Homotopy Theory has an impact on the individual values of the spin tunes of

first kind. In fact, in the situation of Theorems 8.15c,d, Ξ1(ω,A) partitions into sets

in a way, such each of these sets is associated with a certain subset of [Rd, SO(3)]2π.

For more details and the practical implications of this, see the remarks after Theorem

8.15. Recall that [Rd, SO(3)]2π is defined in Definition C.19.

Definition 8.13 Let (ω,A) ∈ SOT (d, ω) and s ∈ {1,−1}d. Then Ξs
1(ω,A) is de-

fined by

Ξs
1(ω,A) := {PH(A′) : (ω,A′) = Rd,ω(T ;ω,A) ∈ AT (d, ω),

T ∈ Cper(R
d, SO(3)), Ind3,d(T ) = s} .

Clearly for every (ω,A) ∈ SOT (d, ω) we have

Ξ1(ω,A) =
⋃

s∈{1,−1}d

Ξs
1(ω,A) . (8.26)
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With χ ∈ Rk, s ∈ {1,−1}k I define

Y s
χ := {mTχ+ n : m ∈ Zk, n ∈ Z, s = ((−1)m1 , ..., (−1)mk)T} ⊂ Yχ ,

Y half
χ := {m

Tχ+ n

2
: n ∈ Z, m ∈ Zk, ((−1)m1 , ..., (−1)mk) 
= (1, ..., 1)} ,

where Yχ is given by Definition D.1. �

Proposition 8.14 If (ω,A) ∈ WCB(d, ω) and s ∈ {1,−1}d then there exists T ∈
Cper(R

d, SO(3)) with SO(3)-index s such that Rd,ω(T ;ω,A) ∈ WT (d, ω). If (ω,A) ∈
ACB(d, ω) then, for every t ∈ {1,−1}d, Ξt

1(ω,A) is nonempty.

Proof of Proposition 8.14: See Section F.22. �

If Ξ1(ω,A) is nonempty then, by Proposition 8.14, each Ξs
1(ω,A) is nonempty

which raises the option to see some structure in Ξs
1(ω,A) leading to the question of

whether the Ξs
1(ω,A) overlap or don’t, i.e., the question of whether the union on

the rhs of (8.26) is disjoint or not. Theorem 8.15 gives conditions under which the

Ξs
1(ω,A) indeed don’t overlap. For the implications of this, see the remarks after

Theorem 8.15.

Theorem 8.15 Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant. Then the

following hold.

a) Let (ω,A) ∈ ACB(d, ω) and let T1, T2 ∈ Cper(R
d, SO(3)) such that (ω,Ai) :=

Rd,ω(Ti;ω,A) ∈ AT (d, ω) where i = 1, 2. Abbreviating νi := PH(Ai), where i = 1, 2,

and s := Ind3,d(T
T
1 T2) then either (ν1 − ν2) ∈ Y s

ω or (ν1 + ν2) ∈ Y s
ω .

b) Let (ω,A) ∈ ACB(d, ω). If one picks, by using Proposition 8.14, a ν in Ξ
(1,...,1)
1 (ω,A)

then one obtains, for every s ∈ {1,−1}d,

Ξs
1(ω,A) ⊂ {εν + y : y ∈ Y s

ω , ε ∈ {1,−1}} . (8.27)
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c) If Ξ1(ω,A)∩Y half
ω = ∅ and s, t ∈ {1,−1}d with s 
= t then Ξs

1(ω,A)∩Ξt
1(ω,A) = ∅.

d) Let (ω,A) have an ISF SG and let it also have an ISF which is different from SG

and −SG. Then Ξ1(ω,A) 
= ∅ and, for s 
= t, Ξs
1(ω,A) ∩ Ξt

1(ω,A) = ∅.

e) Either Ξ1(ω,A) ⊂ Y half
ω or Ξ1(ω,A) ∩ Y half

ω = ∅.

Remark: The burden of the proof of Theorem 8.15 is on the proof of Theorem 8.15a.

Proof of Theorem 8.15: See Section F.23. �

Since Theorems 8.15c,d give conditions under which the Ξs
1(ω,A) don’t overlap

they display at the same time how Homotopy Theory impacts the spin tunes of

first kind, as follows. Let (ω,A) ∈ ACB(d, ω) and s1 
= s2 such that Ξs1

1 (ω,A) ∩
Ξs2

1 (ω,A) = ∅. If νi ∈ Ξsi

1 (ω,A) then, by Definition 8.13, a Ti ∈ Cper(R
d, SO(3))

exists with Ind3,d(Ti) = si and such that (ω,Ai) := Rd,ω(Ti;ω,A) ∈ AT (d, ω) and

νi = PH(Ai) where i = 1, 2. Since s1 
= s2 we have Ind3,d(T1) 
= Ind3,d(T2) whence,

by Proposition C.18e, T1 
�2π
SO(3) T2, i.e., T1, T2 are not 2π-homotopic w.r.t. SO(3).

I now discuss some aspects of the situation, in which the Ξs
1(ω,A) don’t overlap,

that are not only of theoretical but also of practical interest. Let (ω,A) ∈ ACB(d, ω)

such that the Ξs
1(ω,A) don’t overlap. Then the elements of Ξ

(1,...,1)
1 (ω,A) are rather

exceptional as follows. I recall from Definition 8.13 that for each element ν of

Ξ
(1,...,1)
1 (ω,A) a T ∈ Cper(R

d, SO(3)) exists with Ind3,d(T ) = (1, ..., 1)T and such

that (ω,A′) := Rd,ω(T ;ω,A) ∈ AT (d, ω) and ν = PH(A′). Note that, by Definitions

C.12,C.14, every lifting of T w.r.t. (S3, p2, SO(3)) is a function T̃ ∈ Cper(R
d, S3),

i.e., is 2π-periodic. Thus in computer codes which compute T in the quaternion for-

malism, i.e., which deal with T̃ , the elements of Ξ
(1,...,1)
1 (ω,A) require a 2π-periodic

T̃ whereas each element of Ξ1(ω,A) \ Ξ
(1,...,1)T

1 (ω,A) requires a T̃ which is not 2π-

periodic. In other words, the spin tunes of first kind which are associated with

2π-periodic T̃ ′s, are rather exceptional. This phenomenon, which occurs in a sim-
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ilar way also in the spinor formalism (the latter formalism is mentioned in Section

5.3), was observed in [Hof, Section 4.1],[Yo2] and accordingly the present section is

inspired by these two works.

8.7 Further properties of invariant spin fields

Lemma 8.16 Let G ∈ Cper(R
d, S2) be of class C1 and let ω ∈ Rd. Then a (ω,A) ∈

SOT (d, ω) exists which has an ISF SG generated by G.

Proof of Lemma 8.16: See Section F.24. �

I now resume the theme of Theorem 7.10.

Theorem 8.17 Let ω be in Rd such that (1, ω) is nonresonant and d ≥ 2. Then

there exists a (ω,A) ∈ (SOT (d, ω) \ WCB(d, ω)) which has an ISF SG. For every

such spin-orbit torus, SG and −SG are the only ISF’s.

Proof of Theorem 8.17: See Section F.25. �
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Reconsidering the Z-actions Lω,A

and L
(PF )
ω,A

In this section I reconsider the Z-actions Lω,A and L
(PF )
ω,A introduced in Chapter 6.

9.1 Carving out the topological Z-spaces (Rd+3, Lω,A)

as skew products of the topological Z-spaces

(Rd, Lω)

Proposition 9.1 Let (ω,A) be a d-dimensional spin-orbit torus. Then the function

h : Rd+3 → Rd, defined, for φ ∈ Rd, S ∈ R3, by h(φ1, ..., φd, S) := (φ1, ..., φd)
T , is

a continuous Z-map from the topological Z-space (Rd+3, Lω,A) to the topological Z-

space (Rd, Lω). Moreover, the topological Z-space (Rd+3, Lω,A) is a skew product of

the topological Z-space (Rd, Lω).

Proof of Proposition 9.1: See Section F.26. �
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(PF )
ω,A

With Proposition 9.1 I can now put (6.6) into perspective. In fact, while in Section

6.1 I derived (6.6) from (6.1),(6.2) I now derive (6.6) in a different way. Since, by

Proposition 9.1, (Rd+3, Lω,A) is a skew product of (Rd, Lω) I can apply Remark 1 in

Appendix B. According to that remark we get, for n ∈ Z, φ ∈ Rd, S ∈ R3,

Lω,A(n;φ, S) =

⎛
⎝ Lω(n;φ)

L′′(n;φ, S)

⎞
⎠ , (9.1)

where the function L′′ : Z× Rd+3 → R3 satisfies, for m,n ∈ Z, φ ∈ Rd, S ∈ R3,

L′′(n+m;φ, S) = L′′(n;φ+ 2πmω, L′′(m;φ, S)) , (9.2)

where I also have used (6.14). Imposing the condition that L′′(n;φ, S) is linear in S

I get, for n ∈ Z, φ ∈ Rd, S ∈ R3,

L′′(n;φ, S) = L′′′(n;φ)S , (9.3)

where L′′′ is a function from Z × Rd into the set of real 3 × 3 matrices. It follows

from (9.2),(9.3) that, for m,n ∈ Z, φ ∈ Rd, S ∈ R3,

L′′′(n +m;φ) = L′′′(n;φ+ 2πmω)L′′′(m;φ) , (9.4)

which is indeed (6.6) expressed in terms of L′′′. We conclude that (6.6) follows from

the facts that (Rd+3, Lω,A) is a skew product of (Rd, Lω) and that the S-dependent

components of Lω,A(n;φ, S) are linear in S.

9.2 Carving out the topological Z-spaces (Rd+3, Lω,A)

as extensions of the topological Z-spaces (Td×
R3, L

(T )
ω,A)

As mentioned in Section 6.1, the spin-orbit motion in Rd+3 is closely related to an

associated spin-orbit motion in Td ×R3 which is characterized by the Z-action L
(T )
ω,A
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on Td × R3 that is defined in Proposition 9.2b. In fact while the emphasis in the

present work is on orbital motion in Rd, a deeper study of spin-orbit tori will need a

stronger focus on orbital motion in Td and therefore the present section give a brief

glimpse into this.

The d-torus Td is defined by Definition C.2. Proposition 9.2, stated below, ex-

hibits the relation between L
(T )
ω,A and Lω,A. But before I come to that I define the

function p5,d : Rd+3 → Td × R3, for φ ∈ Rd, S ∈ R3, by

p5,d(φ, S) :=

⎛
⎝ p4,d(φ)

S

⎞
⎠ =

⎛
⎝ exp(iφ)

S

⎞
⎠ , (9.5)

will turn out to be a Z-map from (Rd+3, Lω,A) to (Td×R3, L
(T )
ω,A). Note that, choosing

the product topology on Td × R3, we see that p5,d is a continuous. Moreover, p5,d is

onto Td × R3. One can even show that (Rd+3, p5,d,T
d × R3) is a Hurewicz fibration

(see Appendix C) but this property is not needed in this work.

If (ω,A) is a d-dimensional spin-orbit torus then Ψω,A(n; ·) ∈ Cper(R
d, SO(3))

whence it has a unique factor Ψ′
ω,A(n; ·) ∈ C(Td, SO(3)) w.r.t. (Rd, p4,d,T

d), i.e.,

Ψ′
ω,A(n; ·) = FACd(Ψω,A(n; ·);SO(3)). In other words, Ψ′

ω,A : Z×Td → SO(3) is the

unique function such that for n ∈ Z, φ ∈ Rd,

Ψω,A(n;φ) = Ψ′
ω,A(n; p4,d(φ)) . (9.6)

I can now state the proposition.

Proposition 9.2 a) Let ω ∈ Rd and let the function L
(T )
ω : Z×Td → Td be defined,

for n ∈ Z, z ∈ Td, by

L(T )
ω (n; z) :=

(
exp(i2πnω1)z1, ..., exp(i2πnωd)zd

)T

. (9.7)

Then L
(T )
ω is a Z-action on Td. Moreover (Td, L

(T )
ω ) is a topological Z-space and

p4,d is a continuous Z-map from the topological Z-space (Rd, Lω) to the topological
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Z-space (Td, L
(T )
ω ). Furthermore the topological Z-space (Rd, Lω) is an extension of

the topological Z-space (Td, L
(T )
ω ).

b) Let (ω,A) be a d-dimensional spin-orbit torus and let the function L
(T )
ω,A : Z×Td×

R3 → Td × R3 be defined, for n ∈ Z, z ∈ Td, S ∈ R3, by

L
(T )
ω,A(n; z, S) :=

⎛
⎝ L

(T )
ω (n; z)

Ψ′
ω,A(n; z)S

⎞
⎠ , (9.8)

where Ψ′
ω,A is defined by (9.6), i.e., Ψ′

ω,A(n; ·) = FACd(Ψω,A(n; ·);SO(3)).

Then L
(T )
ω,A is a Z-action on Td×R3. Moreover (Td×R3, L

(T )
ω,A) is a topological Z-

space and p5,d is a continuous Z-map from the topological Z-space (Rd+3, Lω,A) to the

topological Z-space (Td×R3, L
(T )
ω,A). Furthermore the topological Z-space (Rd+3, Lω,A)

is an extension of the topological Z-space (Td × R3, L
(T )
ω,A).

c) Let (ω,A) be a d-dimensional spin-orbit torus and let (Td×R3, L) be a topological

Z-space. If the function p5,d is a Z-map from the topological Z-space (Rd+3, Lω,A) to

the topological Z-space (Td ×R3, L), then L = L
(T )
ω,A.

d) Let (Rd+3, L) be a topological Z-space, let (ω,A) be a d-dimensional spin-orbit

torus and let the function p5,d be a Z-map from the topological Z-space (Rd+3, L)

to the topological Z-space (Td × R3, L
(T )
ω,A). Then a N ∈ Zd exists such that, for

n ∈ Z, φ ∈ Rd, S ∈ R3,

L(n;φ, S) =

⎛
⎝ φ+ 2πnω + 2πnN

Ψω,A(n;φ)S

⎞
⎠ . (9.9)

Conversely, if N is an arbitrary element of Zd and if a function L : Z×Rd+3 → Rd+3

is defined, for n ∈ Z, φ ∈ Rd, S ∈ R3, by (9.9), then (Rd+3, L) is a topological Z-space

and p5,d is a Z-map from the topological Z-space (Rd+3, L) to the topological Z-space

(Td ×R3, L
(T )
ω,A) making the former an extension of the latter.

Proof of Proposition 9.2: See Section F.27. �
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Due to (F.103) in the proof of Proposition 9.2b and due to Appendix B the

function Ψ′
ω,A in Proposition 9.2b is a SO(3)-cocycle over the topological Z-space

(Td, L
(T )
ω ).

9.3 A principal SO(3)-bundle underlying SOT (d)

The theory of spin-orbit tori developed so far in this work will in the present section

be reconsidered in terms of the principal SO(3)-bundle λSOT (d), defined by (9.12).

For every (ω,A) ∈ SOT (d) we recall from Section 6.2 that Ψω,A is a SO(3)-cocycle

over the topological Z-space (Rd, Lω). In Section 9.3.1 I will show that this allows

me to encode (ω,A) into a group homomorphism, Φω,A, from the group Z into the

automorphism group AutBun(SO(3))(λSOT (d)) of λSOT (d). This technique was appar-

ently introduced, in the context of Dynamical Systems Theory, by Zimmer in the

1980’s [Zi2] and further developed by Feres and coworkers in the 1990’s [Fe, Section

6]. Thus for brevity I call this technique the ‘Feres machinery’. The Feres ma-

chinery shows us in Sections 9.3.3 and 9.3.4 how, via Φω,A, the associated bundle

λSOT (d)[R
3, L(3D)], which is defined by (9.33), carries the two basic Z-actions, Lω,A

and L
(PF )
ω,A , of spin-orbit theory. I thus fulfill the motto, mentioned at the beginning

of Chapter 9, of reconsidering Lω,A and L
(PF )
ω,A . Furthermore I prove in Section 9.3.5

a theorem, Theorem 9.5a, which is a special case of the reduction theorem which

apparently was introduced by Zimmer. In particular our theorem shows the relation

between invariant spin fields and invariant SO3(2)-reductions of λSOT (d). Note that

a reader who is interested in Section 9.3.5 can skip Sections 9.3.3 and 9.3.4. Clearly

the present section widens the perspective since it demonstrates how the principal

SO(3)-bundle λSOT (d) underlies the theory of spin-orbit tori.

The facts and features of principal bundles and their associated bundles which

are needed here are presented in Appendix E where I follow the elegant treatment

133



Chapter 9. Reconsidering the Z-actions Lω,A and L
(PF )
ω,A

of Husemoller’s book [Hus] which uses Cartan principal bundles (another textbook

which uses Cartan principal bundles is [Mac]).

9.3.1 The principal SO(3)-bundle λSOT (d)

The principal SO(3)-bundle λSOT (d) I introduce in this section is a product principal

bundle and its underlying bundle is defined by

ξ
(1)
SOT (d) := (Rd × SO(3), p

(1)
SOT (d),R

d) , (9.10)

where the function p
(1)
SOT (d) : Rd × SO(3) → Rd is the projection onto the first

component, i.e., p
(1)
SOT (d)(φ,R) := φ for φ ∈ Rd, R ∈ SO(3). Clearly, by Definition

C.1, ξ
(1)
SOT (d) is a bundle and, since p

(1)
SOT (d) is onto Rd, it is a fiber structure. Of

course ξ
(1)
SOT (d) is a product bundle. To ‘unfold’ the bundle ξ

(1)
SOT (d) into a principal

bundle I define the right SO(3)-action R
(1)
SOT (d) on Rd × SO(3) by

R
(1)
SOT (d)(R

′;φ,R) := (φ,RR′) , (9.11)

where φ ∈ Rd, R,R′ ∈ SO(3). Clearly (Rd × SO(3), R
(1)
SOT (d)) is a topological right

SO(3)-space. One thus arrives at the quadruple

λSOT (d) := (ξ
(1)
SOT (d), R

(1)
SOT (d)) = (Rd × SO(3), p

(1)
SOT (d),R

d, R
(1)
SOT (d)) . (9.12)

In Section E.6.1 it is shown that the topological right SO(3)-space

(Rd×SO(3), R
(1)
SOT (d)) is principal and that λSOT (d) is a principal SO(3)-bundle. Note

that λ
(1)
SOT (d) is called a ‘product principal SO(3)-bundle’.

Following Section E.6.1, I denote the set of morphisms from ξ
(1)
SOT (d) to itself

in the category Bun of bundles by MorBun(ξ
(1)
SOT (d)). Note that, by definition,

MorBun(ξ
(1)
SOT (d)) consists of the pairs (ϕ, ϕ̄) for which ϕ ∈ C(Rd×SO(3),Rd×SO(3))

and ϕ̄ ∈ C(Rd,Rd) such that

ϕ̄ ◦ p(1)
SOT (d) = p

(1)
SOT (d) ◦ ϕ . (9.13)
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Following Section E.6.1, I denote the set of morphisms from λSOT (d) to itself in the

category Bun(SO(3)) of principal SO(3)-bundles by MorBun(SO(3))(λSOT (d)). Note

that, by definition, MorBun(SO(3))(λSOT (d)) consists of the pairs (ϕ, ϕ̄)

in MorBun(ξ
(1)
SOT (d)) for which ϕ is a SO(3)-map from the right G-space (Rd ×

SO(3), R
(1)
SOT (d)) to itself. It follows from (E.79) that MorBun(SO(3))(λSOT (d)) has

the following simple form:

MorBun(SO(3))(λSOT (d)) =

{
(ϕ, ϕ̄) ∈ C(Rd × SO(3),Rd × SO(3))× C(Rd,Rd) :

(∀ φ ∈ Rd, R ∈ SO(3))ϕ(φ,R) =

⎛
⎝ ϕ̄(φ)

f(φ)R

⎞
⎠ , f ∈ C(Rd, SO(3))

}
. (9.14)

Note that if (ϕ, ϕ̄) ∈ MorBun(SO(3))(λSOT (d)) then by (9.14) the functions ϕ̄, f are

uniquely determined by ϕ and ϕ is uniquely determined by ϕ̄, f . Given (ϕi, ϕ̄i) ∈
MorBun(SO(3))(λSOT (d)) for i = 1, 2 and writing, by (9.14), ϕi(φ,R) = (ϕ̄i(φ), fi(φ)R),

the composition law of Bun(SO(3)) gives the morphism (ϕ2, ϕ̄2)(ϕ1, ϕ̄1) = (ϕ2 ◦
ϕ1, ϕ̄2 ◦ ϕ̄1) ∈MorBun(SO(3))(λSOT (d)) where for φ ∈ Rd, R ∈ SO(3)

(ϕ2 ◦ ϕ1)(φ,R) = ϕ2

(
ϕ̄1(φ), f1(φ)R)

)
=

⎛
⎝ (ϕ̄2 ◦ ϕ̄1)(φ)

f2(ϕ̄1(φ))f1(φ)R

⎞
⎠ . (9.15)

Denoting by AutBun(SO(3))(λSOT (d)) the set of isomorphisms in MorBun(SO(3))(λSOT (d))

it follows from (E.82) that

AutBun(SO(3))(λSOT (d)) =

{
(ϕ, ϕ̄) ∈ C(Rd × SO(3),Rd × SO(3))×HOMEO(Rd,Rd) :

(∀ φ ∈ Rd, R ∈ SO(3))ϕ(φ,R) =

⎛
⎝ ϕ̄(φ)

f(φ)R

⎞
⎠ , f ∈ C(Rd, SO(3))

}
, (9.16)

where HOMEO(Rd,Rd) denotes the set of homeomorphisms from Rd onto itself.

Note that, for every category, isomorphisms from an object to itself are called ‘au-

tomorphisms’, which explains the notation AutBun(SO(3))(λSOT (d)). Note that

AutBun(SO(3))(λSOT (d)) has a canonical group structure where the multiplication is

given by the composition law of Bun(SO(3)).
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Following Section E.6.5 I now encode the spin-orbit tori in SOT (d) into subgroups

of AutBun(SO(3))(λSOT (d)). Recalling Section 6.2, we have the function ρSOT (d) :

SOT (d) → COC(Rd,Z, SO(3)), which is defined for (ω,A) ∈ SOT (d) by (6.15).

Since ρSOT (d) is an injection it allows to encode spin-orbit tori into cocycles. More-

over, recalling Section E.4, I denote by HOMZ(λSOT (d)) the set of group homo-

morphisms from Z into AutBun(SO(3))(λSOT (d)) so Section E.6.5 gives us an injection

ρRd,Z,SO(3) : COC(Rd,Z, SO(3)) → HOMZ(λSOT (d)) which is defined for (l, f) ∈
COC(Rd,Z, SO(3)) by

ρRd,Z,SO(3)(l, f) := Φ , (9.17)

where, for n ∈ Z,

Φ(n) := (ϕ(n; ·), l(n; ·)) , (9.18)

and where, for n ∈ Z, φ ∈ Rd, R ∈ SO(3),

ϕ(n;φ,R) :=

⎛
⎝ l(n;φ)

f(n;φ)R

⎞
⎠ . (9.19)

Note that the injection ρRd,Z,SO(3) is a special case of a more general construction

which is outlined in Remark 1 of Section E.6.5 and which is based on the cross

sections of the bundle ξ
(1)
SOT (d). It follows from (6.15), (9.17),(9.18) (9.19) that for

(ω,A) ∈ SOT (d)

(ρRd,Z,SO(3) ◦ ρSOT (d))(ω,A) = ρRd,Z,SO(3)(Lω,Ψω,A) = Φω,A , (9.20)

where, for n ∈ Z,

Φω,A(n) := (ϕω,A(n; ·), Lω(n; ·)) , (9.21)

and where for n ∈ Z, φ ∈ Rd, R ∈ SO(3)

ϕω,A(n;φ,R) :=

⎛
⎝ Lω(n;φ)

Ψω,A(n;φ)R

⎞
⎠ =

⎛
⎝ φ+ 2πnω

Ψω,A(n;φ)R

⎞
⎠ . (9.22)
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Since ρSOT (d) and ρRd,Z,SO(3) are one-one, it follows from (9.20) that every spin-orbit

torus (ω,A) ∈ SOT (d) is uniquely characterized by the group homomorphism Φω,A

whence (ω,A) is encoded in the subgroup Φω,A(Z) of AutBun(SO(3))(λSOT (d)). I call

the group homomorphisms Φω,A ‘tied’ to SOT (d).

Equipping Z with the discrete topology one concludes from Section E.6.5 that

ρRd,Z,SO(3) is a bijection onto HOMZ(λSOT (d)). Thus, given a Φ ∈ HOMZ(λSOT (d))

and since ρRd,Z,SO(3) is a bijection onto HOMZ(λSOT (d)), eq. (9.17) holds where

(l, f) ∈ COC(Rd,Z, SO(3)) is defined by (l, f) := ρ−1
Rd,Z,SO(3)

(Φ). It is easy to see

by (9.17),(9.18) (9.19) that Φ is tied to SOT (d) iff l(1; ·) is a translation on Rd and

f(1;φ) is 2π-periodic in φ. Thus not every group homomorphism in HOMZ(λSOT (d))

is tied to SOT (d).

It is also worthwile to note that since, for (ω,A) ∈ SOT (d), the function Φω,A

is a group homomorphism it follows from the composition law of Bun(SO(3)) and

(9.21) that ϕω,A is a Z-action on Rd × SO(3).

To discuss Rd,ω in the context of λSOT (d), let (ω,A), (ω,A′) ∈ SOT (d), T ∈
Cper(R

d, SO(3)) and Rd,ω(T ;ω,A) = (ω,A′). Thus by Theorem 7.3a we have, for

n ∈ Z, φ ∈ Rd,

Ψω,A′(n;φ) = T T (Lω(n;φ))Ψω,A(n;φ)T (φ) . (9.23)

It follows from (9.20) that

(ρRd,Z,SO(3) ◦ ρSOT (d))(ω,A
′) = ρRd,Z,SO(3)(Lω,Ψω,A′) = Φω,A′ , (9.24)

where, for n ∈ Z,

Φω,A′(n) = (ϕω,A′(n; ·), Lω(n; ·)) , (9.25)

and where for n ∈ Z, φ ∈ Rd, R ∈ SO(3)

ϕω,A′(n;φ,R) :=

⎛
⎝ Lω(n;φ)

Ψω,A′(n;φ)R

⎞
⎠ =

⎛
⎝ Lω(n;φ)

T T (Lω(n;φ))Ψω,A(n;φ)T (φ)R

⎞
⎠ ,(9.26)
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where in the second equality I used (9.23). I define ϕT ∈ C(Rd × SO(3),Rd× SO(3)

for φ ∈ Rd, R ∈ SO(3) by

ϕT (φ,R) :=

⎛
⎝ φ

T (φ)R

⎞
⎠ . (9.27)

Using (E.12),(E.141) the gauge group of λSOT (d) reads as

GauBun(SO(3))(λSOT (d)) =

{ϕ ∈ C(Rd × SO(3),Rd × SO(3)) : (ϕ, idRd) ∈ AutBun(SO(3))(λSOT (d))}

= {ϕ ∈ C(Rd × SO(3),Rd × SO(3)) :

(∀ φ ∈ Rd, R ∈ SO(3))ϕ(φ,R) =

⎛
⎝ φ

f(φ)R

⎞
⎠ , f ∈ C(Rd, SO(3))} ,(9.28)

whence ϕT ∈ GauBun(SO(3))(λSOT (d)) and ΦT := (ϕT , idRd) ∈ AutBun(SO(3))(λSOT (d)).

I define Φ′ ∈ HOMZ(λSOT (d)) for n ∈ Z by

Φ′(n) := Φ−1
T Φω,A(n)ΦT = (ϕT , idRd)−1(ϕω,A(n; ·), Lω(n; ·))(ϕT , idRd)

= (ϕ−1
T ◦ ϕω,A(n; ·) ◦ ϕT , Lω(n; ·)) , (9.29)

where I also used (9.21). One concludes from (9.22),(9.29), (E.146) that for n ∈
Z, φ ∈ Rd, R ∈ SO(3)

(Φ′(n))(φ,R) =

(⎛⎝ Lω(n;φ)

T T (Lω(n;φ))Ψω,A(n;φ)T (φ)R

⎞
⎠ , Lω(n;φ)

)

=

(⎛⎝ Lω(n;φ)

Ψω,A′(n;φ)R

⎞
⎠ , Lω(n;φ)

)
. (9.30)

One concludes from (9.25),(9.26),(9.30) that Φω,A′ = Φ′ whence I have shown that the

transformation via Rd,ω(T ; ·) corresponds in AutBun(SO(3))(λSOT (d)) to a conjugation

by ΦT . In other words, on the level of λSOT (d), the gauge group GauBun(SO(3))(λSOT (d))

takes over the job from the group Cper(R
d, SO(3)).
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9.3.2 The bundle λSOT (d)[R
3, L(3D)] associated with λSOT (d)

In this section I introduce the bundle λSOT (d)[R
3, L(3D)] which in the ensuing sections

will be the substratum by which λSOT (d) carries the Z-actions Lω,A and L
(PF )
ω,A . I define

the topological left SO(3)-space (R3, L(3D)) where the function L(3D) : SO(3)×R3 →
R3 is defined by

L(3D)(R;S) := RS , (9.31)

with S ∈ R3, R ∈ SO(3) and where RS is the matrix product of R and S. Fol-

lowing the standard technique of constructing associated bundles, which is outlined

in Section E.2 and, for the case of product principal bundles, in Section E.6.2, one

defines the function R
(2)
SOT (d) : SO(3) × Rd × SO(3) × R3 → Rd × SO(3) × R3 for

φ ∈ Rd, R,R′ ∈ SO(3), S ∈ R3, by

R
(2)
SOT (d)(R

′;φ,R, S) :=

⎛
⎝ R

(1)
SOT (d)(R

′;φ,R)

L(3D)(R′−1;S)

⎞
⎠ =

⎛
⎜⎜⎜⎝

φ

RR′

R′−1S

⎞
⎟⎟⎟⎠ , (9.32)

and observes that (Rd × SO(3) × R3, R
(2)
SOT (d)) is a topological right SO(3)-space.

Denoting the orbit space of (Rd × SO(3) × R3, R
(2)
SOT (d)) by E

(3)
SOT (d), i.e., in the

notation of Appendix B, E
(3)
SOT (d) := (Rd × SO(3)× R3)/R

(2)
SOT (d) and the canonical

surjection: Rd × SO(3)× R3 → E
(3)
SOT (d) by p

(2)
SOT (d), one obtains the bundle:

λSOT (d)[R
3, L(3D)] =: ξ

(3)
SOT (d) = (E

(3)
SOT (d), p

(3)
SOT (d),R

d) , (9.33)

where the continuous function p
(3)
SOT (d) : E

(3)
SOT (d) → Rd is the unique function:

E
(3)
SOT (d) → Rd which satisfies

p
(3)
SOT (d) ◦ p

(2)
SOT (d) = p

(1)
SOT (d) . (9.34)

One calls ξ
(3)
SOT (d) the ‘bundle associated with λSOT (d) via the topological left SO(3)-

space (R3, L(3D))’. Note again that the above properties of the associated bundle

follow from Sections E.2 and E.6.2.
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9.3.3 How λSOT (d) carries the Z-action Lω,A

I now have all ingredients at my disposal to apply the Feres machinery. As out-

lined in Sections E.3 and E.6.4, this machinery provides us with a canonical left

AutBun(SO(3))(λSOT (d))-action, L
(1)
SOT (d), on E

(3)
SOT (d) and this will allow us in the

present section to recover Lω,A. Specializing (E.41) to the present case it is shown in

Section E.3.1 that the function L
(1)
SOT (d) : AutBun(SO(3))(λSOT (d))×E(3)

SOT (d) → E
(3)
SOT (d)

which is defined for (ϕ, ϕ̄) ∈ AutBun(SO(3))(λSOT (d)) and φ ∈ Rd, R ∈ SO(3), S ∈ R3

by

L
(1)
SOT (d)(ϕ, ϕ̄; p

(2)
SOT (d)(φ,R, S)) := p

(2)
SOT (d)(ϕ(φ,R), S) , (9.35)

is a left AutBun(SO(3))(λSOT (d))-action on E
(3)
SOT (d) whence (E

(3)
SOT (d), L

(1)
SOT (d)) is a left

AutBun(SO(3))(λSOT (d))-space. Note that by Section E.3.1 L
(1)
SOT (d)(ϕ, ϕ̄; ·) is a home-

omorphism onto E
(3)
SOT (d). With now showing that the bundle ξ

(3)
SOT (d) is trivial I con-

struct a left AutBun(SO(3))(λSOT (d))-space which is conjugate to (E
(3)
SOT (d), L

(1)
SOT (d)).

Specializing (E.84) to the present case I define the function r
(1)
SOT (d) : Rd × SO(3)×

R3 → Rd+3 for φ ∈ Rd, R ∈ SO(3), S ∈ R3 by

r
(1)
SOT (d)(φ,R, S) :=

⎛
⎝ φ

L(3D)(R;S)

⎞
⎠ =

⎛
⎝ φ

RS

⎞
⎠ (9.36)

and conclude by Section E.6.2 that there exists a unique function r
(2)
SOT (d) : E

(3)
SOT (d) →

Rd+3 such that

r
(2)
SOT (d) ◦ p

(2)
SOT (d) = r

(1)
SOT (d) (9.37)

and that r
(2)
SOT (d) is a homeomorphism onto Rd+3. Defining the bundle

ξ
(4)
SOT (d) = (Rd+3, p

(4)
SOT (d),R

d) , (9.38)

where p
(4)
SOT (d)(φ, S) := φ, we know from Section E.6.2 that (r

(2)
SOT (d), idRd) is an

isomorphism from ξ
(3)
SOT (d) to ξ

(4)
SOT (d) in the category Bun of bundles. Thus the
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bundle ξ
(3)
SOT (d) is trivial. Specializing (E.102) to the present case I define the function

L̃
(1)
SOT (d) : AutBun(SO(3))(λSOT (d)) × Rd+3 → Rd+3 for (ϕ, ϕ̄) ∈ AutBun(SO(3))(λSOT (d))

and φ ∈ Rd, S ∈ R3 by

L̃
(1)
SOT (d)(ϕ, ϕ̄;φ, S) := r

(2)
SOT (d)(L

(1)
SOT (d)(ϕ, ϕ̄; (r

(2)
SOT (d))

−1(φ, S))) , (9.39)

whence

L̃
(1)
SOT (d)(ϕ, ϕ̄; ·) ◦ r(2)

SOT (d) = r
(2)
SOT (d) ◦ L

(1)
SOT (d)(ϕ, ϕ̄; ·) . (9.40)

Since L
(1)
SOT (d) is a left AutBun(SO(3))(λSOT (d))-action on E

(3)
SOT (d) and r

(2)
SOT (d) is a bi-

jection onto Rd+3 it follows from (9.40) that L̃
(1)
SOT (d) is a left AutBun(SO(3))(λSOT (d))-

action on Rd+3 and that the left AutBun(SO(3))(λSOT (d))-spaces (E
(3)
SOT (d), L

(1)
SOT (d)),

(Rd+3, L̃
(1)
SOT (d)) are conjugate. Note also that since L

(1)
SOT (d)(ϕ, ϕ̄; ·) is a homeomor-

phism onto E
(3)
SOT (d) and r

(2)
SOT (d) is a homeomorphism onto Rd+3, it follows from (9.40)

that L̃
(1)
SOT (d)(ϕ, ϕ̄; ·) is a homeomorphism onto Rd+3. In fact we will now see that

L̃
(1)
SOT (d) has a very simple structure. Specializing (E.104) to the present case I obtain

for (ϕ, ϕ̄) ∈ AutBun(SO(3))(λSOT (d)) and φ ∈ Rd, R ∈ SO(3), S ∈ R3

L̃
(1)
SOT (d)(ϕ, ϕ̄;φ, S) = r

(1)
SOT (d)(ϕ(φ,R), L(3D)(R−1;S)) = r

(1)
SOT (d)(ϕ(φ,R), R−1S) .

(9.41)

Of course if (ϕ, ϕ̄) ∈ AutBun(SO(3))(λSOT (d)) then by (9.16) we have for φ ∈ Rd, R ∈
SO(3)

ϕ(φ,R) =

⎛
⎝ ϕ̄(φ)

f(φ)R

⎞
⎠ , (9.42)

where f ∈ C(Rd, SO(3)). Thus by (9.36),(9.41) I obtain for

(ϕ, ϕ̄) ∈ AutBun(SO(3))(λSOT (d)) and φ ∈ Rd, R ∈ SO(3), S ∈ R3 the simple formula

L̃
(1)
SOT (d)(ϕ, ϕ̄;φ, S) = r

(1)
SOT (d)(ϕ̄(φ), f(φ)R,R−1S) =

⎛
⎝ ϕ̄(φ)

f(φ)S

⎞
⎠ . (9.43)
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Note also that (9.43) confirms our assertion that L̃
(1)
SOT (d)(ϕ, ϕ̄; ·) is a homeomorphism

onto Rd+3. To bring spin-orbit theory into the picture I now pick a spin-orbit torus

(ω,A) ∈ SOT (d) and conclude from (9.21),(9.41) that for n ∈ Z, φ ∈ Rd, S ∈ R3

L̃
(1)
SOT (d)(Φω,A(n);φ, S) = L̃

(1)
SOT (d)(ϕω,A(n; ·), Lω,A(n; ·);φ, S)

= r
(1)
SOT (d)(ϕω,A(n;φ,R), R−1S) , (9.44)

where ϕω,A is given by (9.22). It follows from (6.9),(9.22),(9.36), (9.44) the remark-

able result that for n ∈ Z, φ ∈ Rd, S ∈ R3

L̃
(1)
SOT (d)(Φω,A(n);φ, S) = r

(1)
SOT (d)(ϕω,A(n;φ,R), R−1S)

= r
(1)
SOT (d)(φ+ 2πnω,Ψω,A(n;φ)R,R−1S) =

⎛
⎝ φ+ 2πnω

Ψω,A(n;φ)S

⎞
⎠

= Lω,A(n;φ, S) . (9.45)

Having thus recovered Lω,A I put this into perspective by defining the function L̂ω,A :

Z× E(3)
SOT (d) → E

(3)
SOT (d) for n ∈ Z, z ∈ E(3)

SOT (d) by

L̂ω,A(n; z) := L
(1)
SOT (d)(Φω,A(n); z) . (9.46)

Since L
(1)
SOT (d) is a left AutBun(SO(3))(λSOT (d))-action on E

(3)
SOT (d) and since Φω,A is

a group homomorphism into AutBun(SO(3))(λSOT (d)) it follows from (9.46) that L̂ω,A

is a Z-action on E
(3)
SOT (d). Since L

(1)
SOT (d)(Φω,A(n); ·) is continuous, it follows from

(9.46) that L̂ω,A(n; ·) is continuous whence (E
(3)
SOT (d), L̂ω,A) is a topological Z-space.

Furthermore one concludes from (9.40),(9.45),(9.46) that for n ∈ Z

Lω,A(n; ·) ◦ r(2)
SOT (d) = L̃

(1)
SOT (d)(Φω,A(n); ·) ◦ r(2)

SOT (d) = r
(2)
SOT (d) ◦ L

(1)
SOT (d)(Φω,A(n); ·)

= r
(2)
SOT (d) ◦ L̂ω,A(n; ·) . (9.47)

In other words, since r
(2)
SOT (d) ∈ HOMEO(E

(3)
SOT (d),R

d+3), (9.47) tells us that the

topological Z-spaces (E
(3)
SOT (d), L̂ω,A) and (Rd+3, Lω,A) are conjugate. This fact demon-

strates how λSOT (d) carries Lω,A in a canonical way and it thus establishes λSOT (d)
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as an appropriate principal bundle. Note also that specializing (E.40) to the present

case one observes, for every integer n,

(L̂ω,A(n; ·), Lω(n; ·)) ∈MorBun(ξ
(3)
SOT (d))

and, by Remark 1 in Section E.3.1, obtain that (L̂ω,A(n; ·), Lω(n; ·)) is a fibre mor-

phism on ξ
(3)
SOT (d) so that (9.47) reveals a close relationship between spin-orbit tra-

jectories and the fibre morphisms on the associated bundle.

9.3.4 How λSOT (d) carries the Z-action L
(PF )
ω,A

In the previous section I employed the canonical left AutBun(SO(3))(λSOT (d))-action

L
(1)
SOT (d) and in the present section I build up on that. In fact, as outlined in detail

in Sections E.3.2 and E.6.4, the Feres machinery provides us with a canonical left

AutBun(SO(3))(λSOT (d))-action, L
(2)
SOT (d), on the set Γ(ξ(3)) of cross sections of the asso-

ciated bundle and it will allow me in the present section to recover L
(PF )
ω,A . Specializing

(E.46) to the present case it is shown in Section E.3.2 that the function L
(2)
SOT (d) :

AutBun(SO(3))(λSOT (d))×Γ(ξ(3))→ Γ(ξ(3)) defined for (ϕ, ϕ̄) ∈ AutBun(SO(3))(λSOT (d))

and σ ∈ Γ(ξ(3)), φ ∈ Rd by(
L

(2)
SOT (d)(ϕ, ϕ̄; σ)

)
(φ) = L

(1)
SOT (d)(ϕ, ϕ̄; σ(ϕ̄−1(φ))) , (9.48)

is a left AutBun(SO(3))(λSOT (d))-action on Γ(ξ(3)) whence (Γ(ξ(3)), L
(2)
SOT (d)) is a left

AutBun(SO(3))(λSOT (d))-space. Clearly L
(2)
SOT (d) builds up on L

(1)
SOT (d). Specializing

(E.107) to the present case I define the function r
(3)
SOT (d) : Γ(ξ(3)) → Γ(ξ(4)) for

σ ∈ Γ(ξ(3)) by

r
(3)
SOT (d)(σ) := r

(2)
SOT (d) ◦ σ . (9.49)

It is shown in Section E.6.4 that r
(3)
SOT (d) is a bijection onto Γ(ξ(4)). Specializing

(E.110) to the present case I define the function L̃
(2)
SOT (d) : AutBun(SO(3))(λSOT (d)) ×
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Γ(ξ(4))→ Γ(ξ(4)) for (ϕ, ϕ̄) ∈ AutBun(SO(3))(λSOT (d)) and σ ∈ Γ(ξ(4)) by

L̃
(2)
SOT (d)(ϕ, ϕ̄; σ) := r

(3)
SOT (d)(L

(2)
SOT (d)(ϕ, ϕ̄; (r

(3)
SOT (d))

−1(σ))) , (9.50)

whence in analogy with (E.111)

L̃
(2)
SOT (d)(ϕ, ϕ̄; ·) ◦ r(3)

SOT (d) = r
(3)
SOT (d) ◦ L

(2)
SOT (d)(ϕ, ϕ̄; ·) . (9.51)

Since L
(2)
SOT (d) is a left AutBun(SO(3))(λSOT (d))-action on Γ(ξ(3)) and r

(3)
SOT (d) is a bijec-

tion onto Γ(ξ(4)) it follows from (9.51) that L̃
(2)
SOT (d) is a left AutBun(SO(3))(λSOT (d))-

action on Γ(ξ(4)) and that the left AutBun(SO(3))(λSOT (d))-spaces (Γ(ξ(3)), L
(2)
SOT (d)),

(Γ(ξ(4)), L̃
(2)
SOT (d)) are conjugate. We will now see that L̃

(2)
SOT (d) has a very simple

structure. In fact specializing (E.113) to the present case one obtains for (ϕ, ϕ̄) ∈
AutBun(SO(3))(λSOT (d)) and σ ∈ Γ(ξ(4)), φ ∈ Rd(

L̃
(2)
SOT (d)(ϕ, ϕ̄; σ)

)
(φ) = L̃

(1)
SOT (d)(ϕ, ϕ̄; σ(ϕ̄−1(φ))) . (9.52)

Recalling Definition C.1 we have for σ ∈ Γ(ξ(4)) that p
(4)
SOT (d) ◦ σ = idRd whence for

φ ∈ Rd we have

σ(φ) =

⎛
⎝ φ

σ̂(φ)

⎞
⎠ , (9.53)

where σ̂ ∈ C(Rd,R3). I thus obtain by specializing (E.114) to the present case the

simple formula(
L̃

(2)
SOT (d)(ϕ, ϕ̄; σ)

)
(φ) =

(
φ, L(3D)(f(ϕ̄−1(φ)); σ̂(ϕ̄−1(φ)))

)

=

⎛
⎝ φ

f(ϕ̄−1(φ))σ̂(ϕ̄−1(φ))

⎞
⎠ , (9.54)

where f ∈ C(Rd, SO(3)) is determined from ϕ by (9.42). To bring spin-orbit theory

into the picture I now pick a spin-orbit torus (ω,A) ∈ SOT (d) and define the function

L̂
(PF )
ω,A : Z× Γ(ξ(4))→ Γ(ξ(4)) for n ∈ Z, σ ∈ Γ(ξ(4)) by

L̂
(PF )
ω,A (n; σ) := L̃

(2)
SOT (d)(Φω,A(n); σ) . (9.55)
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Since L̃
(2)
SOT (d) is a left AutBun(SO(3))(λSOT (d))-action on Γ(ξ(4)) and since Φω,A is a

group homomorphism into AutBun(SO(3))(λSOT (d)) it follows from (9.55) that L̂
(PF )
ω,A

is a Z-action on Γ(ξ(4)) whence (Γ(ξ(4)), L̂
(PF )
ω,A ) is a Z-space. We conclude from

(9.21),(9.22), (9.45),(9.52),(9.53), (9.55) that for n ∈ Z, φ ∈ Rd, σ ∈ Γ(ξ(4))

(L̂
(PF )
ω,A (n; σ))(φ) = (L̃

(2)
SOT (d)(Φω,A(n); σ))(φ)

= (L̃
(2)
SOT (d)(ϕω,A(n; ·), Lω,A(n; ·); σ))(φ)

= L̃
(1)
SOT (d)(ϕω,A(n; ·), Lω,A(n; ·); σ(Lω,A(−n;φ)))

= L̃
(1)
SOT (d)(ϕω,A(n; ·), Lω,A(n; ·);Lω,A(−n;φ), σ̂(Lω,A(−n;φ)))

= L̃
(1)
SOT (d)(ϕω,A(n; ·), Lω,A(n; ·);φ− 2πnω, σ̂(φ− 2πnω))

= L̃
(1)
SOT (d)(Φω,A(n);φ− 2πnω, σ̂(φ− 2πnω))

=

⎛
⎝ φ

Ψω,A(n;φ− 2πnω)σ̂(φ− 2πnω)

⎞
⎠ . (9.56)

Since by (9.53) the first component of no σ ∈ Γ(ξ(4)) carries any information about σ

it is not a surprise that the Z-space (Γ(ξ(4)), L̂
(PF )
ω,A ) is conjugate to a Z-space which

does not carry the redundant first component of (9.53). In fact I define the function

r
(4)
SOT (d) : C(Rd,R3)→ Γ(ξ

(4)
SOT (d)) for G ∈ C(Rd,R3) and φ ∈ Rd by

(r
(4)
SOT (d)(G))(φ) :=

⎛
⎝ φ

G(φ)

⎞
⎠ . (9.57)

Note that r
(4)
SOT (d) is a bijection onto Γ(ξ

(4)
SOT (d)). For σ = r

(4)
SOT (d)(G) we have by

(9.53), (9.57) that G = σ̂ whence one concludes from (9.56),(9.57) that for G ∈
C(Rd,R3) and n ∈ Z, φ ∈ Rd

(
L̂

(PF )
ω,A (n; r

(4)
SOT (d)(G))

)
(φ) =

⎛
⎝ φ

Ψω,A(n;φ− 2πnω)G(φ− 2πnω)

⎞
⎠

=

(
r
(4)
SOT (d)

(
Ψω,A(n; · − 2πnω)G(· − 2πnω)

))
(φ) ,
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so that by (9.50),(9.55) for G ∈ C(Rd,R3) and n ∈ Z

r
(4)
SOT (d)

(
Ψω,A(n; · − 2πnω)G(· − 2πnω)

)
= L̂

(PF )
ω,A (n; r

(4)
SOT (d)(G))

= L̃
(2)
SOT (d)(Φω,A(n); r

(4)
SOT (d)(G))

= r
(3)
SOT (d)

(
L

(2)
SOT (d)(Φω,A(n); (r

(3)
SOT (d))

−1(r
(4)
SOT (d)(G)))

)
.

(9.58)

Defining the function r
(5)
SOT (d) : C(Rd,R3) → Γ(ξ

(3)
SOT (d)) by r

(5)
SOT (d) := (r

(3)
SOT (d))

−1 ◦
r
(4)
SOT (d) one observes that r

(5)
SOT (d) is a bijection onto Γ(ξ

(3)
SOT (d)) and that by (9.58)

for G ∈ C(Rd,R3) and n ∈ Z

Ψω,A(n; · − 2πnω)G(· − 2πnω)

= (r
(4)
SOT (d))

−1

(
r
(3)
SOT (d)

(
L

(2)
SOT (d)(Φω,A(n); (r

(3)
SOT (d))

−1(r
(4)
SOT (d)(G)))

))

= (r
(5)
SOT (d))

−1

(
L

(2)
SOT (d)(Φω,A(n); r

(5)
SOT (d)(G))

)
. (9.59)

By (6.20) we have for G ∈ Cper(R
d,R3) and n ∈ Z that

Ψω,A(n; ·−2πnω)G(·−2πnω) = L
(PF )
ω,A (n;G) whence by (9.59) we obtain the remark-

able result that for G ∈ Cper(R
d,R3) and n ∈ Z

L
(PF )
ω,A (n;G) = (r

(5)
SOT (d))

−1

(
L

(2)
SOT (d)(Φω,A(n); r

(5)
SOT (d)(G))

)
, (9.60)

which tells us how λSOT (d) carries L
(PF )
ω,A in a canonical way. In particular since

L
(2)
SOT (d) acts on Γ(ξ

(3)
SOT (d)) we see in (9.60) a close relationship between polarization

fields and cross sections of the associated bundle.

9.3.5 Reducing the structure group SO(3)

The most important objectives of the Feres machinery are the reduction theorems

and the rigidity theorems [Fe] and in this section I will be concerned with the former
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(the latter are beyond the scope of this work). The reduction theorems deal, in

our context, with the reduction of the structure group SO(3) of λSOT (d) to a closed

subgroup of SO(3) and its impact on the dynamics, i.e., on SOT (d). This leads to

Theorem 9.5.

Let H be a closed topological subgroup of SO(3). Recalling Section E.5, a prin-

cipal H-bundle, λ̂, is called a ‘H-reduction of λSOT (d)’ if the total space of λ̂ is a

closed subset Ê of the total space Rd × SO(3) of λSOT (d) and if λ̂ has the form

λ̂ = (Ê, p
(1)
SOT (d)

∣∣∣Ê,Rd, R
(1)
SOT (d)

∣∣∣(H × Ê)) . (9.61)

Note that two H-reductions of λSOT (d) are different iff their total spaces are different.

The set of all H-reductions of λSOT (d) is denoted by REDH(λSOT (d)). The condition

that λ̂ is a principal H-bundle is a strong restriction on the possible forms of Ê and

the following proposition gives an account of this.

Proposition 9.3 Let H be a closed topological subgroup of SO(3).

If f ∈ C(Rd, SO(3)/H) then Ěf,H , defined by

Ěf,H := {(φ,R) ∈ Rd × SO(3) : f(φ) = RH} , (9.62)

is a closed subspace of Rd × SO(3) where RH := {RR′ : R′ ∈ H} and where the

space SO(3)/H is defined in Section E.5. Moreover, if f ∈ C(Rd, SO(3)/H) then the

quadruple:

M̂AINλSOT (d),H(f) := (Ěf,H , p
(1)
SOT (d)

∣∣∣Ěf,H ,R
d, R

(1)
SOT (d)

∣∣∣(H × Ěf,H)) , (9.63)

is a H-reduction of λSOT (d). Furthermore M̂AINλSOT (d),H is a bijection from

C(Rd, SO(3)/H) onto REDH(λSOT (d)). In particular, every H-reduction of λSOT (d)

is of the form (9.63).

Proof of Proposition 9.3: See Section F.28. �
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While Proposition 9.3 states a one-one correspondence between REDH(λSOT (d))

and C(Rd, SO(3)/H) there is also a one-one correspondence between REDH(λSOT (d))

and the cross sections of the associated bundle λSOT (d)[SO(3)/H, LSO(3)/H] where the

left SO(3)-action LSO(3)/H is defined by (E.62). In fact it follows from Theorem E.3b

in Section E.6.6 that the functionMAINλSOT (d),H : Γ(λSOT (d)[SO(3)/H, LSO(3)/H])→
REDH(λSOT (d)), which is defined by (E.162), is a bijection onto REDH(λSOT (d)).

However I here do not need MAINλSOT (d),H but rather focus on M̂AINλSOT (d),H .

The following proposition builds up on the fact that SO3(2) is a closed topological

subgroup of SO(3) (see Definition C.2).

Proposition 9.4 a) The function F : SO(3)/SO3(2) → S2, defined for R ∈ SO(3)

by

F (RSO3(2)) := L(3D)(R; e3) = Re3 , (9.64)

is a homeomorphism onto S2 where RSO3(2)) := {RR′ : R′ ∈ SO3(2))} and where

L(3D) is defined by (9.31). Moreover for S ∈ S2, R,R′ ∈ SO(3)

F (LSO(3)/SO3(2)(R
′;RSO3(2))) = L(3D)(R′;F (RSO3(2))) , (9.65)

F−1(L(3D)(R;S)) = LSO(3)/SO3(2)(R;F−1(S)) , (9.66)

where LSO(3)/SO3(2) is defined by (E.62).

b) For every f ∈ C(Rd, SO(3)/SO3(2)) we have

Ěf,SO3(2) = {(φ,R) ∈ Rd × SO(3) : (F ◦ f)(φ) = Re3} . (9.67)

The function MAINλSOT (d),SO3(2) : C(Rd, S2) → REDSO3(2)(λSOT (d)), defined, for

G ∈ C(Rd, S2), by

MAINλSOT (d),SO3(2)(G) := M̂AINλSOT (d),SO3(2)(F
−1 ◦G) , (9.68)

is a bijection onto REDSO3(2)(λSOT (d)) where M̂AINλSOT (d),SO3(2) is defined by (9.63).
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Proof of Proposition 9.4: See Section F.29. �

We recall from Proposition 9.3 that M̂AINλSOT (d),H is a bijection from

C(Rd, SO(3)/H) onto REDH(λSOT (d)) whence every H-reduction of λSOT (d) is of the

form M̂AINλSOT (d),H(f). I now define REDH,per(λSOT (d)) by

REDH,per(λSOT (d)) := {M̂AINλSOT (d),H(f) : f ∈ Cper(R
d, SO(3)/H)} . (9.69)

If (ϕ, ϕ̄) ∈ AutBun(SO(3))(λSOT (d)) and if f ∈ C(Rd, SO(3)/H) then, recalling Sec-

tion E.5, M̂AINλSOT (d),H(f) is called ‘invariant under (ϕ, ϕ̄)’ if the total space,

Ěf,H , of M̂AINλSOT (d),H(f) is invariant under ϕ, i.e., ϕ(Ěf,H) = Ěf,H where Ěf,H

is defined by (9.62). Furthermore if (ω,A) ∈ SOT (d) and f ∈ C(Rd, SO(3)/H)

then M̂AINλSOT (d),H(f) is called ‘invariant under the group Φω,A(Z)’ if it is invari-

ant under each Φω,A(n). Recalling from Section 9.3.1 that ϕω,A is a Z-action on

Rd × SO(3), one here observes that the restriction of ϕω,A to Z× Ěf,H is a Z-action

if M̂AINλSOT (d),H(f) is invariant under Φω,A(Z).

Of course, by the special structure of the group Z and since Φω,A is a group

homomorphism, M̂AINλSOT (d),H(f) is invariant under the group Φω,A(Z) iff it is

invariant under Φω,A(1), i.e., iff ϕω,A(1; Ěf,H) = Ěf,H where ϕω,A is defined by (9.22).

Part a) of the following theorem is a special case of Zimmer’s reduction theorem

[Fe].

Theorem 9.5 Let (ω,A) ∈ SOT (d). Then the following hold.

a) Let H be a closed topological subgroup of SO(3) and let f ∈ C(Rd, SO(3)/H).

Then the H-reduction M̂AINλSOT (d),H(f) of λSOT (d) is invariant under the group

Φω,A(Z) iff, for every φ ∈ Rd,

f(Lω(1;φ)) = LSO(3)/H(A(φ); f(φ)) , (9.70)

where LSO(3)/H is defined by (E.62).
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b) Let G ∈ Cper(R
d, S2). Then the SO3(2)-reduction M̂AINλSOT (d),SO3(2)(F

−1 ◦ G)

of λSOT (d) is invariant under Φω,A(Z) iff SG is an invariant spin field of (ω,A). In

particular (ω,A) has an invariant spin field iff λSOT (d) has a 2π-periodic SO3(2)-

reduction which is invariant under Φω,A(Z).

Proof of Theorem 9.5: See Section F.30. �

Note by (9.63),(9.67) and Theorem 9.5b that if (ω,A) ∈ SOT (d) and SG is an

invariant spin field of (ω,A) then the total space of the invariant SO3(2)-reduction

M̂AINλSOT (d),SO3(2)(F
−1 ◦G) of λSOT (d) has the form

ĚF−1◦G,SO3(2) = {(φ,R) ∈ Rd × SO(3) : G(φ) = Re3} . (9.71)

Thus (9.71) represents the invariant spin field SG by a subset of Rd × SO(3), i.e.,

we have a ‘geometrization’ of invariant spin fields. Another aspect of Theorem 9.5b

is that the existence of an invariant spin field of (ω,A) is a symmetry property of

(ω,A).

One more aspect of Theorem 9.5 is the following. While, by Theorem 9.5b,

invariant spin fields are linked to 2π-periodic invariant SO3(2)-reductions of λSOT (d),

it is easy to show, by Theorem 9.5a, that spin-orbit resonances of first kind are linked

to 2π-periodic invariant H-reductions of λSOT (d) where H is the trivial subgroup of

SO(3). Thus the existence of spin tunes of first kind of (ω,A) is a symmetry property

of (ω,A).

9.3.6 Closing remarks on λSOT (d)

I have now completed my coverage of principal bundles since my only objective in

this regard was to show how the principal SO(3)-bundle λSOT (d) underlies the theory

of SOT (d).
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Following the Feres machinery one could extend my study. However this would

go beyond the scope of the present work. So I just mention four points. Firstly,

by using the linearity of L(3D)(R;S) in S, one can extend the structure group from

SO(3) to GL(3) and study, by a ‘prolongation’ of the principal SO(3)-bundle λSOT (d)

to a principal GL(3)-bundle, the Z-actions Lω,A and L
(PF )
ω,A in terms of vector bundle

techniques (GL(n) denotes the group of real nonsingular n× n–matrices). Secondly,

one can go beyond Theorem 9.5 to study invariant H-reductions of λSOT (d) in a more

general way by asking what closed subgroups H of SO(3) allow for 2π-periodic H-

reductions which are invariant under a given spin-orbit torus in SOT (d). For such

a study the ‘algebraic hull’ is an important tool which was introduced by Zimmer in

the 1980’s. Thirdly one can apply rigidity theorems which allow to discuss proper-

ties which are stable (=‘rigid’) under the extension of the group Z of the evolution

variable. Fourthly, the choice of λSOT (d) is not unique. For example an alternative

choice is to employ Td rather than Rd in the definition of the total resp. base space

of the principal SO(3)-bundle. In fact this alternative choice is very convenient when

one would go deeper into the matter of spin-orbit tori but for the purposes of the

present work the choice of λSOT (d) is sufficient and leads to analogous results as if

one would use Td instead of Rd.
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Summary of spin-orbit tori and

outlook

As pointed out in the Introduction, the second part of this thesis studies spin-orbit

tori in terms of the map formalism equations of motion (6.1),(6.2) which plays a

central role in the mathematical study of polarized beams in storage rings.

From a technical point of view a distinguishing feature of the present work is

to formulate all concepts and properties in mathematical terms. Accordingly the

mathematical notion of spin-orbit torus is introduced and a number of properties

of spin-orbit tori are derived. Most of my definitions that are related to spin-orbit

tori are distilled from established concepts in Polarized Beam Physics which are then

translated into the language of Mathematics. The subsets CB(d, ω) ⊂ ACB(d, ω) ⊂
WCB(d, ω) of the set SOT of spin-orbit tori have been introduced and discussed in

some detail. I noted that spin-orbit tori (ω,A) of interest are almost coboundaries,

i.e., are in ACB(d, ω) and they have the form A(φ) = T T (φ+ 2πω) exp(J 2πν)T (φ).

To my knowledge the results of the thesis are either new (e.g., Theorem 9.5b

about the impact of Principal Bundle Theory on invariant spin fields) or were never
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formulated in mathematically precise terms whence were never rigorously proved

before (e.g., Corollary 8.12 aka the SPRINT Theorem). Note that some results

(e.g., Yokoya’s uniqueness theorem 7.13) were rigorously proved before for the flow

formalism (see [BEH04]).

I have gathered quite a bit of insight into the invariant spin field (as well as into

the spin tune) which is central for Polarized Beam Physics, as explained in Section

7.6. From Section 6.3 we know that an invariant spin field is tied with the equation

G(φ) = A(φ− 2πω)G(φ− 2πω). I formulated the ISF conjecture which states that

if (ω,A) is off orbital resonance, i.e., (1, ω) nonresonant, then an invariant spin field

exists. Theorem 7.9 states that if (ω,A) is a weak coboundary, then an invariant

spin field exists. Theorem 7.10a states that if SG is an invariant spin field and

if G is 2π-nullhomotopic then (ω,A) is a weak coboundary. Theorem 8.17 states

that there are spin-orbit tori which have an invariant spin field and which are not

weak coboundaries. Finally Theorem 9.5b shows that the existence of an invariant

spin field of (ω,A) is a symmetry property of (ω,A). In fact Theorem 9.5b ties the

existence of an invariant spin field to an SO3(2)-reduction of the principal SO(3)-

bundle λSOT (d).

It is also worthwile to mention that the machinery of Chapter 9 can be applied

to any linear n-dimensional nonautonomous ODE ẏ = Y (t)y since the standard

procedure of making it autonomous, encodes the ODE into a GL(n)-cocycle over the

time translations whence encodes it into a principal GL(n)-bundle with base space

R. This will be addressed in a future publication of the author.

For a detailed outline of this work see Section 5.2. Avenues for further work are

of course plentiful. In addition to those mentioned in Section 5.3, one topic of further

studies could be the continuation of the work of Section 9.3. In fact, as outlined in

Section 9.3.6, there are further applications of the principal SO(3)-bundle λSOT (d) in

waiting which will shed further light into the matter of spin-orbit tori.
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A.1 Details on the self field

Maxwell’s equations (3.10) imply

�E = Sel , �B = Smag , (A.1)

where

Sel = (Sel
Z , S

el
X , S

el
Y )T := Z0(c∇R̄ρ̄+ ∂uJ̄) = Z0

⎛
⎜⎜⎜⎝

c∂Z ρ̄+ ∂uJ̄Z

c∂X ρ̄+ ∂uJ̄X

c∂Y ρ̄+ ∂uJ̄Y

⎞
⎟⎟⎟⎠ , (A.2)

Smag = (Smag
Z , Smag

X , Smag
Y )T := −μ0∇R̄ × J̄ = −Z0

c

⎛
⎜⎜⎜⎝

∂X J̄Y − ∂Y J̄X

∂Y J̄Z − ∂Z J̄Y

∂Z J̄X − ∂X J̄Z

⎞
⎟⎟⎟⎠ . (A.3)

In the nonshielding scenario we obtain from (3.16),(A.1) that

E(R̄, u) = Ensh(R̄, u) := −
∫

R4

dR̄
′
du′G(R̄− R̄

′
, u− u′)1[u0,∞)(u

′)Sel(R̄
′
, u′) ,

B(R̄, u) = Bnsh(R̄, u) := −
∫

R4

dR̄
′
du′G(R̄− R̄

′
, u− u′)1[u0,∞)(u

′)Smag(R̄
′
, u′) ,

(A.4)
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where

G(R̄, u) :=
1

4π|R̄|δ(u− |R̄|) . (A.5)

In the shielding scenario we obtain from (3.16),(3.22),(3.23), (A.1) that for Y ∈
[−g, g]

EZ(R̄, u) = Esh
Z (R̄, u) := −

∫
R4

dR̄
′
du′GD(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Sel
Z (R̄

′
, u′) ,

EX(R̄, u) = Esh
X (R̄, u) := −

∫
R4

dR̄
′
du′GD(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Sel
X(R̄

′
, u′) ,

EY (R̄, u) = Esh
Y (R̄, u) := −

∫
R4

dR̄
′
du′GN(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Sel
Y (R̄

′
, u′) ,

BZ(R̄, u) = Bsh
Z (R̄, u) := −

∫
R4

dR̄
′
du′GN(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Smag
Z (R̄

′
, u′) ,

BX(R̄, u) = Bsh
X (R̄, u) := −

∫
R4

dR̄
′
du′GN(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Smag
X (R̄

′
, u′) ,

BY (R̄, u) = Bsh
Y (R̄, u) := −

∫
R4

dR̄
′
du′GD(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Smag
Y (R̄

′
, u′) ,

(A.6)

where

GD(R̄, u, R̄
′
, u′) :=

∑
k∈Z

(−1)kG(Z − Z ′, X −X ′, Y − (−1)kY ′ − 2kg, u− u′) ,

GN(R̄, u, R̄
′
, u′) :=

∑
k∈Z

G(Z − Z ′, X −X ′, Y − (−1)kY ′ − 2kg, u− u′) .

(A.7)

Note that G is a fundamental solution of the wave equation without shielding, i.e.,

�G(R̄, u) = −δ(Z)δ(X)δ(Y )δ(u) . (A.8)

See, for example, [Ja]. Note also that one can construct GD, GN by the method of

image charges.

From now one we confine in this section to the sheet beam whence we have by
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(3.40), (A.2),(A.3)

Sel
Z (R̄, u) = Z0[c∂Z ρ̄(R̄, u) + ∂uJ̄Z(R̄, u)]

= Z0δ(Y )[c∂ZρL(R, u) + ∂uJL,Z(R, u)] =: δ(Y )Sel
L,Z(R, u) ,

Sel
X(R̄, u) = Z0[c∂X ρ̄(R̄, u) + ∂uJ̄X(R̄, u)]

= Z0δ(Y )[c∂XρL(R, u) + ∂uJL,X(R, u)] =: δ(Y )Sel
L,X(R, u) ,

Sel
Y (R̄, u) = Z0[c∂Y ρ̄(R̄, u) + ∂uJ̄Y (R̄, u)]

= Z0cρL(R, u)
d

dY
δ(Y ) =: Sel

L,Y (R, u)
d

dY
δ(Y ) ,

Smag
Z (R̄, u) =

Z0

c
∂Y J̄X(R̄, u) =

Z0

c
JL,X(R, u)

d

dY
δ(Y )

=: Smag
L,Z (R, u)

d

dY
δ(Y ) ,

Smag
X (R̄, u) = −Z0

c
∂Y J̄Z(R̄, u) = −Z0

c
JL,Z(R, u)

d

dY
δ(Y )

=: Smag
L,X (R, u)

d

dY
δ(Y ) ,

Smag
Y (R̄, u) = −Z0

c
(∂Z J̄X(R̄, u)− ∂X J̄Z(R̄, u))

= −Z0

c
δ(Y )(∂ZJL,X(R, u)− ∂XJL,Z(R, u)) =: δ(Y )Smag

L,Y (R, u) .

(A.9)

Note that by (3.37), (A.9)

S = (Sel
L,Z , S

el
L,X, S

mag
L,Y )T . (A.10)
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In the nonshielding scenario we obtain from (A.4),(A.5),(A.9) that

Ensh
Z (R̄, u) = −

∫
R4

dR̄
′
du′G(R−R′, Y − Y ′, u− u′)1[u0,∞)(u

′)Sel
Z (R̄

′
, u′)

= −
∫

R4

dR̄
′
du′G(R−R′, Y − Y ′, u− u′)1[u0,∞)(u

′)δ(Y ′)Sel
L,Z(R′, u′)

= −
∫

R3

dR′du′1[u0,∞)(u
′)G(R−R′, Y, u− u′)Sel

L,Z(R′, u′)

= − 1

4π

∫
R3

dR′du′1[u0,∞)(u
′)
δ(u− u′ −

√
|R−R′|2 + Y 2)√

|R−R′|2 + Y 2
Sel

L,Z(R′, u′)

= − 1

4π

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + Y 2)

Sel
L,Z(R′, u−

√
|R−R′|2 + Y 2)√

|R−R′|2 + Y 2
,

(A.11)

and analogously

Ensh
X (R̄, u)

= − 1

4π

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + Y 2)

Sel
L,X(R′, u−

√
|R−R′|2 + Y 2)√

|R−R′|2 + Y 2
,

Bnsh
Y (R̄, u)

= − 1

4π

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + Y 2)

Smag
L,Y (R′, u−

√
|R−R′|2 + Y 2)√

|R−R′|2 + Y 2
.

(A.12)

Note by (A.11),(A.12) that Ensh
Z (R̄, u), Ensh

X (R̄, u), Bnsh
Y (R̄, u) are even in Y . Ab-

breviating

Fnsh := (Ensh
Z , Ensh

X , Bnsh
Y )T , Fnsh

L (R, u) := Fnsh(R, 0, u) , (A.13)
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we obtain from (A.10),(A.11),(A.12) that

Fnsh(R, Y, u) = (Ensh
Z (R, Y, u), Ensh

X (R, Y, u), Bnsh
Y (R, Y, u))T

= − 1

4π

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + Y 2)√

|R−R′|2 + Y 2

·

⎛
⎜⎜⎜⎝

Sel
L,Z(R′, u−

√
|R−R′|2 + Y 2)

Sel
L,X(R′, u−

√
|R−R′|2 + Y 2)

Smag
L,Y (R′, u−

√
|R−R′|2 + Y 2)

⎞
⎟⎟⎟⎠

= − 1

4π

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + Y 2)

S(R′, u−
√
|R−R′|2 + Y 2)√

|R−R′|2 + Y 2
,

(A.14)

whence, by (A.13),

Fnsh
L (R, u) = − 1

4π

∫
R2

dR′1[u0,∞)(u− |R−R′|)S(R′, u− |R−R′|)
|R−R′| . (A.15)

Also in the nonshielding scenario we obtain from (A.4),(A.9) that

Ensh
Y (R̄, u) = −

∫
R4

dR̄
′
du′G(R−R′, Y − Y ′, u− u′)1[u0,∞)(u

′)Sel
Y (R̄

′
, u′)

= −
∫

R4

dR̄
′
du′G(R−R′, Y − Y ′, u− u′)1[u0,∞)(u

′)Sel
L,Y (R′, u′)

d

dY ′ δ(Y
′) ,

Bnsh
Z (R̄, u) = −

∫
R4

dR̄
′
du′G(R−R′, Y − Y ′, u− u′)1[u0,∞)(u

′)Smag
Z (R̄

′
, u′)

= −
∫

R4

dR̄
′
du′G(R−R′, Y − Y ′, u− u′)1[u0,∞)(u

′)Smag
L,Z (R′, u′)

d

dY ′ δ(Y
′) ,

Bnsh
X (R̄, u) = −

∫
R4

dR̄
′
du′G(R−R′, Y − Y ′, u− u′)1[u0,∞)(u

′)Smag
X (R̄

′
, u′)

= −
∫

R4

dR̄
′
du′G(R−R′, Y − Y ′, u− u′)1[u0,∞)(u

′)Smag
L,X (R′, u′)

d

dY ′ δ(Y
′) .

(A.16)

Note by (A.5) that G(R̄, u) is even in Y whence, by (A.16), Ensh
Y (R̄, u),

Bnsh
Z (R̄, u), Bnsh

X (R̄, u) are odd in Y .
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In the shielding scenario we obtain from (A.6),(A.7),(A.9) that

Esh
Z (R̄, u) = −

∫
R4

dR̄
′
du′GD(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Sel
Z (R̄

′
, u′)

= −
∫

R4

dR̄
′
du′GD(R, Y, u,R′, Y ′, u′)1[u0,∞)(u

′)δ(Y ′)Sel
L,Z(R′, u′)

= −
∫

R3

dR′du′1[u0,∞)(u
′)GD(R, Y, u,R′, 0, u′)Sel

L,Z(R′, u′)

= −
∑
k∈Z

(−1)k

∫
R3

dR′du′1[u0,∞)(u
′)G(R−R′, Y − 2kg, u− u′)Sel

L,Z(R′, u′) ,

whence, by (A.11),

Esh
Z (R̄, u) =

∑
k∈Z

(−1)kEnsh
Z (R, Y − 2kg, u)

= − 1

4π

∑
k∈Z

(−1)k

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + (Y − 2kg)2)

·S
el
L,Z(R′, u−

√
|R−R′|2 + (Y − 2kg)2)√

|R−R′|2 + (Y − 2kg)2
, (A.17)

and analogously

Esh
X (R̄, u) =

∑
k∈Z

(−1)kEnsh
X (R, Y − 2kg, u)

= − 1

4π

∑
k∈Z

(−1)k

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + (Y − 2kg)2)

·S
el
L,X(R′, u−

√
|R−R′|2 + (Y − 2kg)2)√

|R−R′|2 + (Y − 2kg)2
,

Bsh
Y (R̄, u) =

∑
k∈Z

(−1)kBnsh
Y (R, Y − 2kg, u)

= − 1

4π

∑
k∈Z

(−1)k

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + (Y − 2kg)2)

·
Smag

L,Y (R′, u−
√
|R−R′|2 + (Y − 2kg)2)√

|R−R′|2 + (Y − 2kg)2
.

(A.18)

Since Ensh
Z (R̄, u), Ensh

X (R̄, u), Bnsh
Y (R̄, u) are even in Y , it follows from (A.17),(A.18)
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that Esh
Z (R̄, u), Esh

X (R̄, u), Bsh
Y (R̄, u) are even in Y . Abbreviating

F sh := (Esh
Z , E

sh
X , B

sh
Y )T , F sh

L (R, u) := F sh(R, 0, u) , (A.19)

we obtain from (A.13),(A.14),(A.17), (A.18) that

F sh(R, Y, u) = (Esh
Z (R, Y, u), Esh

X (R, Y, u), Bsh
Y (R, Y, u))T

=
∑
k∈Z

(−1)k

(
Ensh

Z (R, Y − 2kg, u), Ensh
X (R, Y − 2kg, u), Bnsh

Y (R, Y − 2kg, u)

)T

=
∑
k∈Z

(−1)kFnsh(R, Y − 2kg, u)

= − 1

4π

∑
k∈Z

(−1)k

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + (Y − 2kg)2)

·S(R′, u−
√
|R−R′|2 + (Y − 2kg)2)√

|R−R′|2 + (Y − 2kg)2
. (A.20)

Since Fnsh(R, Y, u) is even in Y and since, by (A.20),

F sh(R, Y, u) =
∑

k∈Z
(−1)kFnsh(R, Y − 2kg, u), it follows that F sh satisfies the

Dirichlet boundary condition (3.43). It also follows from (A.19),(A.20) that

F sh
L (R, u) =

∑
k∈Z

(−1)kFnsh(R,−2kg, u) =
∑
k∈Z

(−1)kFnsh(R, 2kg, u)

= − 1

4π

∑
k∈Z

(−1)k

∫
R2

dR′1[u0,∞)(u−
√
|R−R′|2 + (2kg)2)

·S(R′, u−
√
|R−R′|2 + (2kg)2)√

|R−R′|2 + (2kg)2
. (A.21)
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Also we obtain from (A.6),(A.7), (A.9),(A.16) that

Esh
Y (R̄, u) = −

∫
R4

dR̄
′
du′GN(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Sel
Y (R̄

′
, u′)

= −
∫

R4

dR̄
′
du′GN(R̄, u, R̄

′
, u′)1[u0,∞)(u

′)Sel
L,Y (R′, u′)

d

dY ′ δ(Y
′)

= −
∑
k∈Z

∫
R4

dR̄
′
du′G(R−R′, Y − (−1)kY ′ − 2kg, u− u′)1[u0,∞)(u

′)

·Sel
L,Y (R′, u′)

d

dY ′ δ(Y
′)

= −
∑
k∈Z

(−1)k

∫
R4

dR̄
′
du′G(R−R′, Y − Y ′ − 2kg, u− u′)1[u0,∞)(u

′)

·Sel
L,Y (R′, u′)

d

dY ′ δ(Y
′) =

∑
k∈Z

(−1)kEnsh
Y (R, Y − 2kg, u) , (A.22)

and analogously

Bsh
Z (R̄, u) = −

∑
k∈Z

(−1)kBnsh
Z (R, Y − 2kg, u) ,

Bsh
X (R̄, u) = −

∑
k∈Z

(−1)kBnsh
X (R, Y − 2kg, u) .

(A.23)

Since Ensh
Y (R̄, u), Bnsh

Z (R̄, u), Bnsh
X (R̄, u) are odd in Y it follows from (A.22),(A.23)

that Esh
Y (R̄, u), Bsh

Z (R̄, u), Bsh
X (R̄, u) are odd in Y and satisfy the Neumann boundary

condition (3.23).

We conclude that, in both scenarios, EY (R̄, u), BZ(R̄, u),

BX(R̄, u) are odd in Y and EZ(R̄, u), EX(R̄, u), BY (R̄, u) are even in Y .

As explained in Section 3.1 it is useful to rewrite the field integral in (A.14) by

applying a string of substitutions. To do so we first write (A.14) in the form

Fnsh(R, Y, u) =

∫
R2

dR′F (R′, u−
√
|R−R′|2 + Y 2)√

|R−R′|2 + Y 2
, (A.24)

where

F (R, u) := − 1

4π
1[u0,∞)(u)S(R, u) . (A.25)
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Using polar coordinates we obtain from (A.24)

Fnsh(R, Y, u) =

∫
R2

dR′′F (R + R′′, u−
√
|R′′|2 + Y 2)√

|R′′|2 + Y 2

=

∫ ∞

0

dχχ

∫ π

−π

dθ
F (R + χe(θ), u−

√
χ2 + Y 2)√

χ2 + Y 2
, (A.26)

where e(θ) := (cos(θ), sin(θ))T . Performing in (A.26) the substitution χ → ξ :=√
χ2 + Y 2 we obtain

Fnsh(R, Y, u) =

∫ ∞

|Y |
dξξ

∫ π

−π

dθ
F (R +

√
ξ2 − Y 2e(θ), u− ξ)

ξ

=

∫ ∞

|Y |
dξ

∫ π

−π

dθF (R +
√
ξ2 − Y 2e(θ), u− ξ) . (A.27)

Performing in (A.27) the substitution ξ → v := u− ξ we obtain

Fnsh(R, Y, u) = −
∫ −∞

u−|Y |
dv

∫ π

−π

dθF (R +
√

(u− v)2 − Y 2e(θ), v) .

=

∫ u−|Y |

−∞
dv

∫ π

−π

dθF (R +
√

(u− v)2 − Y 2e(θ), v) , (A.28)

whence by (A.25)

Fnsh(R, Y, u) = − 1

4π

∫ u−|Y |

−∞
dv1[u0,∞)(v)

∫ π

−π

dθS(R +
√

(u− v)2 − Y 2e(θ), v) .

(A.29)
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A.2 Derivation of the 4D Vlasov equation

For the sheet beam the 6D Vlasov equation (3.6) reads by (3.2),(3.8),(3.9), (3.24) as

0 = ∂uf̄(R̄, P̄; u) + ˙̄R · ∇R̄f̄(R̄, P̄; u) + ˙̄P · ∇P̄f̄(R̄, P̄; u)

= ∂ufL(R,P; u)δ(Y )δ(PY ) +
PZ

mcγ̄
∂ZfL(R,P; u)δ(Y )δ(PY )

+
PX

mcγ̄
∂XfL(R,P; u)δ(Y )δ(PY ) +

PY

mcγ̄
fL(R,P; u)δ(PY )

d

dY
δ(Y )

+ṖZ∂PZ
fL(R,P; u)δ(Y )δ(PY ) + ṖX∂PX

fL(R,P; u)δ(Y )δ(PY )

+ṖY fL(R,P; u)δ(Y )
d

dPY
δ(PY )

= ∂ufL(R,P; u)δ(Y )δ(PY ) +
PZ

mcγ̄
∂ZfL(R,P; u)δ(Y )δ(PY )

+
PX

mcγ̄
∂XfL(R,P; u)δ(Y )δ(PY ) +

PY

mcγ̄
fL(R,P; u)δ(PY )

d

dY
δ(Y )

+
q

c

(
EZ(R̄, u) +

PX

mγ̄
[BY (R̄, u) + B̄ext,Y (R̄)]

−PY

mγ̄
[BX(R̄, u) + B̄ext,X(R̄)]

)
∂PZ

fL(R,P; u)δ(Y )δ(PY )

+
q

c

(
EX(R̄, u)− PZ

mγ̄
[BY (R̄, u) + B̄ext,Y (R̄)]

+
PY

mγ̄
[BZ(R̄, u) + B̄ext,Z(R̄)]

)
∂PX

fL(R,P; u)δ(Y )δ(PY )

+
q

c

(
EY (R̄, u) +

PZ

mγ̄
[BX(R̄, u) + B̄ext,X(R̄)]

−PX

mγ̄
[BZ(R̄, u) + B̄ext,Z(R̄)]

)
fL(R,P; u)δ(Y )

d

dPY

δ(PY ) . (A.30)
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Since, by Section A.1, EY (R̄, u), BZ(R̄, u), BX(R̄, u) are odd in Y and due to (3.3),

(3.5),(3.29) we have

PZ

mcγ̄
δ(Y )δ(PY ) =

PZ

mcγ
δ(Y )δ(PY ) ,

PX

mcγ̄
δ(Y )δ(PY ) =

PX

mcγ
δ(Y )δ(PY ) ,

PY δ(PY )
d

dY
δ(Y ) = 0 ,(

EZ(R̄, u) +
PX

mγ̄
[BY (R̄, u) + B̄ext,Y (R̄)]

− PY

mγ̄
[BX(R̄, u) + B̄ext,X(R̄)]

)
δ(Y )δ(PY )

=

(
EZ(R, 0, u) +

PX

mγ
[BY (R, 0, u) +Bext(Z)]

)
δ(Y )δ(PY ) ,(

EX(R̄, u)− PZ

mγ̄
[BY (R̄, u) + B̄ext,Y (R̄)]

+
PY

mγ̄
[BZ(R̄, u) + B̄ext,Z(R̄)]

)
δ(Y )δ(PY )

=

(
EX(R, 0, u)− PZ

mγ
[BY (R, 0, u) +Bext(Z)]

)
δ(Y )δ(PY ) ,(

EY (R̄, u) +
PZ

mγ̄
[BX(R̄, u) + B̄ext,X(R̄)]

−PX

mγ̄
[BZ(R̄, u) + B̄ext,Z(R̄)]

)
δ(Y )

d

dPY
δ(PY ) = 0 .

(A.31)
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It follows from (3.29),(3.28),(3.31), (A.30),(A.31) that

0 = δ(Y )δ(PY )

(
∂ufL(R,P; u) +

PZ

mcγ
∂ZfL(R,P; u) +

PX

mcγ
∂XfL(R,P; u)

+
q

c

(
EZ(R, 0, u) +

PX

mγ
[BY (R, 0, u) +Bext(Z)]

)
∂PZ

fL(R,P; u)

+
q

c

(
EX(R, 0, u)− PZ

mγ
[BY (R, 0, u) +Bext(Z)]

)
∂PX

fL(R,P; u)

)

= δ(Y )δ(PY )

(
∂ufL(R,P; u) +

P

mcγ
· ∇RfL(R,P; u)

+
q

c

(
E⊥(R, u) +

1

mγ
(PX ,−PZ)T [B⊥(R, u) +Bext(Z)]

)
· ∇PfL(R,P; u)

= δ(Y )δ(PY )

(
∂ufL(R,P; u) + Ṙ · ∇RfL(R,P; u) + Ṗ · ∇PfL(R,P; u)

)
,

(A.32)

whence the 4D Vlasov equation (3.26) holds.

Since we assume that our 6D+3D Vlasov-Maxwell problem is well-posed in both

scenarios (shielding and nonshielding) we thus conclude from Section A.1 and the

present section that if f̄ is initially of the sheet beam form (3.24) then f̄ remains in

this form and FL satisfies (A.15) resp. (A.21).

As mentioned in Chapter 1, the first part of this thesis (consisting of Chapters 2-4

and Appendix A) does not aim at rigorousness. For example in the above derivation

of (3.26) I used (A.31) which contains the term EY (R̄, u)δ(Y ) which, as a function

of Y , is proportional to Y
|Y |δ(Y ). A rigorous treatment therefore warrants to deal

with Y
|Y |δ(Y ) which however is not defined in the theory of Schwartz distributions.

Nevertheless modern generalizations of Schwartz’ distribution theory (see, e.g., [Hos])

cope with Y
|Y |δ(Y ) which allows to study (A.31) rigorously.
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A.3 Kernel density estimation

In this section I present some material on kernel density estimators (in Section A.3.7

I comment on practical aspects w.r.t. our code).

A.3.1 Generalities

Let Y1, ..., YN be Rd-valued random vectors which are independent identically dis-

tributed with probability density, f , and let Y := (Y1, ..., YN). Let the ‘kernel’ be a

function K : Rd → [0,∞) which is continuous, even, has finite second moments and

satisfies ∫
Rd

dyK(y) = 1 . (A.33)

For H > 0 we define KH : Rd → [0,∞) for y ∈ Rd by

KH(y) :=
1

Hd
K(

y

H
) . (A.34)

Clearly KH is continuous, even, and satisfies∫
Rd

dyKH(y) = 1 . (A.35)

Given a kernelK the density estimation gives a random variable f̂ which is parametrized

by y ∈ Rd and H > 0 and which is defined by

f̂(y,H) = f̂(y,H, Y ) :=
1

N

N∑
j=1

KH(y − Yj) =
1

HdN

N∑
j=1

K(
y − Yj

H
) . (A.36)

The selection of the bandwith H will be discussed in later sections so it suffices here

to say that we will deal with a MISE driven bandwith selector. Note also that, by

(A.33),(A.36), ∫
Rd

dyf̂(y,H) = 1 . (A.37)

167



Appendix A.

A very common kernel in the univariate (d = 1) case is the 1D Epanechnikov kernel

K = KC0,1D which is defined by

KC0,1D(y) :=
3

4
(1− y2)1[0,1](y

2) =
3

4
(1− y2)1[−1,1](y) . (A.38)

Another kernel in the univariate case is K = KC1,1D which is defined by

KC1,1D(y) :=
15

16
(1− y2)21[0,1](y

2) =
15

16
(1− y2)21[−1,1](y) . (A.39)

On the basis of (A.38),(A.39) one defines in the bivariate (d = 2) case the kernels

K = KC0,2D,P and K = KC1,2D,P by

KC0,2D,P (y1, y2) := KC0,1D(y1)KC0,1D(y2)

=
9

16
(1− y2

1)(1− y2
2)1[−1,1](y1)1[−1,1](y2)

=
9

16
(1− y2

1)(1− y2
2)1[−1,1]×[−1,1](y1, y2) , (A.40)

KC1,2D,P (y1, y2) := KC1,1D(y1)KC1,1D(y2)

=
225

256
(1− y2

1)
2(1− y2

2)
21[−1,1](y1)1[−1,1](y2)

=
225

256
(1− y2

1)
2(1− y2

2)
21[−1,1]×[−1,1](y1, y2) . (A.41)

An important class of kernels is of the radial form

K(y) = Ǩ(yTy) , (A.42)

where Ǩ : [0,∞)→ [0,∞) is continuous. Note that in the case (A.42) we have

1 =

∫
Rd

dyK(y) =

⎧⎨
⎩
∫∞
0

dtǨ(t)√
t

if d = 1

π
∫∞
0

dtǨ(t) if d = 2
, (A.43)

and, for y ∈ Rd,

KH(y) =
1

Hd
Ǩ(

yTy

H2
) . (A.44)
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Radial examples in the univariate case are KC0,1D (see (A.38)) and KC1,1D (see

(A.39)) since

KC0,1D(y) = ǨC0,1D(y2) , ǨC0,1D(t) :=
3

4
(1− t)1[0,1](t) , (A.45)

KC1,1D(y) = ǨC1,1D(y2) , ǨC1,1D(t) :=
15

16
(1− t)21[0,1](t) . (A.46)

A radial example in the univariate case with global support is the Gaussian kernel

K = KGauss,1D which reads as

KGauss,1D(y) := ǨGauss,1D(y2) , ǨGauss,1D(t) := (2π)−1/2 exp(−t/2) . (A.47)

Radial examples in the bivariate case are the kernelsK = KC0,2D,R andK = KC1,2D,R

which read as

KC0,2D,R(y1, y2) := ǨC0,2D(y2
1 + y2

2) , ǨC0,2D(t) :=
2

π
(1− t)1[0,1](t) , (A.48)

KC1,2D,R(y1, y2) := ǨC1,2D(y2
1 + y2

2) , ǨC1,2D(t) :=
3

π
(1− t)21[0,1](t) . (A.49)

Note that the functions KC0,1D, KC0,2D,P , KC0,2D,R are of class C0 but not of class

C1. In contrast the functions KC1,1D, KC1,2D,R are of class C1 but not of class C2.

A radial example in the bivariate case with global support is the Gaussian kernel

K = KGauss,2D which reads as

KGauss,2D(y) := ǨGauss,2D(y2
1 + y2

d) , ǨGauss,2D(t) := (2π)−1 exp(−t/2) .(A.50)

In Section A.3.6 we will see that the Fourier transforms of kernels are of interest. We

thus define for a real valued function g on Rd its Fourier transform by

g̃(y) := (2π)−d/2

∫
Rd

dy′ exp(iyTy′)g(y) . (A.51)
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To give an example, we conclude from (A.38),(A.51) that

K̃C0,1D(y) = (2π)−1/2

∫
R

dy′ exp(iyy′)KC0,1D(y′)

= (2π)−1/2 3

4

∫ 1

−1

dy′ exp(iyy′)(1− y′2)

=

√
9

32π
[1 +

∂2

∂y2
]

∫ 1

−1

dy′ exp(iyy′) =

√
9

32π
[1 +

∂2

∂y2
](

2

y
sin(y))

=

√
9

2π

sin(y)− y cos(y)

y3
, (A.52)

whence by (A.40),(A.51)

K̃C0,2D(y) = (2π)−1

∫
R2

dy′ exp(iyTy′)KC0,2D(y′)

= (2π)−1

∫
R2

dy′ exp(iy1y
′
1) exp(iy2y

′
2)KC0,1D(y′1)KC0,1D(y′2)

= K̃C0,1D(y1)K̃C0,1D(y2)

=
9

2π

sin(y1)− y1 cos(y1)

y3
1

sin(y2)− y2 cos(y2)

y3
2

. (A.53)

A.3.2 Algorithmic aspects of the kernel density estimator

In this section we outline two algorithms, A1 and A2, for computing f̂ on a grid and

by estimating their costs we show that for compact support kernels they are very

efficient. We here restrict to the bivariate case where we define the grid points yα,β

by

yα,β := (zα, xβ) , zα :=
α

m
, xβ :=

β

n
, (α, β ∈ Z) , (A.54)

where m,n are fixed positive integers characterizing the grid spacings. We also define

the random variables X1, ..., XN , Z1, ..., ZN by

Yj =: (Zj, Xj) . (A.55)
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Thus in this section we are interested in the values of f̂ on the grid points yα,β.

However in our applications we are faced with the situation where the Yi are concen-

trated in [0, 1] × [0, 1] whence we are only interested in the values of f̂(yα,β) when

α = 0, ..., m, β = 0, ..., n. Thus defining for α = 0, ..., m, β = 0, ..., n

f̂grid(α, β,H, Y ) = f̂grid(α, β) := f̂(yα,β, H, Y ) =
1

H2N

N∑
j=1

K(
yα,β − Yj

H
) , (A.56)

we develop two algorithms, A1 and A2, to compute f̂grid. Note that algorithm A2,

which for us is the one of practical interest, builds up on algorithm A1 so we will

outline algorithm A1 first. We define Bj as that set of indices (α, β) for which

K((yα,β − Yj)/H) is nonzero, i.e., for j = 1, ..., N we define

Bj := {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,K(
yα,β − Yj

H
) 
= 0} . (A.57)

We now outline algorithm A1 which works for arbitrary kernels and which marches

forward in j (where j = 1, ..., N). One first initializes the 2D array f̂grid to zero.

Then, for j = 1, one computes the set B1 via (A.57) and then, for every (α, β) ∈ B1,

one computes (1/NH2)K(
yα,β−Y1

H
) and adds it to the (α, β)-element of the array f̂grid.

One then repeats this procedure for j = 2 and so on until one has completed with

j = N . The resulting expression of f̂grid obviously satisfies for α = 0, ..., m, β =

0, ..., n

f̂grid(α, β) =
1

NH2

∑
j∈{k∈Z:1≤k≤N,(α,β)∈Bk}

K(
yα,β − Yj

H
) , (A.58)

whence, due to (A.57) f̂grid has the desired form (A.56). The number of function

evaluations (=‘computational cost’), C, of algorithm A1 is C =
∑N

j=1 #(Bj) with

#(Bj) being the cardinality of the set Bj . Note that ifK has global support (e.g., ifK

in is the Gaussian KGauss,2D of (A.50)) then, by (A.57), Bj = {(α, β) ∈ Z2 : 0 ≤ α ≤
m, 0 ≤ β ≤ n} whence #(Bj) = (m+1)(n+1) so that C = N(m+1)(n+1) ≈ Nmn.

In contrast, if K has compact support then #(Bj) can be notably smaller than
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(m+ 1)(n+ 1) and so the cost can be notably smaller than Nmn (we come back to

this point after we have outlined algorithm A2).

The motivation for algorithm A2 is the simple observation that in general the Bj

are subsets of Z2 which are not rectangular. This is an inconvenience of algorithm A1

and so algorithm A2 resolves this inconvenience by replacing the Bj by rectangular

sets (the B̂j defined below). To make algorithm A2 work we assume that the kernel

function K has support in [−1, 1] × [−1, 1]. Algorithm A2 is now easy to define: it

is identical with algorithm A1 except that the Bj are replaced by the B̂j which are

defined as follows. We define for j = 1, ..., N the square Sj ⊂ R2 by

Sj := [Zj −H,Zj +H ]× [Xj −H,Xj +H ] , (A.59)

and the rectangles B̌j , B̂j by

B̌j := {(α, β) ∈ Z2 : yα,β ∈ Sj} , (A.60)

B̂j := B̌j ∩ {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n} . (A.61)

Note that by (A.54),(A.59), (A.60)

B̌j = {(α, β) ∈ Z2 : Zj −H ≤ zα ≤ Zj +H,Xj −H ≤ xβ ≤ Xj +H}

= {(α, β) ∈ Z2 : m(Zj −H) ≤ mzα ≤ m(Zj +H),

n(Xj −H) ≤ nxβ ≤ n(Xj +H)}

= {(α, β) ∈ Z2 : m(Zj −H) ≤ α ≤ m(Zj +H),

n(Xj −H) ≤ β ≤ n(Xj +H)} . (A.62)

Eq. (A.62) shows us that B̌j is a rectangle. Of course, by (A.60),(A.61), B̂j is the

intersection of the rectangle B̌j and the rectangle {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤
n} whence B̂j is a rectangle. To show that algorithm A2 computes f̂grid in agreement

with (A.56), we conclude from (A.57) that if (α, β) ∈ Bj then K(
yα,β−Yj

H
) 
= 0 so

that, since K has support in [−1, 1] × [−1, 1] and due to (A.54), we obtain that
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−1 ≤ zα−Zj

H
≤ 1,−1 ≤ xβ−Xj

H
≤ 1 which implies by (A.62) that (α, β) ∈ B̌j . Thus

we have shown that

Bj ⊂ B̌j . (A.63)

Since by (A.57) Bj = Bj ∩ {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n}, we conclude from

(A.61),(A.63) that

Bj ⊂ B̂j . (A.64)

Obviously the resulting expression of f̂grid for algorithm A2 is given by

f̂grid(α, β) =
1

NH2

∑
j∈{k∈Z:1≤k≤N,(α,β)∈B̂k}

K(
yα,β − Yj

H
) . (A.65)

It follows from (A.57),(A.64) that

∑
j∈{k∈Z:1≤k≤N,(α,β)∈Bk}

K(
yα,β − Yj

H
) =

∑
j∈{k∈Z:1≤k≤N,(α,β)∈B̂k}

K(
yα,β − Yj

H
) ,

whence algorithm A2 produces the same correct f̂grid as algorithm A1 which com-

pletes the proof that the resulting expression, (A.65), of f̂grid in algorithm A2 has

the desired form (A.56).

The computational cost, Ĉ, of algorithm A2 is Ĉ =
∑N

j=1 #(B̂j). It is clear by

(A.61),(A.62) that the cost Ĉ is independent of the kernel K. Recalling that the

computational cost of algorithm A1 is C =
∑N

j=1 #(Bj) it follows from (A.64) that

C ≤ Ĉ . (A.66)

If H 
 1 (which is usually the case) then the average of #(B̂j) over j is approx-

imately the average of #(B̌j) over j whence Ĉ =
∑N

j=1 #(B̂j) ≈
∑N

j=1 #(B̌j). To

estimate the cost of algorithm A2 let H 
 1. Then the average of #(B̂j) over j is

approximately 4H2mn whence Ĉ ≈ 4H2mnN . In particular by (A.66) the cost of

algorithm A1 satisfies C≤̃4H2mnN . For example if m = n = 100, H = 0.01 then
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Ĉ ≈ 4N . In contrast, in the global support case the cost of algorithm A1 would be

C ≈ Nm2 = 104N which is about a factor 2500 higher than Ĉ.

We now compare C and Ĉ for special kernels. Firstly we consider K = KC0,2D,P

in which case (see (A.40)) the support of K is contained in [−1, 1]× [−1, 1] so that

one can apply algorithm A2 (recall that algorithm A1 can be applied for any kernel).

Furthermore by (A.40), (A.54),(A.55),(A.57), (A.61),(A.62)

Bj = {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,KC0,2D,P (
yα,β − Yj

H
) 
= 0}

= {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,

(1− (
zα − Zj

H
)2(1− (

xβ −Xj

H
)2)1[−1,1]×[−1,1](

yα,β − Yj

H
) 
= 0}

= {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n, (1− (
zα − Zj

H
)2)(1− (

xβ −Xj

H
)2) 
= 0}

∪{(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,−1 ≤ zα − Zj

H
≤ 1,−1 ≤ xβ −Xj

H
≤ 1}

= {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n, (1− (
zα − Zj

H
)2)(1− (

xβ −Xj

H
)2) 
= 0}

∪{(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n, (α, β) ∈ B̌j}

= {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,

(1− (
zα − Zj

H
)2)(1− (

xβ −Xj

H
)2) 
= 0} ∪ B̂j . (A.67)

Since the cases where (1− zα−Zj

H
)2(1− xβ−Xj

H
)2 = 0 are exceptional we have by (A.67)

that, in the average over j, #(Bj) ≈ #(B̂j) whence C ≈ Ĉ. We thus conclude that if

K = KC0,2D,P then algorithms A1 and A2 have essentially the same cost. Secondly it

is clear that the kernel K = KC1,2D,P has the same cost C as K = KC0,2D,P and the

same cost Ĉ as K = KC0,2D,P . Thirdly we consider K = KC0,2D,R and K = KC1,2D,R

in which cases (see (A.48),(A.49)) the support of K is contained in [−1, 1]× [−1, 1] so

that one can apply both algorithms. Furthermore by (A.48),(A.49), (A.54),(A.55),
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(A.57) we have

Bj = {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,KC0,2D,R(
yα,β − Yj

H
) 
= 0}

= {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,KC1,2D,R(
yα,β − Yj

H
) 
= 0}

= {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,

(1− (
zα − Zj

H
)2 − (

xβ −Xj

H
)2)1[0,1]((

zα − Zj

H
)2 + (

xβ −Xj

H
)2) 
= 0}

= {(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n, (1− (
zα − Zj

H
)2 − (

xβ −Xj

H
)2) 
= 0}

∪{(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n, (
zα − Zj

H
)2 + (

xβ −Xj

H
)2 ≤ 1} . (A.68)

It is clear by (A.68) that the kernel K = KC1,2D,R has the same cost C as K =

KC0,2D,R (and we already mentioned that the cost Ĉ is the same for all kernels).

Since the cases where (1 − (
zα−Zj

H
)2 − (

xβ−Xj

H
)2) = 0 are exceptional we have by

(A.68), in the average over j,

#(Bj) ≈ #({(α, β) ∈ Z2 : 0 ≤ α ≤ m, 0 ≤ β ≤ n,

(
zα − Zj

H
)2 + (

xβ −Xj

H
)2 ≤ 1}) . (A.69)

Since the disc around Yj with radius H has area πH2 and the square around Yj of

side length 2H has area 4H2 we have, by (A.62),(A.69) that, in the average over j,

#(Bj) ≈ (π/4)#(B̌j). Under the assumption that H 
 1, the average of #(B̂j) over

j is approximately the average of #(B̌j) over j whence, by (A.69), the costs satisfy

C =
∑N

j=1 #(Bj) ≈ (π/4)
∑N

j=1 #(B̌j) ≈ (π/4)
∑N

j=1 #(B̂j) = (π/4)Ĉ. We see that

for the four kernels, KC0,2D,P , KC0,2D,R, KC1,2D,P , KC1,2D,R, the cost of algorithm A2

is not much larger than the cost of algorithm A1 which justifies the use of the more

convenient algorithm A2.
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A.3.3 Estimators of MISE and of related quantities

In this section we consider MISE which is defined by

MISE(H) = MISE(H, Y ) := E(

∫
Rd

dy(f̂(y,H, Y )− f(y))2) . (A.70)

MISE is an important figure of merit for the accuracy of f̂ and so its minimization

w.r.t. H is of great interest. In fact we want to use a MISE driven bandwith

selector, i.e., we define the optimal bandwith, HMISE, by

HMISE := argminH>0(MISE(H, Y )) . (A.71)

Since we want to estimate and approximate HMISE in Sections A.3.5,A.3.6, we first

have to introduce quantities related with MISE. We define for real valued functions

g, h

(g ∗ h)(y) :=

∫
Rd

dy′g(y − y′)h(y′) . (A.72)

Since Y1, ..., YN are independent identically distributed with probability density f ,

the expectation value of f̂ reads as

E(f̂(y,H, Y )) = E(
1

N

N∑
j=1

KH(y − Yj)) =
1

N

N∑
j=1

E(KH(y − Yj))

=
1

N

N∑
j=1

∫
Rd

dy′f(y′)KH(y − y′)

=

∫
Rd

dy′f(y′)KH(y − y′) = (KH ∗ f)(y) . (A.73)

We define for y ∈ Rd and H > 0

RSE(y,H) = RSE(y,H, Y ) := f̂ 2(y,H, Y )− 2f̂(y,H, Y )f(y) , (A.74)

SE(y,H) = SE(y,H, Y ) := RSE(y,H, Y ) + f 2(y)

= f̂ 2(y,H, Y )− 2f̂(y,H, Y )f(y) + f 2(y) = (f̂(y,H, Y )− f(y))2 . (A.75)
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We define for real valued and square integrable functions g, h

(g, h)2 :=

∫
Rd

dyg(y)h(y) . (A.76)

We now define for H > 0

RISE(H) = RISE(H, Y ) :=

∫
Rd

dyRSE(y,H, Y )

=

∫
Rd

dy(f̂ 2(y,H, Y )− 2f̂(y,H, Y )f(y))

= (f̂(·, H, Y ), f̂(·, H, Y ))2 − 2(f̂(·, H, Y ), f)2 , (A.77)

ISE(H) = ISE(H, Y ) :=

∫
Rd

dySE(y,H, Y ) =

∫
Rd

dy(RSE(y,H, Y ) + f 2(y))

= RISE(H, Y ) +

∫
Rd

dyf 2(y) =

∫
Rd

dy(f̂(y,H, Y )− f(y))2

= (f̂(·, H, Y )− f, f̂(·, H, Y )− f)2 . (A.78)

We now define for y ∈ Rd and H > 0

RMSE(y,H) = RMSE(y,H, Y ) := E(RSE(y,H, Y ))

= E(f̂ 2(y,H, Y ))− 2f(y)E(f̂(y,H, Y ))

= E(f̂ 2(y,H, Y ))− 2f(y)(KH ∗ f)(y) , (A.79)

MSE(y,H) = MSE(y,H, Y ) := E(SE(y,H, Y )) = E((f̂(y,H, Y )− f(y))2)

= E(RSE(y,H, Y )) + f 2(y) = RMSE(y,H, Y ) + f 2(y)

= E(f̂ 2(y,H, Y ))− 2f(y)(KH ∗ f)(y) + f 2(y) . (A.80)

Note that by (A.36)

f̂ 2(y,H, Y ) =
1

N2

N∑
i=1

N∑
j=1

KH(y − Yi)KH(y − Yj)

=
1

N2

N∑
i=1

K2
H(y − Yi) +

1

N2

N∑
i=1

N∑
j �=i

KH(y − Yi)KH(y − Yj) , (A.81)
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whence and since Y1, ..., YN are independent identically distributed with probability

density f

E(f̂ 2(y,H, Y )) =
1

N2

N∑
i=1

E(K2
H(y − Yi))

+
1

N2

N∑
i=1

N∑
j �=i

E(KH(y − Yi)KH(y − Yj))

=
1

N2

N∑
i=1

∫
Rd

dy′f(y′)K2
H(y − y′)

+
1

N2

N∑
i=1

N∑
j �=i

∫
Rd

dy′f(y′)

∫
Rd

dy′′f(y′′)KH(y − y′)KH(y − y′′)

=
1

N

∫
Rd

dy′f(y′)K2
H(y − y′)

+
N − 1

N

∫
Rd

dy′f(y′)

∫
Rd

dy′′f(y′′)KH(y − y′)KH(y − y′′)

=
1

N
(K2

H ∗ f)(y) +
N − 1

N
(KH ∗ f)2(y) , (A.82)

so that by (A.79),(A.80)

RMSE(y,H, Y ) = E(f̂ 2(y,H, Y ))− 2f(y)(KH ∗ f)(y)

=
1

N
(K2

H ∗ f)(y) +
N − 1

N
(KH ∗ f)2(y)− 2f(y)(KH ∗ f)(y) , (A.83)

MSE(y,H, Y ) = RMSE(y,H, Y ) + f 2(y)

=
1

N
(K2

H ∗ f)(y) +
N − 1

N
(KH ∗ f)2(y)− 2f(y)(KH ∗ f)(y) + f 2(y) .

(A.84)
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We now define for H > 0

RMISE(H) = RMISE(H, Y ) := E(RISE(H, Y )) = E(

∫
Rd

dyRSE(y,H, Y ))

=

∫
Rd

dyRMSE(y,H, Y ) =

∫
Rd

dy(E(f̂(y,H, Y ))− 2f(x)(KH ∗ f)(y))

=

∫
Rd

dyE(f̂ 2(y,H, Y ))− 2(f,KH ∗ f)2

=

∫
Rd

dy(
1

N
(K2

H ∗ f)(y) +
N − 1

N
(KH ∗ f)2(y))− 2(f,KH ∗ f)2

=
1

N

∫
Rd

dy(K2
H ∗ f)(y) +

N − 1

N
(KH ∗ f,KH ∗ f)2 − 2(f,KH ∗ f)2 , (A.85)

whence by (A.70),(A.78),(A.80), (A.84),(A.85)

MISE(H, Y ) = E(

∫
Rd

dy(f̂(y,H, Y )− f(y))2) = E(ISE(H, Y ))

= E(

∫
Rd

dySE(y,H, Y )) =

∫
Rd

dyMSE(y,H, Y )

=

∫
Rd

dy(RMSE(y,H, Y ) + f 2(y)) = RMISE(H, Y ) +

∫
Rd

dyf 2(y)

=
1

N

∫
Rd

dy(K2
H ∗ f)(y) +

N − 1

N
(KH ∗ f,KH ∗ f)2

−2(f,KH ∗ f)2 + (f, f)2 . (A.86)

Since
∫

Rd dyf 2(y) is independent of H , we obtain from (A.71),(A.86) that

HMISE = argminH>0(RMISE(H, Y )) . (A.87)

With (A.87) our aim of estimating HMISE boils down to estimating RMISE.

To perform the asymptotic approximation of MISE in Section A.3.4 it is conve-

nient to define for y ∈ Rd and H > 0

BIAS(y,H) = BIAS(y,H, Y ) := E(f̂(y,H, Y ))− f(y) = (KH ∗ f)(y)− f(y) ,

(A.88)

V AR(y,H) = V AR(y,H, Y ) := E(f̂ 2(y,H, Y ))− (E(f̂(y,H, Y )))2

=
1

N
(K2

H ∗ f)(y) +
N − 1

N
(KH ∗ f)2(y)− (KH ∗ f)2(y)

=
1

N
(K2

H ∗ f)(y)− 1

N
(KH ∗ f)2(y) , (A.89)
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whence

(BIAS(y,H, Y ))2 + V AR(y,H, Y ) = (E(f̂(y,H, Y )− f(y))2 + E(f̂ 2(y,H, Y ))

−(E(f̂(y,H, Y )))2 = −2f(y)E(f̂(y,H, Y )) + f 2(y) + E(f̂ 2(y,H, Y ))

= E(f̂ 2(y,H, Y )− 2f(y)f̂(y,H, Y ) + f 2(y)) = E((f̂(y,H, Y )− f(y))2)

= MSE(y,H, Y ) . (A.90)

It follows from (A.86),(A.90) that for H > 0

MISE(H, Y ) =

∫
Rd

dyMSE(y,H, Y )

=

∫
Rd

dy((BIAS(y,H, Y ))2 + V AR(y,H, Y )) . (A.91)

A.3.4 Asymptotic approximation of MISE

In this section we outline the asymptotic approximation of MISE(H, Y ) when

H → 0 , N →∞ , (NHd)−1 → 0 . (A.92)

The resulting formula (A.99) is arguably the most important analytical fact about the

kernel density estimators. Because of (A.91) MISE(H, Y ) has two terms and so the

asymptotic approximation of MISE(H, Y ) is performed by doing Taylor expansion

of (BIAS(y,H, Y ))2 w.r.t. H and by doing asymptotic expansion of V AR(y,H, Y )

w.r.t. H by Taylor expansion of HdV AR(y,H, Y ) w.r.t. H . In this section we make

the additional assumption on K that for i, j = 1, ..., d∫
Rd

dyyiyjK(y) = δi,jμ(K) , (A.93)

where δi,j is the Kronecker symbol and where μ(K) is a constant depending only on

K. Note however that the condition (A.93) is satisfied for all special kernels defined

in Section A.3.1 as will be shown further below after (A.101). We first compute by
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(A.34),(A.72)

(Kh ∗ f)(y) =
1

Hd

∫
Rd

dy′′K(
y − y′′
H

)f(y′′)

=

∫
Rd

dy′K(y′)f(y −Hy′) . (A.94)

Taylor expansion gives us

f(y −Hy′) ≈ f(y)−H
d∑

i=1

y′i
∂f

∂yi
(y) +

H2

2

d∑
i=1

d∑
j=1

y′iy
′
j

∂f

∂yi∂yj
(y) . (A.95)

Inserting (A.95) into (A.94) yields, by (A.35),(A.93) and the evenness of K,

(KH ∗ f)(y) ≈ f(y) +
H2

2
μ(K)Δf(y) , (A.96)

whence by (A.88)

(BIAS(y,H))2 ≈ H4

4
μ2(K)(Δf(y))2 , (A.97)

where Δ is the Laplacian. We also compute by (A.34),(A.76),(A.89), (A.95),(A.96)

V AR(y,H, Y ) =
1

NH2d

∫
Rd

dy′′K2(
y − y′′
H

)f(y′′)− 1

N
(KH ∗ f)2(y)

=
1

NHd

∫
Rd

dy′K2(y′)f(y −Hy′)− 1

N
(f(y) +

H2

2
μ(K)Δf(y))2

≈ 1

NHd

∫
Rd

dy′K2(y′)

(
f(y)−H

d∑
i=1

y′i
∂f

∂yi
(y) +

H2

2

d∑
i=1

d∑
j=1

y′iy
′
j

∂f

∂yi∂yj
(y)

)

− 1

N
(f(y) +

H2

2
μ(K)Δf(y))2 ≈ 1

NHd
f(y)

∫
Rd

dy′K2(y′)− 1

N
(f(y)

+
H2

2
μ(K)Δf(y))2

≈ 1

NHd
f(y)

∫
Rd

dy′K2(y′) =
1

NHd
f(y)(K,K)2 . (A.98)

We conclude from (A.90),(A.97),(A.98)

MSE(y,H, Y ) = (BIAS(y,H, Y ))2 + V AR(y,H, Y )

≈ H4

4
μ2(K)(Δf(y))2 +

1

NHd
f(y)(K,K)2 ,
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whence by (A.86)

MISE(H, Y ) =

∫
Rd

dyMSE(y,H, Y )

≈ H4

4
μ2(K)

∫
Rd

dy(Δf(y))2 +
1

NHd
(K,K)2

=
H4

4
μ2(K)(Δf,Δf)2 +

1

NHd
(K,K)2 =: AMISE(H, Y ) . (A.99)

It follows from (A.99) that

HAMISE := argminH>0(AMISE(H, Y ))

=

(
d(K,K)2

Nμ2(K)(Δf,Δf)2

)1/(d+4)

, (A.100)

whence by (A.99)

AMISE(HAMISE, Y ) =
d+ 4

4d
N−4/(d+4)

(
μ2d(K)d4((K,K)2)

4((Δf,Δf)2)
d

)1/(d+4)

.

(A.101)

Equalities (A.99),(A.100),(A.101) are of practical and theoretical significance. In

particular (A.101) quantifies the curse of dimensionality. Note that our derivation

of (A.99) is schematic in some aspects and it can improved by rigorous asymptotic

analysis. Nevertheless, (A.99) apparently is the result all textbooks agree on.

We now show that all the special kernels of Section A.3.1 satisfy the condition

(A.93). In the univariate case K always satisfies (A.93) and we have

μ(K) =

∫
R

dyy2K(y) . (A.102)

If in the univariate case K is of the radial form (see (A.42)) then by (A.42),(A.102)

μ(K) =

∫
R

dyy2Ǩ(y2) = 2

∫ ∞

0

dyy2Ǩ(y2) =

∫ ∞

0

dy′
√
y′Ǩ(y′) .(A.103)
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It follows from (A.45),(A.46),(A.47), (A.103) that

μ(KC0,1D) =

∫ ∞

0

dy′
√
y′ǨC0,1D(y′) =

3

4

∫ 1

0

dy′
√
y′(1− y′) =

1

5
, (A.104)

μ(KC1,1D) =

∫ ∞

0

dy′
√
y′ǨC1,1D(y′) =

15

16

∫ 1

0

dy′
√
y′(1− y′)2 =

1

7
, (A.105)

μ(KGauss,1D) =

∫
R

dyy2ǨGauss,1D(y2)

= (2π)−1/2

∫
R

dyy2 exp(−y2/2) = 1 . (A.106)

We now consider the bivariate case and we start with the product kernels. It follows

from (A.38),(A.39),(A.40), (A.41)∫
R2

dyy1y2KC0,2D,P (y) =

∫
R2

dyy1y2KC0,1D(y1)KC0,1D(y2) = 0 ,∫
R2

dyy2
iKC0,2D,P (y) =

∫
R2

dyy2
iKC0,1D(y1)KC0,1D(y2) =

∫
R

dyiy
2
iKC0,1D(yi) ,∫

R2

dyy1y2KC1,2D,P (y) =

∫
R2

dyy1y2KC1,1D(y1)KC1,1D(y2) = 0 ,∫
R2

dyy2
iKC1,2D,P (y) =

∫
R2

dyy2
iKC1,1D(y1)KC1,1D(y2) =

∫
R

dyiy
2
iKC1,1D(yi) ,

whence (A.93) is fulfilled and we get from (A.38),(A.39),(A.93)

μ(KC0,2D,P ) =

∫
R2

dyy2
1KC0,2D,P (y) =

∫
R

dy1y
2
1KC0,1D(y1)

=
3

4

∫ 1

−1

dy1y
2
1(1− y2

1) =
1

5
, (A.107)

μ(KC1,2D,P ) =

∫
R2

dyy2
1KC1,2D,P (y) =

∫
R

dy1y
2
1KC1,1D(y1)

=
15

16

∫ 1

−1

dy1y
2
1(1− y2

1)
2 =

1

7
. (A.108)

If in the bivariate case K is of the radial form (see (A.42)) then by (A.42),(A.102)

and by the substitution rule∫
R2

dyy1y2K(y) =

∫
R2

dyy1y2Ǩ(y2
1 + y2

2) = −
∫

R2

dyy1y2Ǩ(y2
1 + y2

2) = 0 ,∫
R2

dyy2
1K(y) =

∫
R2

dyy2
1Ǩ(y2

1 + y2
2) =

∫
R2

dyy2
2Ǩ(y2

1 + y2
2) ,
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whence (A.93) is fulfilled and we get from (A.42),(A.93)

μ(K) =

∫
R2

dyy2
1K(y) =

∫
R2

dyy2
1Ǩ(y2

1 + y2
2) =

1

2

∫
R2

dyyTyǨ(y2
1 + y2

2)

= π

∫ ∞

0

drr3Ǩ(r2) =
π

2

∫ ∞

0

dr′r′Ǩ(r′) . (A.109)

It follows from (A.48),(A.49),(A.50),(A.109) that

μ(KC0,2D,R) =
π

2

∫ ∞

0

dr′r′ǨC0,2D(r′) =

∫ 1

0

dr′r′(1− r′) =
1

6
, (A.110)

μ(KC1,2D,R) =
π

2

∫ ∞

0

dr′r′ǨC1,2D(r′) =
3

2

∫ 1

0

dr′r′(1− r′)2 =
1

8
, (A.111)

μ(KGauss,2D) =
π

2

∫ ∞

0

dr′r′ǨGauss,2D(r′) =
1

4

∫ ∞

0

dr′r′ exp(−r′/2) = 1 .

(A.112)

A.3.5 Least squares cross validation - general properties

Any technique which estimates HMISE is called ‘least squares cross validation’. Since

RMISE depends on f one has to estimate HMISE in (A.87) and our estimator will

be ĤMISE in (A.178). In this section we estimate RMISE by LSCV . Since the

computational cost of LSCV is of order N2 we will, in Section A.3.6, by following

Silverman approximate LSCV by L̂SCV and L̂SCV by LSCVSil since the compu-

tational cost of the latter is only of order N . We will thus define the estimator,

ĤMISE, of HMISE as the minumum bandwith w.r.t. LSCVSil. We first define for

y ∈ Rd, H > 0 and i = 1, ..., N

f̂−i(y,H) = f̂−i(y,H, Y ) :=
1

N − 1

N∑
j �=i

KH(y − Yj) , (A.113)

and

LSCV (H) = LSCV (H, Y ) :=

∫
Rd

dyf̂ 2(y,H, Y )− 2

N

N∑
i=1

f̂−i(Yi, H, Y )

=

∫
Rd

dyf̂ 2(y,H, Y )− 2

N(N − 1)

N∑
i=1

N∑
j �=i

KH(Yi − Yj) . (A.114)
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At first sight LSCV looks awkward because it employs the mysteriously looking f̂−i.

However we will show below that LSCV has the important and useful property that

it is an unbiased estimator of RMISE and even further below we will argue that

LSCV is maybe the simplest possible unbiased estimator of RMISE! It follows from

(A.113) that for H > 0 and i = 1, ..., N

E(f̂−i(Yi, H, Y )) =
1

N − 1

N∑
j �=i

E(KH(Yi − Yj))

=
1

N − 1

N∑
j �=i

∫
Rd

dyf(y)

∫
Rd

dy′f(y′)KH(y − y′)

=

∫
Rd

dyf(y)

∫
Rd

dy′f(y′)KH(y − y′)

=

∫
Rd

dyf(y)(KH ∗ f)(y) = (f,KH ∗ f)2 , (A.115)

so that by (A.114)

E(LSCV (H, Y )) =

∫
Rd

dyE(f̂ 2(y,H, Y ))− 2

N

N∑
i=1

E(f̂−i(Yi, H, Y ))

=

∫
Rd

dyE(f̂ 2(y,H, Y ))− 2(f,KH ∗ f)2 , (A.116)

whence by (A.85)

E(LSCV (H, Y )) = RMISE(H, Y ) , (A.117)

i.e., LSCV is an unbiased estimator of RMISE. To get further insight into LSCV we

define for H > 0

K(2)(y) := (K ∗K)(y) =

∫
Rd

dy′K(y − y′)K(y′) , (A.118)

K
(2)
H (y) := (KH ∗KH)(y) =

∫
Rd

dy′KH(y − y′)KH(y′)

=
1

H2d

∫
Rd

dy′K(
y − y′
H

)K(
y′

H
)

=
1

Hd

∫
Rd

dy′′K(
y

H
− y′′)K(y′′) =

1

Hd
(K ∗K)(

y

H
)

=
1

Hd
K(2)(

y

H
) . (A.119)
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Note that sinceK is even, so areKH , K
(2)
H , K(2). It follows from (A.81),(A.113),(A.119)

∫
Rd

dyf̂ 2(y,H, Y ) =
1

N2

N∑
i=1

N∑
j=1

∫
Rd

dyKH(y − Yi)KH(y − Yj)

=
1

N2

N∑
i=1

N∑
j=1

∫
Rd

dyKH(Yj − Yi + y)KH(y)

=
1

N2

N∑
i=1

N∑
j=1

∫
Rd

dyKH(−Yj + Yi − y)KH(y)

=
1

N2

N∑
i=1

N∑
j=1

(KH ∗KH)(Yi − Yj) =
1

N2

N∑
i=1

N∑
j=1

K
(2)
H (Yi − Yj) ,

(A.120)

1

N

N∑
i=1

f̂−i(Yi, H) =
1

N(N − 1)

N∑
i=1

N∑
j �=i

KH(Yi − Yj)

=
1

N(N − 1)

N∑
i=1

N∑
j=1

KH(Yi − Yj)−
1

N(N − 1)

N∑
i=1

KH(0)

=
1

N(N − 1)

N∑
i=1

N∑
j=1

KH(Yi − Yj)−
1

N − 1
KH(0) , (A.121)

so that by (A.114)

LSCV (H, Y ) =
1

N2

N∑
i=1

N∑
j=1

K
(2)
H (Yi − Yj)

− 2

N(N − 1)

N∑
i=1

N∑
j=1

KH(Yi − Yj) +
2

N − 1
KH(0) . (A.122)

Due to (A.122) the computational cost of LSCV is of order N2 which is forbiddingly

large for real time applications with N = 108.

To better understand the awkward structure of LSCV we first note that by
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(A.73),(A.113)

E(f̂−i(y,H)) =
1

N − 1

N∑
j �=i

E(KH(y − Yj)) =
1

N − 1

N∑
j �=i

∫
Rd

dy′f(y)KH(y − y′)

=

∫
Rd

dy′f(y′)KH(y − y′) = (KH ∗ f)(y) = E(f̂(y,H)) , (A.123)

whence it seems plausible to replace the f̂−i(Yi, H, Y ) in the definition (A.114) of

LSCV by f̂(Yi, H, Y ). Thus we modify LSCV by defining for H > 0

̂̂
LSCV (H, Y ) :=

∫
Rd

dyf̂ 2(y,H, Y )− 2

N

N∑
i=1

f̂(Yi, H, Y )

=
1

N2

N∑
i=1

N∑
j=1

K
(2)
H (Yi − Yj)−

2

N2

N∑
i=1

N∑
j=1

KH(Yi − Yj)

=
1

N2

N∑
i=1

N∑
j=1

K∗
H(Yi − Yj) , (A.124)

where for y ∈ Rd, H > 0 we defined

K∗(y) := K(2)(y)− 2K(y) = (K ∗K)(y)− 2K(y) , (A.125)

K∗
H(y) := K

(2)
H (y)− 2KH(y) =

1

Hd
K(2)(

y

H
)− 2

Hd
K(

y

H
)

=
1

Hd
K∗(

y

H
) . (A.126)

Note that since KH , K
(2)
H are even, so are K∗, K∗

H . Eq. (A.124) is a straightforward

modification of LSCV whose definition is in fact simpler and looks more natural

than the one of LSCV . However by (A.122),(A.124) we obtain

LSCV (H, Y )− ̂̂
LSCV (H, Y ) =

1

N2

N∑
i=1

N∑
j=1

K
(2)
H (Yi − Yj)

− 2

N(N − 1)

N∑
i=1

N∑
j=1

KH(Yi − Yj) +
2

N − 1
KH(0)

− 1

N2

N∑
i=1

N∑
j=1

K
(2)
H (Yi − Yj) +

2

N2

N∑
i=1

N∑
j=1

KH(Yi − Yj)

= − 2

N2(N − 1)

N∑
i=1

N∑
j=1

KH(Yi − Yj) +
2

N − 1
KH(0) . (A.127)
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While the estimator LSCV of RMISE is unbiased, the estimator
̂̂
LSCV of RMISE

is biased due to (A.127). Moreover, asymptotic analysis indicates that the bias of
̂̂
LSCV is not much smaller than RMISE which indicates that

̂̂
LSCV is (unlike

LSCV ) not a reliable estimator of RMISE. This indicates that it is not easy to

define an unbiased estimator of RMISE which has a simpler structure than LSCV

and it may even indicate that LSCV is the ‘simplest’ unbiased estimator of RMISE.

Thus we have somehow demystified the f̂−i in (A.114).

A.3.6 Least squares cross validation - Silverman’s algorithm

Following Silverman [Si] we approximate, in this section, LSCV to reduce the com-

putational cost of LSCV from order N2 to order N . We first approximate LSCV by

approximating the factor 1/(N−1) in (A.122) by 1/N . Thus we obtain the definition

L̂SCV (H, Y ) :=
1

N2

N∑
i=1

N∑
j=1

K
(2)
H (Yi − Yj)

− 2

N2

N∑
i=1

N∑
j=1

KH(Yi − Yj) +
2

N
KH(0)

=
1

N2

N∑
i=1

N∑
j=1

K∗
H(Yi − Yj) +

2

N
KH(0)

=
1

N2Hd

N∑
i=1

N∑
j=1

K∗(
Yi − Yj

H
) +

2

NHd
K(0) . (A.128)
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It follows from (A.122),(A.128) that

LSCV (H, Y )− L̂SCV (H, Y ) =
1

N2

N∑
i=1

N∑
j=1

K
(2)
H (Yi − Yj)

− 2

N(N − 1)

N∑
i=1

N∑
j=1

KH(Yi − Yj) +
2

N − 1
KH(0)

− 1

N2

N∑
i=1

N∑
j=1

K
(2)
H (Yi − Yj)

+
2

N2

N∑
i=1

N∑
j=1

KH(Yi − Yj)−
2

N
KH(0)

= − 2

N2(N − 1)

N∑
i=1

N∑
j=1

KH(Yi − Yj) +
2

N(N − 1)
KH(0) . (A.129)

While the estimator LSCV of RMISE is unbiased, the estimator L̂SCV of RMISE

is biased due to (A.129). Nevertheless using asymptotic analysis (small H , large N)

one can argue by (A.129) that the bias of L̂SCV is of order 1/N smaller thanRMISE

so that the estimator L̂SCV of RMISE is as useful as the estimator LSCV .

We now continue following Silverman’s approach by rewriting L̂SCV as a quadra-

ture (see (A.140)). We thus define the ‘generator’ L̂SCV gen of L̂SCV for y ∈ Rd, H >

0 by

L̂SCV gen(y,H, Y ) :=
1

N2Hd

N∑
i=1

N∑
j=1

K∗(
Yi − Yj

H
− y) , (A.130)

so that by (A.128)

L̂SCV (H, Y ) = L̂SCV gen(0, H, Y ) +
2

NHd
K(0) . (A.131)
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Defining for y ∈ Rd

u(y, Y ) := (2π)−d/2 1

N

N∑
i=1

exp(iyTYi) , (A.132)

v(y, Y ) := (2π)d/2|u(y, Y )|2 = (2π)−d/2 1

N2

N∑
i=1

exp(iyTYi)

N∑
j=1

exp(−iyTYj)

= (2π)−d/2 1

N2

N∑
i=1

N∑
j=1

exp(iyT (Yi − Yj)) , (A.133)

we obtain from (A.130), (A.51),(A.133)

˜̂
LSCV gen(y,H, Y ) = (2π)−d/2

∫
Rd

dy′ exp(iyTy′)L̂SCV gen(y′, H, Y )

= (2π)−d/2 1

N2Hd

N∑
i=1

N∑
j=1

∫
Rd

dy′ exp(iyTy′)K∗(
Yi − Yj

H
− y′)

= (2π)−d/2 1

N2Hd

N∑
i=1

N∑
j=1

∫
Rd

dy′′ exp(iyT (
Yi − Yj

H
− y′′))K∗(y′′)

= (2π)−d/2 1

N2Hd

N∑
i=1

N∑
j=1

exp(iyT Yi − Yj

H
)

∫
Rd

dy′′ exp(−iyTy′′)K∗(y′′)

=
1

Hd
v(
y

H
, Y )

∫
Rd

dy′ exp(−iyTy′)K∗(y′)

=
1

Hd
v(
y

H
, Y )

∫
Rd

dy′ exp(iyTy′)K∗(y′) =
1

Hd
(2π)d/2v(

y

H
, Y )K̃∗(y)

= (
2π

H
)d|u( y

H
, Y )|2K̃∗(y) , (A.134)

where we also used the fact that K∗ is even. Of course by (A.51)

(2π)−d/2

∫
Rd

dy
˜̂
LSCV gen(y,H, Y )

= (2π)−d

∫
Rd

dy

∫
Rd

dy′ exp(iyTy′)L̂SCV gen(y′, H, Y )

= (2π)−d

∫
Rd

dy′L̂SCV gen(y′, H, Y )

∫
Rd

dy exp(iyTy′)

=

∫
Rd

dy′L̂SCV gen(y′, H, Y )δ(y′)

= L̂SCV gen(0, H, Y ) , (A.135)
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whence by (A.134)

L̂SCV gen(0, H, Y ) = (2π)−d/2

∫
Rd

dy
˜̂
LSCV gen(y,H, Y )

=
1

Hd
(2π)d/2

∫
Rd

dy|u( y
H
, Y )|2K̃∗(y)

= (2π)d/2

∫
Rd

dy′|u(y′, Y )|2K̃∗(Hy′) , (A.136)

so that by (A.131)

L̂SCV (H, Y ) = (2π)d/2

∫
Rd

dy|u(y, Y )|2K̃∗(Hy) +
2

NHd
K(0) . (A.137)

We obtain from (A.118),(A.51)

K̃(2)(y) = (2π)−d/2

∫
Rd

dy′ exp(iyTy′)K(2)(y′)

= (2π)−d/2

∫
Rd

dy′ exp(iyTy′)

∫
Rd

dy′′K(y′ − y′′)K(y′′)

= (2π)−d/2

∫
Rd

dy′′K(y′′)

∫
Rd

dy′ exp(iyTy′)K(y′ − y′′)

= (2π)−d/2

∫
Rd

dy′′K(y′′)

∫
Rd

dy′ exp(iyT (y′ + y′′))K(y′)

= (2π)−d/2

∫
Rd

dy′′ exp(iyTy′′)K(y′′)

∫
Rd

dy′ exp(iyTy′)K(y′)

= K̃(y)

∫
Rd

dy′ exp(iyTy′)K(y′) = (2π)d/2K̃2(y) , (A.138)

whence by (A.125),(A.51)

K̃∗(y) = (2π)−d/2

∫
Rd

dy′ exp(iyTy′)K∗(y′)

= (2π)−d/2

∫
Rd

dy′ exp(iyTy′)(K(2)(y′)− 2K(y′)) = K̃(2)(y)− 2K̃(y)

= (2π)d/2K̃2(y)− 2K̃(y) . (A.139)

It follows from (A.137),(A.139) that

L̂SCV (H, Y ) = (2π)d/2

∫
Rd

dy|u(y, Y )|2((2π)d/2K̃2(Hy)− 2K̃(Hy))

+
2

NHd
K(0) . (A.140)
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Note that (A.140) is exact and that it boils the computation of L̂SCV down to an

integration problem.

We thus move on with Silverman’s approach by approximating L̂SCV via linear

binning to the equality (A.140). To keep the formalism concise and due to our aims

we confine to the case d = 2 and we do linear binning where each point contributes

to four grid points (this version of linear binning is called ‘cloud-in-cell charge depo-

sition’ in Physics and it is employed by our density estimation ‘Method 2’ mentioned

in Section 3.4). Using the definition (A.54) of the grid points yα,β we partition R2

into the rectangles:

Iα,β := [zα, zα+1)× [xβ , zβ+1) = [
α

m
,
α + 1

m
)× [

β

n
,
β + 1

n
) , (α, β ∈ Z) .

(A.141)

For convenience we assume that the integers m,n are even. We define for j = 1, ..., N

Mj := Int(mZj) , Nj := Int(nXj) , (A.142)

where Int denotes the greatest lower integer bound function on the reals and where

the Zj, Xj are given by (A.55). Thus (Mj , Nj) labels the rectangle surrounding Yj,

i.e., I(Mj ,Nj) is the unique rectangle from the partition which contains Yj. In particular

the grid points yMj ,Nj
, yMj+1,Nj

, yMj ,Nj+1, yMj+1,Nj+1 are the left lower, right lower,

upper left, upper right corner respectively of the rectangle I(Mj ,Nj). Note that right,

left, lower, upper are meant w.r.t. the convention where the z-axis is horizontal and

the x-axis is vertical. The linear binning we consider here is the procedure where the

‘unit charge’ at Yj is replaced (‘deposited’) by four fractional ‘charges’: the ‘charge’

wLL,j at yMj ,Nj
, the ‘charge’ wLR,j at yMj+1,Nj

, the ‘charge’ wUL,j at yMj ,Nj+1, and
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the ‘charge’ wUR,j at yMj+1,Nj+1 where we define

wLL,j := [1−m(Zj − zMj
)][1− n(Xj − xNj

)] ,

wLR,j := m(Zj − zMj
)[1− n(Xj − xNj

)] ,

wUL,j := [1−m(Zj − zMj
)]n(Xj − xNj

)

wUR,j := m(Zj − zMj
)n(Xj − xNj

) .

(A.143)

The interpretation of wLL,j, wLR,j, wUL,j, wUR,j as charges will now be justified by

proving (A.144),(A.150). It follows from (A.143) that wLL,j +wLR,j = 1−n(Xj−xNj
)

and wUL,j + wUR,j = n(Xj − xNj
), whence

wLL,j + wLR,j + wUL,j + wUR,j = 1 . (A.144)

Moreover by (A.142) we have

0 ≤ mZj − Int(mZj) < 1 , (A.145)

and by (A.54),(A.142)

m(Zj − zMj
) = mZj −Mj = mZj − Int(mZj) , (A.146)

whence

0 ≤ m(Zj − zMj
) < 1 , (A.147)

and analogously

0 ≤ n(Xj − xNj
) < 1 . (A.148)

It follows from (A.147),(A.148) that

0 < 1−m(Zj − zMj
) ≤ 1 , 0 < 1− n(Xj − xNj

) ≤ 1 . (A.149)
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We conclude from (A.143),(A.147),(A.148), (A.149)

0 < wLL,j ≤ 1 , 0 ≤ wLR,j < 1 , 0 ≤ wUL,j < 1 , 0 ≤ wUR,j < 1 . (A.150)

Note that the wLL,j are independent identically distributed (the some holds for the

wLR,j, wUL,j, wUR,j respectively). The above linear binning procedure can be in-

terpreted in terms of probability measures as follows. The empiral measure, μ1,

determined by Y1, ..., YN is replaced in linear binning by the measure μ2 where

μ1 :=
1

N

N∑
j=1

εYj
, (A.151)

μ2 :=
1

N

N∑
j=1

(wLL,jεyMj,Nj
+ wLR,jεyMj+1,Nj

+ wUL,jεyMj,Nj+1
+ wUR,jεyMj+1,Nj+1

) ,

(A.152)

where εy denotes the unit point measure at y ∈ R2. We define for α, β ∈ Z

ξα,β :=
mn

N

N∑
j=1

(
wLL,jδMj−α,Nj−β + wLR,jδMj+1−α,Nj−β + wUL,jδMj−α,Nj+1−β

+wUR,jδMj+1−α,Nj+1−β

)
, (A.153)

where δα,β is the Kronecker symbol. Note that by (A.144),(A.153)

∑
α∈Z

∑
β∈Z

ξα,β =
mn

N

N∑
j=1

∑
α∈Z

∑
β∈Z

(
wLL,jδMj−α,Nj−β + wLR,jδMj+1−α,Nj−β

+wUL,jδMj−α,Nj+1−β + wUR,jδMj+1−α,Nj+1−β

)

=
mn

N

N∑
j=1

(wLL,j + wLR,j + wUL,j + wUR,j) =
mn

N

N∑
j=1

1 = mn . (A.154)

We see by (A.153) (or by (A.152)) that ξα,β is proportional to the number of particles

binned at yα,β. In fact (A.154) shows that the proportionality constant is N/mn,

i.e., Nξα,β/mn is the number of particles binned at yα,β. Note that this number in

194



Appendix A.

general is not an integer since the binning procedure ‘splits’ each original particle

into four particles. Defining

Ǐα,β := [
2α− 1

2m
,
2α + 1

2m
)× [

2β − 1

2n
,
2β + 1

2n
) , (α, β ∈ Z) . (A.155)

we observe that the Ǐα,β form a partition of R2 into rectangles whose center points are

yα,β and that 1/mn is the volume of each Ǐα,β. Note that the Ǐα,β are just translates

of the Iα,β. Since Nξα,β/mn is the number of particles binned at yα,β it is also the

number of particles binned in Ǐα,β. Note that yα,β is the only grid point in Ǐα,β.

On the other hand, since 1/mn is the volume of Ǐα,β, the quantity Nf(yα,β)/mn

approximates the number of particles in Ǐα,β, i.e.,

Nf(yα,β)

mn
≈

N∑
j=1

1Ǐα,β
(Yj) . (A.156)

We conclude that Nf(yα,β)/mn ≈ Nξα,β/mn, i.e.,

f(yα,β) ≈ ξα,β . (A.157)

This allows us to apply the midpoint rule w.r.t. the partition Ǐα,β which reads for a

real valued function F on R2 as∫
R2

dyf(y)F (y) ≈ 1

mn

∑
α∈Z

∑
β∈Z

f(yα,β)F (yα,β) . (A.158)

Applying (A.158) to (A.157) results in

∫
R2

dyf(y)F (y) ≈ 1

mn

∑
α∈Z

∑
β∈Z

ξα,βF (yα,β) . (A.159)

On the other hand by the law of large numbers we have the Monte Carlo approxi-

mation

∫
R2

dyf(y)F (y) ≈ 1

N

N∑
j=1

F (Yj) , (A.160)
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whence by (A.159)

1

N

N∑
j=1

F (Yj) ≈
1

mn

∑
α∈Z

∑
β∈Z

ξα,βF (yα,β) . (A.161)

We will see below (see (A.163)) that we are interested in the case where F (y) :=

exp(iyT t) where t ∈ R2. Applying then (A.161) we get

1

N

N∑
j=1

exp(iyTYj) ≈
1

mn

∑
α∈Z

∑
β∈Z

ξα,β exp(iyTyα,β) , (A.162)

whence by (A.132)

u(y, Y ) =
1

2πN

N∑
j=1

exp(iyTYj) ≈
1

2πmn

∑
α∈Z

∑
β∈Z

ξα,β exp(iyTyα,β) , (A.163)

so that by (A.140)

L̂SCV (H, Y ) = 2π

∫
R2

dy|u(y, Y )|2(2πK̃2(Hy)− 2K̃(Hy)) +
2

NH2
K(0)

≈ 1

2πm2n2

∫
R2

dy|
∑
α∈Z

∑
β∈Z

ξα,β exp(iyTyα,β)|2(2πK̃2(Hy)− 2K̃(Hy))

+
2

NH2
K(0) . (A.164)

Moving on with Silverman’s procedure the integral in (A.164) will be approximated

by the midpoint rule as follows. Defining for a, b ∈ Z

sa,b := 2π(a, b)T , Îa,b := [π(2a− 1), π(2a+ 1))× [π(2b− 1), π(2b+ 1)) ,(A.165)

we observe that the Îa,b form a partition of R2 into squares whose center points are

sa,b and that 4π2 is the volume of Îa,b whence the midpoint rule gives us for a real

valued function F on R2

∫
R2

dyF (y) ≈ 4π2
∑
a∈Z

∑
b∈Z

F (sα,β) . (A.166)
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Thus approximating (A.164) by the midpoint rule results in

L̂SCV (H, Y ) ≈ 2π

m2n2

∑
a∈Z

∑
b∈Z

|
∑
α∈Z

∑
β∈Z

ξα,β exp(isT
a,byα,β)|2

·(2πK̃2(Hsa,b)− 2K̃(Hsa,b)) +
2

NH2
K(0)

=
2π

m2n2

∑
a∈Z

∑
b∈Z

|
∑
α∈Z

∑
β∈Z

ξα,β exp(2πi(
aα

m
+
bβ

n
))|2

·(2πK̃2(Hsa,b)− 2K̃(Hsa,b)) +
2

NH2
K(0) . (A.167)

Defining the discrete Fourier transform of ξ for a, b ∈ Z by

ηa,b :=
1

mn

∑
α∈Z

∑
β∈Z

ξα,β exp(2πi(
aα

m
+
bβ

n
)) , (A.168)

we obtain from (A.167)

L̂SCV (H, Y ) ≈ 2π
∑
a∈Z

∑
b∈Z

|ηa,b|2(2πK̃2(Hsa,b)− 2K̃(Hsa,b)) +
2

NH2
K(0) .

(A.169)

To make L̂SCV amenable to the Fast Fourier Transform technique we now truncate

the infinite sequence in (A.169) which is justified if the Yj are concentrated in [0, 1]×
[0, 1] (which is the case in the situation we are interested in). Then we have

1− 1

N

N∑
j=1

1[0,1]×[0,1](Yj)
 1 . (A.170)

Note that by (A.153),(A.170)

1− 1

mn

m−1∑
α=0

n−1∑
β=0

ξα,β 
 1 . (A.171)

The lhs of (A.170),(A.171) are always nonnegative. Definining for a, b ∈ Z

η̂a,b :=
1

mn

m−1∑
α=0

n−1∑
β=0

ξα,β exp(2πi(
aα

m
+
bβ

n
)) , (A.172)
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we observe by (A.168),(A.171) that

ηa,b ≈ η̂a,b . (A.173)

Thus replacing ηa,b by η̂a,b in (A.169) we obtain

L̂SCV (H, Y ) ≈ 2π
∑
a∈Z

∑
b∈Z

|η̂a,b|2(2πK̃2(Hsa,b)− 2K̃(Hsa,b))

+
2

NH2
K(0) . (A.174)

Following Silverman, we restrict the a, b in (A.174) to the range a = −m/2, ..., m/2
and b = −n/2, ..., n/2 whence we obtain

L̂SCV (H, Y ) ≈ LSCVSil(H, Y ) ,

LSCVSil(H, Y ) := 2π

m/2∑
a=−m/2

n/2∑
b=−n/2

|η̂a,b|2(2πK̃2(Hsa,b)− 2K̃(Hsa,b))

+
2

NH2
K(0) . (A.175)

To apply the Fast Fourier Transform technique to the computation of LSCVSil, it

can be convenient to have, in (A.175), the indices a, b starting at a = 0, b = 0 rather

than at a = −m/2, b = −n/2. Thus we define for a, b ∈ Z

η̌a,b := η̂a−m/2,b−n/2 =
1

mn

m−1∑
α=0

n−1∑
β=0

ξα,β exp(2πi(
(a−m/2)α

m
+

(b− n/2)β

n
))

=
1

mn

m−1∑
α=0

n−1∑
β=0

ξα,β(−1)α+β exp(2πi(
aα

m
+
bβ

n
)) , (A.176)

whence by (A.175) we get the following alternative expression of LSCVSil:

LSCVSil(H, Y ) = 2π

m∑
a=0

n∑
b=0

|η̌a,b|2(2πK̃2(Hsa−m/2,b−n/2)− 2K̃(Hsa−m/2,b−n/2))

+
2

NH2
K(0) . (A.177)

Since the computational cost of each ξα,β is of order N , it follows from (A.176) that

the computational cost of each η̌a,b is of order N , whence by (A.177) the computa-

tional cost of LSCVSil is of order N . On the other hand since LSCVSil approximates
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L̂SCV and L̂SCV approximates the unbiased estimator LSCV of RMISE we define

the estimator of HMISE by

ĤMISE := argminH>0(LSCVSil(H, Y )) . (A.178)

A.3.7 Practical considerations

I implemented the bivariate product Epanechnikov kernel KC1,2D,P into our code by

using algorithm A2 of Section A.3.2. The accuracy obtained with this kernel, tested

with the known initial spatial density ρg of Section 3.4, is competitive with that

of the density estimation Methods 1 and 2 of Section 3.4. Moreover, in terms of

computational cost, KC1,2D,P is competitive with density estimation Method 2 and

outperforms density estimation Method 1. For more details on the performance of

the kernel density density estimator in our code, see Section 3.4.3. We next aim to

implement the cross validation formula (A.178). Another issue to be addressed is

the fact that, in the situation of our code, the random variables Y1, ..., YN are not

independent anymore when the code marches forward in s (although they are ini-

tially independent). However the dependence of the Y1, ..., YN may be weak and the

Y1, ..., YN may still be identically distributed when the code marches forward in s.

Note also that since in the previous sections we assumed that Y1, ..., YN are indepen-

dent identically distributed, some results change when the Y1, ..., YN are dependent

(in particular the asymptotic formulas for MISE will change). Thus we plan to

implement a routine in the code which quantifies the dependence of the Y1, ..., YN

and tests if they are identically distributed.
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A.4 Convergence study

I now discuss a technique, which is applied in Section 3.4.3 and which allows a

convergence study of the error of various quantities computed by the code. We here

concentrate on a convergence study w.r.t. the parameterN , i.e., the particle number.

Thus let Ψ be a normed space and let ψ ∈ Ψ be an unknown element approximated

by the elements ψ(N ) ∈ Ψ where ψ(N ) denotes the approximant of ψ computed with

N particles. Underlying the method is the assumption that, for N → ∞, the error

||ψ − ψ(N )|| satisfies ||ψ − ψ(N )|| = O(N−d) where d > 0 is called the ‘consistency

order’ of the approximant ψ(N ). Thus, by assumption, a c > 0 exists such that for

large N we have

||ψ − ψ(N )|| ≈ cN−d . (A.179)

In fact the method we outline here allows to approximate d in terms of the ψ(N )

to arbitrary accuracy. Using the triangle inequality we have for arbitrary particle

numbers N ,N ′

||ψ − ψ(N )|| − ||ψ − ψ(N ′)|| ≤ ||ψ(N )− ψ(N ′)||

≤ ||ψ − ψ(N )||+ ||ψ − ψ(N ′)|| ,

whence, for particle numbers N1,N2,N3,N4 which are constrained by

N2 
= N4 , (A.180)

we get

||ψ − ψ(N1)|| − ||ψ − ψ(N3)||
||ψ − ψ(N2)||+ ||ψ − ψ(N4)||

≤ ||ψ(N1)− ψ(N3)||
||ψ(N2)− ψ(N4)||

≤ ||ψ − ψ(N1)||+ ||ψ − ψ(N3)||
||ψ − ψ(N2)|| − ||ψ − ψ(N4)||

. (A.181)

If N1,N3,N2,N4 are sufficiently large then, by (A.179), we have, for i = 1, 2, 3, 4,

||ψ − ψ(Ni)|| ≈ cN−d
i whence

||ψ − ψ(N1)|| ∓ ||ψ − ψ(N3)||
||ψ − ψ(N2)|| ± ||ψ − ψ(N4)||

≈ N−d
1 ∓ (N3)

−d

(N2)−d ± (N4)−d
= (N2/N1)

d 1∓ (N3/N1)
−d

1± (N4/N2)−d
,
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so that by (A.181)

(N2/N1)
d 1− (N3/N1)

−d

1 + (N4/N2)−d
�
||ψ(N1)− ψ(N3)||
||ψ(N2)− ψ(N4)||

� (N2/N1)
d 1 + (N3/N1)

−d

1− (N4/N2)−d
.

(A.182)

Assuming in addition to (A.180) that

N3 > N1 , N4 > N2 , (A.183)

we can take the logarithm in (A.182) and obtain

d ln(N2/N1) + ln(
1− (N3/N1)

−d

1 + (N4/N2)−d
) � ln(

||ψ(N1)− ψ(N3)||
||ψ(N2)− ψ(N4)||

)

� d ln(N2/N1) + ln(
1 + (N3/N1)

−d

1− (N4/N2)−d
) . (A.184)

We will exploit (A.184) to approximate d whence, from now on, we assume, in

addition to (A.180), (A.183), that N1 
= N2. Without loss of generality we thus

assume that

N2 > N1 , (A.185)

whence, by (A.183),

N4 > N2 > N1 , N3 > N1 . (A.186)

Dividing (A.184) by ln(N2/N1), we obtain

d+
1

ln(N2/N1)
ln(

1− (N3/N1)
−d

1 + (N4/N2)−d
) � d̃

� d+
1

ln(N2/N1)
ln(

1 + (N3/N1)
−d

1− (N4/N2)−d
) , (A.187)

where

d̃ :=
1

ln(N2/N1)
ln(
||ψ(N1)− ψ(N3)||
||ψ(N2)− ψ(N4)||

) . (A.188)
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Note that d̃ is the promised approximant of d. Choosing N3/N1 and N4/N2 suffi-

ciently large, we can Taylor expand (A.187) w.r.t. (N3/N1)
−d and (N4/N2)

−d which

results in

d− (N3/N1)
−d + (N4/N2)

−d

ln(N2/N1)
� d̃ � d+

(N3/N1)
−d + (N4/N2)

−d

ln(N2/N1)
,

i.e.,

|d− d̃| � (N3/N1)
−d + (N4/N2)

−d

ln(N2/N1)
. (A.189)

To estimate the relative error, |1− d̃/d|, made by d̃ we conclude from (A.189)

|1− d̃

d
| � (N3/N1)

−d + (N4/N2)
−d

d ln(N2/N1)
. (A.190)

Note that (A.186) contains all restrictions on N1,N2,N3,N4 we made so far. Of

course it follows from (A.186) that if N1 is sufficiently large such that (A.179) is a

good approximation for N = N1, then all Ni are sufficiently large such that (A.179)

is a good approximation for N = Ni. If one imposes, for some ε > 0, the condition:

(N3/N1)
−d + (N4/N2)

−d

d ln(N2/N1)
≤ ε , (A.191)

then, by (A.190), we get

|1− d̃

d
| � ε . (A.192)

Clearly (A.186) is equivalent to

N2 = k1N1 , N3 = k2N1 , N4 = k3N2 , k1, k2, k3 > 1 , (A.193)

which leaves N1, k1, k2, k3 as the free parameters. Adding to (A.193) the constraints:

k1 ≤ k2 = k3 we get the following convenient choice of N1,N2,N3,N4:

N2 = k1N1 , N3 = k2N1 , N4 = k1k2N1 , k2 ≥ k1 > 1 , (A.194)

which leaves N1, k1, k2 as the only free parameters. Note that (A.194) entails (A.193)

and also gives us the ordering

N4 > N3 ≥ N2 > N1 . (A.195)
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Group actions

If X is a set, G a group with identity eG and L : G×X → X a function satisfying,

for g, h ∈ G, x ∈ X,

L(eG; x) = x (B.1)

L(gh; x) = L(g;L(h; x)) , (B.2)

then L is called a ‘left G-action on X’ and the pair (X,L) is called a ‘left G-space’.

Note that the group law of G is written multiplicatively in (B.2) and it is obvious how

(B.2) would read if the group law of G is written additively (the latter convention

is common if the group G is Abelian). It follows from (B.1),(B.2) that each L(g; ·)
is a bijection from X onto X. A left G-action L on X is called ‘transitive’ if for

every pair of elements x, y of X a g ∈ G exists such that L(g; x) = y. If G,G′ are

groups and Φ : G → G′ is a group homomorphism and if (X,L′) is a left G′-space

then (X,L) is a left G-space where I define, for g ∈ G, x ∈ X,

L(g; x) := L′(Φ(g); x) . (B.3)

In this work a topological group is defined in the common, broad sense as in [Hus]. If

X is a topological space, G is a topological group, and (X,L) is a left G-space such
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that the L is continuous, then (X,L) is called a ‘topological left G-space’. Of course

in that case each L(g; ·) is a homeomorphism from X onto X. In the important

subcase when the topology of G is discrete (e.g., when G = Z) the condition that L

is continuous is equivalent to L(g; ·) being continuous for all g ∈ G.

If (X,L), (X ′, L′) are left G-spaces and if f : X → X ′ is a function satisfying, for

g ∈ G, x ∈ X,

f(L(g; x)) = L′(g; f(x)) , (B.4)

then f is called a ‘G-map from (X,L) to (X ′, L′)’. G-maps are also called ‘equivari-

ant’. One calls (X,L), (X ′, L′) ‘conjugate’ if the G-map f is a bijection onto X ′. In

the special case G = Z the function f is a G-map iff (B.4) holds just for g = 1, x ∈ X.

If the G-map f is onto X ′ then the left G-space (X,L) is called an ‘extension

of the left G-space (X ′, L′)’. In the special case where the extension (X,L) has the

form (X ′× Y, L) for some set Y and if f is the natural projection from from X ′× Y
onto X ′, then the left G-space (X,L) is called a ‘skew product of the left G-space

(X ′, L′)’.

Remark:

(1) Let (X ′, L′), (X ′×Y, L) be left G-spaces and let (X ′×Y, L) be a skew product

of (X ′, L′). This is a strong restriction on L, as follows.

By (B.2), we have, for g ∈ G, x′ ∈ X ′, y ∈ Y ,

L(g; x′, y) =

⎛
⎝ L′(g; x′)

L′′(g; x′, y)

⎞
⎠ , (B.5)

where the function L′′ : G×X ′×Y → Y satisfies, for g, h ∈ G, x′ ∈ X ′, y ∈ Y ,

L′′(eG; x′, y) = y , (B.6)

L′′(gh; x′, y) = L′′(g;L′(h; x′), L′′(h; x′, y)) , (B.7)
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which is the announced restriction on L. �

If (X,L), (X ′, L′) are topological left G-spaces and if a continuous G-map f exists

from (X,L) to (X ′, L′) which is a homeomorphism onto X ′, then the topological

left G-spaces (X,L), (X ′, L′) are called ‘conjugate’. If (X,L), (X ′, L′) are topological

left G-spaces and if a continuous G-map f exists from (X,L) to (X ′, L′) such that

f is onto X ′, then the topological left G-space (X,L) is called an ‘extension of the

topological left G-space (X ′, L′)’. In the special case where the extension (X,L) has

the form (X ′ × Y, L) for some topological space Y and if f is the natural projection

from from X ′× Y onto X ′, then the topological left G-space (X,L) is called a ‘skew

product of the topological left G-space (X ′, L′)’. Note that X ′× Y is equipped with

the product topology.

If (X,L) is a topological left G-space and H is a topological group then a function

f ∈ C(G ×X,H) is called a ‘H-cocycle over the topological left G-space (X,L)’ if,

for g, g′ ∈ G, x ∈ X,

f(gg′, x) = f(g, L(g′; x))f(g′, x) . (B.8)

I define, for given X,G,H , the set COC(X,G,H) as the collection of pairs (L, f)

with the property that (X,L) is a topological left G-space and that f is a H-cocycle

over (X,L). For literature on cocycles, see, e.g., [HK1, KR, Zi1]. Note also that two

conventions for the definition of cocycles are used: my and the ‘dual’ one. In the

latter convention (see e.g. [KR, Zi1]) (f(g, x))−1, not f(g, x), is a cocycle. However

for convenience I stick to my convention which is the same as in [HK1].

Right G-actions are defined in direct analogy to left G-actions. In fact, if X is

a set, G a group with identity eG and R : G × X → X a function satisfying, for

g, h ∈ G, x ∈ X,

R(eG; x) = x , (B.9)

R(gh; x) = R(h;R(g; x)) , (B.10)
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then R is called a ‘right G-action on X’ and the pair (X,R) is called a ‘right G-

space’. Due to the close analogy of the concepts of right G-action and left G-action

it is obvious how a topological right G-space, a G-map etc. are defined. Note that

left G-spaces and right G-spaces are also called ‘transformation groups’.

As is common, I will often skip the word ‘left’, i.e., I often call a left G-action a

‘G-action’, and a left G-space a G-space etc. This convention is especially useful if

G is Abelian since in that case left and right G-actions are the same.

The following facts about right G-spaces are important for principal bundles (the

latter are treated in Appendix E) so let (X,R) be a right G-space. Let the set X∗ be

defined by X∗ := {(x,R(g; x)) : g ∈ G, x ∈ X} and the function σR : G×X → X∗ be

defined by σR(g, x) := (x,R(g; x)). Clearly σR is onto X∗. The right G-action R is

called ‘free’ if, for all x ∈ X, the equality: R(g; x) = x implies: g = eG. It is easy to

see that R is free iff σR is one-one. In fact, if σR(g, x) = σR(g′, x′) then (x,R(g; x)) =

(x′, R(g′; x′)) whence, if R is free, x = x′, g = g′ so that σR is one-one. Conversely,

let R(g; x) = x. Thus σR(g, x) = (x,R(g; x)) = (x, x) = (x,R(eG; x)) = σR(eG, x)

whence, if σR is one-one, g = eG so that R is free. I thus have shown that R is free iff

σR is one-one. Therefore, since σR is onto X∗, R is free iff σR is a bijection from G×X
onto X∗. Of course if R is free the inverse σ−1

R is well defined and one then defines the

function τR : X∗ → G by τR := pr1 ◦ σ−1
R where pr1(g, x) := g. If R is free one calls

τR the ‘translation function’ of R. Note that if R is free then for g ∈ G, x ∈ X we

have R(τR(x,R(g, x)); x) = R((pr1 ◦ σ−1
R )(x,R(g, x)); x) = R(pr1(g, x); x) = R(g; x)

whence for x, x′ ∈ X we have R(τR(x, x′); x) = x′. Of course if R is free then τR is

the only function τ : X∗ → G which satisfies, for x, x′ ∈ X, R(τ(x, x′); x) = x′. A

topological rightG-space (X,R) is called ‘principal’ ifR is free and if τR is continuous.

If (X,R) is a right G-space and x ∈ X then the set {R(g; x) : g ∈ G} is called the

‘orbit of x under R’. The set of orbits under R is denoted by X/R and the function
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pR : X → X/R is defined by

pR(x) := {R(g; x) : g ∈ G} =
⋃
g∈G

{R(g; x)} . (B.11)

Clearly pR is onto X/R. Note that, for x, y ∈ X, we have that pR(x) = pR(y) iff

y ∈ pR(x). Thus, for x ∈ X,

p−1
R (pR({x})) = p−1

R ({pR(x)}) = {y ∈ X : pR(y) ∈ {pR(x)}}

= {y ∈ X : pR(y) = pR(x)} = {y ∈ X : y ∈ pR(x)} = pR(x) . (B.12)

It follows from (B.11),(B.12) that for A ⊂ X

p−1
R (pR(A)) = p−1

R (pR(
⋃
x∈A

{x})) = p−1
R

(⋃
x∈A

pR({x})
)

=
⋃
x∈A

p−1
R (pR({x}))

=
⋃
x∈A

pR(x) =
⋃
x∈A

⋃
g∈G

{R(g; x)} =
⋃
g∈G

⋃
x∈A

{R(g; x)} =
⋃
g∈G

R(g;A) . (B.13)

If X is a topological space and (X,R) is a topological right G-space then one equips

X/R with the quotient topology w.r.t. pR, i.e., a subset U of X/R is open iff p−1
R (U)

is open in X. Thus the function pR is identifying and one calls X/R an ‘orbit space’.

To show that pR is open, let U be open in X whence, by (B.13),

p−1
R (pR(U)) =

⋃
g∈G

R(g;U) . (B.14)

Since each R(g; ·) is a homeomorphism from X onto X we have that R(g;U) is open

in X whence
⋃

g∈G R(g;U) is open in X. Thus, by (B.14), p−1
R (pR(U)) is open in X.

Since the topology of X/R is the quotient topology w.r.t. pR we have that pR(U) is

open in X/R whence pR is open.

There are many textbook treatments of group action. Two useful textbooks,

dedicated to group actions, are [tDi2, Ka].
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Topological concepts and facts

In this section I provide some concepts and facts from Topology, in particular some

know-how about ‘liftings’ and ‘factors’ of ‘bundles’ and ‘fiber structures’ (see Defi-

nition C.1). This know-how is especially useful for continuous and 2π-periodic func-

tions like Ψω,A(n; ·) arising in the study of spin-orbit tori (ω,A). The concept of

bundle is also of importance for me in Appendix E where I refine it to the concept

of principal bundle. As in Appendix B, I present the material in such detail that it

is essentially self contained.

‘Hurewicz fibrations’ (see Definition C.5) are fiber structures which satisfy a cer-

tain condition. In fact, for my purposes, a Hurewicz fibration has sufficient structure

to obtain from a continuous function a lifting which is a continuous function as well.

While liftings provide a tool to obtain continuous functions, factors provide another

tool to obtain continuous functions (namely to turn 2π-periodic functions on Rk into

functions on the ‘k-torus’ Tk defined below). For these matters I introduce with

Definition C.2 four well-known fiber structures and demonstrate in Section C.1 that

all four of them are Hurewicz fibrations. They will be used for liftings and one of

them will be used for factors. Three of the four ‘projections’ (see Definition C.1) are
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covering maps (see Definition C.7). Note that fiber structures (and even Hurewicz

fibrations) are rather simple concepts which do not involve any group actions. Thus

in this section I neither employ the machinery of principal bundles nor do I need

Category theory (see however Appendix E). The know-how I use about liftings and

Hurewicz fibrations can be found in [Du, Sp] and the know-how about factors in [SZ].

See also [Bre, Di, Rot, tDi1]. My terminology is close to [Du, Hus].

C.1 Bundles, fiber structures and Hurewicz fibra-

tions

In this section I choose my four fiber structures and show that they are Hurewicz

fibrations. The search for liftings w.r.t. my fiber structures is the content of Sections

C.2 and C.3. In Section C.3 this search will be facilitated by the use of ‘factors’ (see

Definition C.1) w.r.t. one of the four fiber structures (the latter fiber structure is

also used in Section D.2).

Definition C.1 (Bundle, fiber structure, lifting, factor, cross section, locally trivial)

Given topological spaces X, Y , I denote the set of continuous functions from X into

Y by C(X, Y ) and the set of homeomorphisms from X onto Y by HOMEO(X, Y ).

A triple (E, p, B) is called a ‘bundle’ if E and B are topological spaces and if p

is in C(E,B). A bundle (E, p, B) is called a ‘fiber structure’ if p is onto B. One

calls E the ‘total space’, B the ‘base space’ and p the ‘projection’ of the bundle. For

b ∈ B, p−1(b) is called the ‘fibre of p over b’ and its topology is defined as the relative

topology from E.

If ξ = (E, p, B) is a bundle, X is a topological space and g ∈ C(X,B), then

f ∈ C(X,E) is called a ‘lifting of f ’ w.r.t. the bundle ξ if g = p ◦ f . If g ∈ C(E,X)
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then a f ∈ C(B,X) is called a ‘factor of g’ w.r.t. the bundle ξ if g = f ◦ p. If

σ ∈ C(B,E) satisfies idB = p ◦σ, where idB is the identity map on B, then one calls

σ a ‘cross section of ξ’. The set of cross sections of ξ is denoted by Γ(ξ).

A fiber structure (E, p, B) is called ‘locally trivial’ if for every b ∈ B an open

neighborhood U of b, a topological space Y and a homeomorphism ϕ : U×Y → p−1(U)

onto p−1(U) exist such that, for all x ∈ U, y ∈ Y , p ◦ ϕ(x, y) = x where U × Y has

the product topology, U has the relative topology from B and p−1(U) has the relative

topology from E. �

Remark:

(1) My notion of ‘bundle’ is from [Hus] and my notion of ‘fiber structure’ is from

[Du] and all concrete examples of bundles in this work are fiber structures. Note

that a bundle which has a cross section is a fiber structure. If ξ = (E, p, B)

is a fiber structure and X a topological space then, since p is onto B, every

g ∈ C(E,X) has at most one factor w.r.t. ξ.

Clearly the concepts of bundle and fiber structure are trivial and the topologies

of the fibres in a fiber structure are in general largely unrelated - in particular

they are in general not homeomorphic. However a fiber structure has a lot of

structure if it is locally trivial. In particular for locally trivial fiber structure

(E, p, B), every b ∈ B has an open neighborhood U such that the fibres p−1(u)

with u ∈ U are homeomorphic. We will see that the four fiber structures to be

introduced in this section are locally trivial, a circumstance which makes it easy

to show, again in this section, that all four of them are Hurewicz fibrations.�

Definition C.2 A function on Rk is called ‘2π-periodic’ if it is 2π-periodic in all k

arguments. If Y is a topological space, I denote the set of 2π-periodic functions in

C(Rk, Y ) by Cper(R
k, Y ). The set SO(3) consists of those real 3× 3–matrices R with
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det(R) = 1 for which RTR = I3×3 where RT denotes the transpose of R and I3×3 the

3× 3 unit matrix. I define

J :=

⎛
⎜⎜⎜⎝

0 −1 0

1 0 0

0 0 0

⎞
⎟⎟⎟⎠ , SO3(2) := {exp(2πxJ ) : x ∈ R} ⊂ SO(3) , (C.1)

and consider SO3(2) as a topological subspace of SO(3). Denoting the fractional part

of a real number x by �x�, I obtain for x ∈ R

exp(2πxJ ) = exp(2π�x�J ) =

⎛
⎜⎜⎜⎝

cos(2πx) − sin(2πx) 0

sin(2πx) cos(2πx) 0

0 0 1

⎞
⎟⎟⎟⎠ . (C.2)

Thus SO3(2) is, under matrix multiplication, an Abelian subgroup of SO(3). Clearly

for every R ∈ SO3(2) a unique r ∈ [0, 1) exists such that p1(2πr) = exp(2πrJ ) and

I abbreviate PH(R) := r and call PH(R) the ‘phase of R’. The function p1 : R →
SO3(2), defined by p1(y) := exp(yJ ), clearly belongs to Cper(R, SO3(2)) and is onto

SO3(2) whence (R, p1, SO3(2)) is a fiber structure.

I define the k-sphere Sk := {x ∈ Rk+1 : |x| = 1} (k positive integer) and equip

it with the relative topology from Rk+1. I define the function p2 : S3 → SO(3) by

p2(r̄)x := (2r2
0 − 1)x + 2r(rTx) + 2r0(r × x), where r̄ =: (r0, r) ∈ S3, r0 ∈ R, r ∈ R3

and x ∈ R3. Since the topology of SO(3) is defined as the relative topology from

R3×3, p2 ∈ C(S3, SO(3)). Note that the trace of p2(r̄) reads as Tr[p2(r̄)] = 4r2
0 − 1.

On S3 one introduces a multiplication by (r0, r)(s0, s) = (r0s0−rT s, r0s+s0r+r×s)
where r0, s0 ∈ R, r, s ∈ R3. One observes that S3 is a topological group whose unit

element is (1, 0, 0, 0)T . The inverse of (r0, r) is (r0,−r). Moreover p2 is a group

homomorphism, i.e. p2(r̄s̄) = p2(r̄)p2(s̄). It is thus easy to show that p2 is onto

SO(3) whence (S3, p2, SO(3)) is a fiber structure.

I define the function p3 : SO(3)→ S2 by p3(R) := Re3, where e3 denotes the third

unit vector, i.e., e3 = (0, 0, 1)T . More generally, ei denotes the i-th unit vector in any
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Rk, i.e., (ei)i := 1 and, for i 
= j, (ei)j := 0. It is easy to see that p3 ∈ C(SO(3), S2)

and is onto S2 whence (SO(3), p3, S
2) is a fiber structure.

I define the complex unit circle T := {x ∈ C : |x| = 1} and the k-torus Tk, i.e.,

the k-fold cartesian product of T (whenever I write Tk, this implies that k is a positive

integer). I consider T as a topological subspace of C and Tk as the topological product

of its k factors. Defining p4,k : Rk → Tk by p4,k(φ) := (exp(iφ1), ..., exp(iφk))
T it

is easy to see that p4,k ∈ Cper(R
k,Tk) and is onto Tk whence (Rk, p4,k,T

k) is a fiber

structure. �

Having defined my four fiber structures, the remaining task of this section is to

show that all of them are Hurewicz fibrations. Since the notion of Hurewicz fibration

is closely related to Homotopy Theory I first need

Definition C.3 (Homotopic functions) Let X, Y be topological spaces and let fi ∈
C(X, Y ) be continuous functions where i = 0, 1. Then I write f0 �Y f1 if a h ∈
C(X × [0, 1], Y ) exists such that h(·, 0) = f0 and h(·, 1) = f1 where X × [0, 1] is

equipped with the product topology and [0, 1] is equipped with the relative topology

from R. One then says that f0, f1 are ‘homotopic w.r.t. Y ’. It is easily shown (see,

e.g., [Rot, Sp]) that �Y is an equivalence relation on C(X, Y ) and I denote by [X, Y ]

the set of all equivalence classes.

Note that for cartesian products like X × [0, 1] I choose the product topology if

not mentioned otherwise. A g ∈ C(X, Y ) is called ‘nullhomotopic w.r.t. Y ’, if it is

homotopic w.r.t. Y to a constant function in C(X, Y ). �

If two functions have different domain then they cannot be homotopic. It is

also clear that, in the notation of Definition C.3, always functions exist in C(X, Y )

which are nullhomotopic w.r.t. Y . Note that continuous functions with common

domain are often not homotopic. Note that the suffix in �Y is important. In fact,
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for every pair f0, f1 of continuous functions on a topological space X one can choose

Y sufficiently large such that f0 �Y f1 [Du, Section XV.1]. Nevertheless one often

does not mention Y when the context is clear.

Proposition C.4 a) Let X and Y be topological spaces and let gi ∈ C(Rk, X) and

fi ∈ C(X, Y ) where i = 0, 1. If f0 �Y f1 and g0 �X g1 then f1 ◦ g1 �Y f0 ◦ g0.

b) If X is a topological space and if g ∈ C(Rk, X) then g is nullhomotopic w.r.t. X.

c) Let X and Y be topological spaces and let Y be path-connected. Then all g ∈
C(X, Y ) which are nullhomotopic w.r.t. Y , are homotopic w.r.t. Y . In other words,

all g ∈ C(X, Y ), which are nullhomotopic w.r.t. Y , belong to the same element of

[X, Y ].

Proof of Proposition C.4a: Let X and Y be topological spaces and let gi ∈ C(Rk, X)

and fi ∈ C(X, Y ) where i = 0, 1. Thus a F ∈ C(X × [0, 1], Y ) exists such that

F (·, i) = fi(·) and a G ∈ C(Rk × [0, 1], X) exists such that G(·, i) = gi(·). The

function H : Rk × [0, 1] → Y , defined by H(x, t) := F (G(x, t), t), is continuous and

satisfies H(x, i) = F (G(x, i), i) = F (gi(x), i) = fi(gi(x)). Thus f1 ◦ g1 �Y f0 ◦ g0. �

Proof of Proposition C.4b: See [Du, Section XV.1]. �

Proof of Proposition C.4c: See [SZ, Section 2.1]. �

It follows from Proposition C.4 that if X is a path-connected topological space,

then all g ∈ C(Rk, X) are homotopic w.r.t. X.

For a fiber structure (E, p, B) and a nonempty subset U of B the function

p|p−1(U) : p−1(U) → U is onto U since p is onto B. Choosing for p−1(U) the

relative topology from E and for U the relative topology from B, it is clear that

p|p−1(U) is a continuous function whence (p−1(U), p|p−1(U), U) is a fiber structure.
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Definition C.5 (Hurewicz fibration) Let X be a topological space. A fiber structure

(E, p, B) is called a ‘fibration for X’ if it has the following property: if G ∈ C(X ×
[0, 1], B) and if G(·, 0) has a lifting f w.r.t. (E, p, B) then G has a lifting F w.r.t.

(E, p, B) such that f(·) = F (·, 0).

A fiber structure (E, p, B) is called a ‘Hurewicz fibration’ if it is a fibration for

arbitrary topological spaces X.

A fiber structure (E, p, B) is called a ‘local Hurewicz fibration’ if every b ∈ B has

a neighborhood U such that the fiber structure (p−1(U), p|p−1(U), U) is a Hurewicz

fibration. Recall that p−1(U) has the relative topology from E and that U has the

relative topology from B. �

Note that the concept of local Hurewicz fibration will play a role in the proof of

Lemma C.6.

One sees by Definition C.5 that liftings w.r.t. Hurewicz fibrations can be found

by the following method. If (E, p, B) is a Hurewicz fibration and if one looks for a

lifting of a continuous function g : X → B w.r.t. (E, p, B) then one just tries to find

a continuous function g′ : X → B with g �B g′ which is so simple that a lifting of g′

w.r.t. (E, p, B) can be easily found. As a matter of fact, in Sections C.2, C.3 I will

often apply this method.

To show that my four fiber structures are Hurewicz fibrations, the following

lemma is crucial.

Lemma C.6 (Homotopy Lifting Theorem) Let (E, p, B) be a fiber structure which is

locally trivial and let B be a compact Hausdorff space. Then (E, p, B) is a Hurewicz

fibration.

Proof of Lemma C.6: Since B is a compact Hausdorff space, the claim follows by

applying [Du, Corollary XX.3.6] if (E, p, B) is a local Hurewicz fibration.
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Thus I only have to show that (E, p, B) is a local Hurewicz fibration so let b ∈
B. By Definition C.1 an open neighborhood U of b, a topological space Y and a

homeomorphism ϕ : U × Y → p−1(U) onto p−1(U) exist such that, for all b ∈ U, y ∈
Y , p ◦ϕ(b, y) = b. I only have to show that the fiber structure (p−1(U), p|p−1(U), U)

is a Hurewicz fibration. Thus let G ∈ C(X × [0, 1], U) and let g(·) := G(·, 0) have

a lifting f w.r.t. (p−1(U), p|p−1(U), U). I define the function F : X × [0, 1] →
p−1(U) by F (x, t) := ϕ

(
G(x, t), pr2(ϕ

−1(f(x)))

)
where pr2 is the projection on the

second factor, i.e., pr2(b, y) = y. Since ϕ is a homeomorphism onto p−1(U), F is

a continous function. Clearly p(F (x, t)) = G(x, t) whence F is a lifting of G w.r.t.

(p−1(U), p|p−1(U), U). Furthermore, for every e ∈ p−1(U), we have e = ϕ(ϕ−1(e)) =

ϕ

(
pr1(ϕ

−1(e)), pr2(ϕ
−1(e))

)
= ϕ

(
p(e), pr2(ϕ

−1(e))

)
where pr1 is the projection on

the second factor, i.e., pr1(b, y) = b. Hence F (x, 0) = ϕ

(
G(x, 0), pr2(ϕ

−1(F (x, 0)))

)
.

Since also F (x, 0) = ϕ

(
G(x, 0), pr2(ϕ

−1(f(x)))

)
and since ϕ is a bijection I conclude

that F (·, 0) = f(·). Since b and X were chosen arbitrarily I thus have shown that

(E, p, B) is a local Hurewicz fibration. �

Since the base spaces SO3(2), SO(3), S2 and Tk of my four fiber structures are

compact Hausdorff spaces, one sees by Lemma C.6 that my aim of proving that

these fiber structures are Hurewicz fibrations reduces to showing that they are locally

trivial.

I first introduce

Definition C.7 (Covering map) Let X, Y be topological spaces and p ∈ C(X, Y ) be

onto Y . Then p is called a ‘covering map w.r.t. X and Y ’ if every point of Y has

an open neighbourhood U such that p−1(U) is a disjoint union
⋃

λ∈Λ Uλ of open sets

Uλ ⊂ X with p(Uλ) = U and such that every p|Uλ : Uλ → U is a homeomorphism

onto U . �
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To relate the fiber structures (R, p4,1,T) and (R, p1, SO3(2)) I define the function

q : T→ SO3(2) by q(exp(ix)) := exp(xJ ) where x ∈ R.

Proposition C.8 a) p4,k is a covering map w.r.t. Rk and Tk.

b) The function q is a homeomorphism from T onto SO3(2) and satisfies q◦p4,1 = p1.

Furthermore p1 is a covering map w.r.t. R and SO3(2).

c) p2 is a covering map w.r.t. S3 and SO(3).

d) Let p : E → B be a covering map w.r.t. topological spaces E,B. Then (E, p, B)

is a locally trivial fiber structure.

e) The fiber structure (SO(3), p3, S
2) is locally trivial.

Proof of Proposition C.8a: See [SZ, Section 6.1]. �

Proof of Proposition C.8b: The function q′ : SO3(2)→ T, defined by q′(exp(xJ )) :=

exp(ix) where x ∈ R, is inverse to q. Clearly q and q′ are continuous so that q

is a homeomorphism from T onto SO3(2). Furthermore q ◦ p4,1(x) = q(exp(ix)) =

exp(xJ ) = p1(x) whence q ◦ p4,1 = p1.

To show that p1 is a covering map, let y be in SO3(2) and let y′ := q′(y) ∈
T. Since, by Proposition C.8a, p4,1 is a covering map w.r.t. R and T, there is

an open neighbourhood U ′ of y′ such that p−1
4,1(U

′) is a disjoint union
⋃

λ∈Λ Uλ of

open sets Uλ ⊂ R with p4,1(Uλ) = U ′ and such that every p4,1|Uλ : Uλ → U ′ is a

homeomorphism onto U ′. Since q is a homeomorphism we have that U := q(U ′) is

an open neighbourhood of y. Furthermore p−1
1 (U) = (q ◦p4,1)

−1(U) = p−1
4,1(q

−1(U)) =

p−1
4,1(q

′(U)) = p−1
4,1(U

′) =
⋃

λ∈Λ Uλ. Also p1(Uλ) = q ◦ p4,1(Uλ) = q(U ′) = U and

p1|Uλ = q ◦ p4,1|Uλ is a homeomorphism onto q(U ′) = U .

Since y is an arbitrary element in SO3(2), I thus have shown that p1 is a covering

map w.r.t. R and SO3(2). �
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Proof of Proposition C.8c: See [SZ, Section 6.1]. �

Proof of Proposition C.8d: Let p : E → B be a covering map w.r.t. topological

spaces E,B. Clearly (E, p, B) is a fiber structure.

To show that this fiber structure is locally trivial, let b ∈ B. Thus b has an

open neighbourhood U such that p−1(U) is a disjoint union
⋃

λ∈Λ Uλ of open sets

Uλ ⊂ E with p(Uλ) = U and such that every p|Uλ : Uλ → U is a homeomorphism

onto U . I pick for Λ the discrete topology. Hence the function p′ : p−1(U)→ U × Λ

defined, for e ∈ Uλ by p′(e) := (p(e), λ), is a homeomorphism onto U × Λ. The

inverse of p′ is a homeomorphism ϕ : U × Λ→ p−1(U) and, for e ∈ p−1(U), we have

p(ϕ(p(e), λ)) = p(ϕ(p′(e))) = p(e).

Since b ∈ B is an arbitrary point I conclude that the fiber structure (E, p, B) is

locally trivial. �

Proof of Proposition C.8e: See for example [Bre, Section II.13],[Sw, Section 4]. �

I conclude from Lemma C.6 and Proposition C.8:

Corollary C.9 The fiber structures (R, p1, SO3(2)), (S3, p2, SO(3)),(SO(3), p3, S
2)

and

(Rk, p4,k,T
k) are Hurewicz fibrations. �

I will use Corollary C.9 to obtain liftings w.r.t. the four fiber structures. I will use

the fiber structure (Rk, p4,k,T
k) to obtain factors (see Section C.3) and to show that

certain subsets of Rk are dense (see Section D.2).
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C.2 Basic liftings

Crucial for this work are liftings of functions g on the domain Rk w.r.t. my four

fiber structures (R, p1, SO3(2)), (S3, p2, SO(3)),(SO(3), p3, S
2), (Rk, p4,k,T

k) and in

this section I will provide basic properties of those liftings. As a byproduct I will

obtain the concepts of phase function, SO3(2)-index, SO(3)-index, and S3-index.

The following lemma is essential for this section.

Lemma C.10 Let (E, p, B) be a Hurewicz fibration and X be a topological space.

Then the following hold. If g ∈ C(X,B) is nullhomotopic w.r.t. B then it has a

lifting f w.r.t. (E, p, B). Each of these f is nullhomotopic w.r.t. E. If g ∈ C(Rk, B)

then it has a lifting w.r.t. (E, p, B).

Proof of Lemma C.10: Let g ∈ C(X,B) be nullhomotopic w.r.t. B. Then a G ∈
C(X × [0, 1], B) exists such that g(·) = G(·, 1) and such that g′(·) := G(·, 0) is a

constant function. Because p is onto B, a constant function f ′ : X → E exists

such that g′ = p ◦ f ′. Since (E, p, B) is a Hurewicz fibration it follows that a

F ∈ C(X×[0, 1], E) exists such thatG = p◦F and f ′(·) = F (·, 0). Clearly f := F (·, 1)

is a lifting of g w.r.t. (E, p, B) and f is nullhomotopic w.r.t. E.

To prove the second claim, let X = Rk. Then, by Proposition C.4b, g is nullho-

motopic w.r.t. B whence, by the first claim, g has a lifting w.r.t. (E, p, B). �

Theorem C.11 a) Let g ∈ C(Rk, SO3(2)). Then g has a lifting f w.r.t. (R, p1, SO3(2)),

i.e., a f ∈ C(Rk,R) exists such that g = p1 ◦ f = exp(J f). Any lifting f̃ of g w.r.t.

(R, p1, SO3(2)) has the form f̃(φ) = f(φ)+2πN where N is an integer. Furthermore,

for every integer N , f̃ is a lifting of g w.r.t. (R, p1, SO3(2)).

b) Let g ∈ Cper(R
k, SO3(2)). Then every lifting f of g w.r.t. (R, p1, SO3(2)) has the

form f(φ) = fper(φ)+NTφ where N ∈ Zk and where fper ∈ Cper(R
k,R). Furthermore

218



Appendix C. Topological concepts and facts

N is uniquely determined by g.

c) Let g ∈ C(Rm,Tk). Then g has a lifting f w.r.t. (Rk, p4,k,T
k), i.e., a f ∈

C(Rm,Rk) exists such that g = p4,k ◦ f = (exp(if1), ..., exp(ifk)). Any lifting f̃ of g

w.r.t. (Rk, p4,k,T
k) has the form f̃(φ) = f(φ) + 2πN where N ∈ Zk. Furthermore,

for every N ∈ Zk, f̃ is a lifting of g w.r.t. (Rk, p4,k,T
k).

d) Let g ∈ Cper(R
m,Tk). Then every lifting f of g w.r.t. (Rk, p4,k,T

k) has the form

f(φ) = fper(φ) +Nφ where N ∈ Zk×m and where fper ∈ Cper(R
m,Rk). Furthermore

N is uniquely determined by g.

e) Let g ∈ C(Rk, S2). Then g has a lifting f w.r.t. (SO(3), p3, S
2), i.e., a function

f ∈ C(Rk, SO(3)) exists such that g = p3 ◦ f = fe3.

Proof of Theorem C.11a: Let g ∈ C(Rk, SO3(2)). Since, by Corollary C.9, (R, p1, SO3(2))

is a Hurewicz fibration we know from Lemma C.10 that g has a lifting f w.r.t.

(R, p1, SO3(2)), i.e., a f ∈ C(Rk,R) exists such that g = p1 ◦ f = exp(J f). If f̃ is

any lifting of g w.r.t. (R, p1, SO3(2)), then

I3×3 = exp(J (f − f̃)) =

⎛
⎜⎜⎜⎝

cos(f − f̃) − sin(f − f̃) 0

sin(f − f̃) cos(f − f̃) 0

0 0 1

⎞
⎟⎟⎟⎠

and the remaining claim follows from the continuity of f, f̃ . �

Proof of Theorem C.11b: Let g ∈ Cper(R
k, SO3(2)). By Theorem C.11a a lifting f

of g w.r.t. (R, p1, SO3(2)) exists. Since g is 2π-periodic, we have for i = 1, ..., k,

I3×3 = g(φ + 2πei)gT (φ) = exp(J f(φ + 2πei) − J f(φ)). Since f is continuous I

conclude that for i = 1, ..., k an integer Ni exists such that f(φ+2πei)−f(φ) = 2πNi.

Therefore the function fper : Rk → R, defined by fper(φ) := f(φ) − NTφ, is in

Cper(R
k,R), where N := (N1, ..., Nk). That N is uniquely determined by g follows

by applying once again Theorem C.11a. �
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Proof of Theorem C.11c: Let g ∈ C(Rm,Tk). Since, by Corollary C.9, (Rk, p4,k,T
k)

is a Hurewicz fibration we know from Lemma C.10 that g has a lifting f w.r.t.

(Rk, p4,k,T
k), i.e., a f ∈ C(Rm,Rk) exists such that g = p4,k◦f = (exp(if1), ..., exp(ifk)).

If f̃ is any lifting of g w.r.t. (Rk, p4,k,T
k), then

(1, ..., 1) = (exp(if1 − if̃1), ..., exp(ifk − if̃k)) ,

and the remaining claim follows from the continuity of f, f̃ . �

Proof of Theorem C.11d: Let g ∈ Cper(R
m,Tk). By Theorem C.11c a lifting f of g

w.r.t. (Rk, p4,k,T
k) exists. Since g is 2π-periodic, we have for i = 1, ..., m,

(1, ..., 1) = (g1(φ+ 2πei)g1(φ), ..., gk(φ+ 2πei)gk(φ))

= (exp(if1(φ+ 2πei)) exp(−if1(φ)), ..., exp(ifk(φ+ 2πei)) exp(−ifk(φ))) .

Since f is continuous I conclude that for i = 1, ..., m, j = 1, ..., k an integer Nj,i

exists such that fj(φ+2πei)− fj(φ) = 2πNj,i. Therefore the function fper : Rk → R,

defined by fper(φ) := f(φ)−Nφ, is in Cper(R
k,R), where N is the k×m-matrix with

elements Nj,i. That N is uniquely determined by g follows by applying once again

Theorem C.11c. �

Proof of Theorem C.11e: Let g ∈ C(Rk, S2). Since, by Corollary C.9, (SO(3), p3, S
2)

is a Hurewicz fibration we know from Lemma C.10 that g has a lifting f w.r.t.

(SO(3), p3, S
2), i.e., a function f ∈ C(Rk, SO(3)) exists such that g = p3 ◦ f = fe3.

�

Definition C.12 (SO3(2)-index, S3-index, phase function) Let g ∈ Cper(R
k, SO3(2)).

Then the constant N ∈ Zk in Theorem C.11b will be called the ‘SO3(2)-index of g’

and I define the function Ind2,k : Cper(R
k, SO3(2)) → Zk by Ind2,k(g) := N . It fol-

lows from Theorem C.11a,b that for every g ∈ Cper(R
k, SO3(2)) there exists a unique

h ∈ Cper(R
k,R) such that g(φ) = exp(J [NTφ + 2πh(φ)]) and h(0) ∈ [0, 1) where

N = Ind2,k(g). I call h the ‘phase function’ of g and abbreviate PHF (g) := h.
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Let f ∈ C(Rk, S3) and let, for i = 1, ..., k, a si exist in {1,−1} such that, for all φ,

f(φ+ 2πei) = sif(φ), i.e., f(φ+ 2πei) = (si, 0, 0, 0)Tf(φ). Then s := (s1, ..., sk)
T ∈

{1,−1}k is called the ‘S3-index of f ’ and I denote the collection of those functions by

C±per(R
k, S3). I define the function Ind1,k : C±per(R

k, S3)→ {1,−1}k by Ind1,k(f) := s

where s is the S3-index of f . The S3-index s is uniquely determined by f since S3

is a group and (1, 0, 0, 0)T is its identity whence f(φ + 2πei)f−1(φ) = (si, 0, 0, 0)T .

Clearly Cper(R
k, S3) consists of those functions in C±per(R

k, S3) whose S3-index is the

identity. I consider {1,−1} as a multiplicative group with identity 1 and {1,−1}k as

the k-fold direct product of {1,−1}. Note also that (1, ..., 1)T is the identity of the

group {1,−1}k and that each f in C±per(R
k, S3) is 4π-periodic in its k arguments. �

Theorem C.13 a) Let g ∈ C(Rk, SO(3)). Then g has a lifting g̃ w.r.t. (S3, p2, SO(3)),

i.e., a g̃ ∈ C(Rk, S3) exists such that g = p2◦g̃. Any lifting f̃ of g w.r.t. (S3, p2, SO(3))

has the form f̃ = (κ, 0, 0, 0)T g̃ = κg̃ where κ ∈ {1,−1}, i.e., g has exactly the two

liftings ±g̃.

b) If g̃ ∈ C±per(R
k, S3) then p2 ◦ g̃ ∈ Cper(R

k, SO(3)). Let g ∈ Cper(R
k, SO(3)).

Then both liftings ±f̃ of g w.r.t. (S3, p2, SO(3)) have an S3-index, i.e., are ele-

ments of C±per(R
k, S3). Furthermore, both liftings ±f̃ have the same S3-index. If

h ∈ Cper(R
k, SO(3)) is a constant function then both liftings of h w.r.t. (S3, p2, SO(3))

are constant functions and their S3-index is the identity.

c) The set Cper(R
k, S3) consists of those functions in C±per(R

k, S3) whose S3-index is

the identity. If g̃, g̃′ ∈ C±per(R
k, S3) have S3-indices s, s′ respectively then their product

(under pointwise multiplication) g̃g̃′ is in C±per(R
k, S3) and has S3-index ss′. The set

C±per(R
k, S3) is a group under pointwise multiplication of S3 valued functions. The

function Ind1,k is a group homomorphism of the multiplicative group C±per(R
k, S3)

into the multiplicative group {1,−1}k.

d) Let G ∈ C(Rk× [0, 1], SO(3)) such that, for all t ∈ [0, 1], G(·, t) ∈ Cper(R
k, SO(3)).
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Then there exists a lifting G̃ w.r.t. (S3, p2, SO(3)), i.e., a G̃ ∈ C(Rk × [0, 1], S3)

exists such that G = p2 ◦ G̃. Any lifting H̃ w.r.t. (S3, p2, SO(3)) has the form

H̃ = (κ, 0, 0, 0)T G̃ = κG̃ where κ ∈ {1,−1}, i.e., G has exactly the two liftings ±G̃.

Moreover, for t ∈ [0, 1], G̃(·, t) and −G̃(·, t) are in C±per(R
k, S3) and Ind1,k(G̃(·, 0)) =

Ind1,k(G̃(·, t)) = Ind1,k(−G̃(·, t)) = Ind1,k(−G̃(·, 0)).

e) The set Cper(R
k, SO3(2)) is a group under pointwise multiplication of SO3(2)-

valued functions. The function Ind2,k is a group homomorphism from the multiplica-

tive group Cper(R
k, SO3(2)) onto the additive group Zk.

Proof of Theorem C.13a: Let g ∈ C(Rk, SO(3)). Since, by Corollary C.9, (S3, p2, SO(3))

is a Hurewicz fibration we know from Lemma C.10 that g has a lifting g̃ w.r.t.

(S3, p2, SO(3)), i.e., a g̃ ∈ C(Rk, S3) exists such that g = p2 ◦ g̃. If f̃ is any lift-

ing of g w.r.t. (S3, p2, SO(3)) then p2 ◦ g̃ = p2 ◦ f̃ . Recalling from Definition C.2

that p2 is a homomorphism from the group S3 into the group SO(3) I conclude that

p2(f̃(φ)g̃−1(φ)) = p2(f̃(φ))p2(g̃
−1(φ)) = p2(f̃(φ))(p2(g̃(φ)))−1 = g(φ))(g(φ))−1 =

I3×3. By Definition C.2 we have p−1
2 (I3×3) = {(1, 0, 0, 0)T , (−1, 0, 0, 0)T} whence

f̃(φ)g̃−1(φ) ∈ {(1, 0, 0, 0)T , (−1, 0, 0, 0)T}. The continuity of f̃(φ)g̃−1(φ) in φ gives

me that f̃(φ)g̃−1(φ) is independent of φ whence either f̃ g̃−1 = (1, 0, 0, 0)T or f̃ g̃−1 =

(−1, 0, 0, 0)T . Thus g has exactly the two liftings ±g̃ w.r.t. (S3, p2, SO(3)). �

Proof of Theorem C.13b: Let g̃ ∈ C±per(R
k, S3) and let me abbreviate s := Ind1,k(g̃).

Thus g̃(φ + 2πei) = (si, 0, 0, 0)T g̃(φ). Since p2 is a group homomorphism and since

p2(±1, 0, 0, 0) = I3×3 I obtain p2(g̃(φ+ 2πei)) = p2((si, 0, 0, 0)T g̃(φ))

= p2(si, 0, 0, 0)p2(g̃(φ)) = p2(g̃(φ)) whence p2 ◦ g̃ ∈ Cper(R
k, SO(3)).

Let g ∈ Cper(R
k, SO(3)). By Theorem C.13a a lifting f̃ of g w.r.t. (S3, p2, SO(3))

exists. Since g = p2 ◦ f̃ is 2π-periodic we have for i = 1, ..., k that I3×3 = g(φ +

2πei)g−1(φ) = p2(f̃(φ+ 2πei))(p2(f̃(φ)))−1 = p2(f̃(φ+ 2πei))p2(f̃
−1(φ)) = p2(f̃(φ+

2πei)f̃−1(φ)) where I also used the fact that p2 is a group homomorphism. By
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the definition of p2 it follows that f̃(φ + 2πei)f̃−1(φ) ∈ {(1, 0, 0, 0)T , (−1, 0, 0, 0)T}.
By the continuity of f̃(φ + 2πei)f̃−1(φ) in φ I conclude that f̃(φ + 2πei)f̃−1(φ) is

independent of φ whence f̃(φ + 2πei) = (κi, 0, 0, 0)T f̃(φ) with κi ∈ {1,−1} so that

f̃ has the S3-index (κ1, ..., κk)
T . Clearly

−f̃(φ+ 2πei) = (−1, 0, ..., 0)T f̃(φ+ 2πei) = (−1, 0, ..., 0)T (κi, 0, 0, 0)T f̃(φ)

= (κi, 0, 0, 0)T (−1, 0, ..., 0)T f̃(φ) = (κi, 0, 0, 0)T (−f̃(φ)) ,

whence −f̃ has the same S3-index as f̃ .

Let h ∈ Cper(R
k, SO(3)) be a constant function having a constant value, say

x, and let ±h̃ be the liftings of h w.r.t. (S3, p2, SO(3)). Since p2 is onto SO(3),

there exists x̃ ∈ S3 such that p2(x̃) = x. Because p2 is a group homomorphism and

p−1
2 (I3×3) = {(1, 0, 0, 0)T , (−1, 0, 0, 0)T}, the range of h̃ is a subset of {x̃,−x̃} whence,

by the continuity of h̃, h̃ is constant and its S3-index is the identity. I conclude that

both liftings of h w.r.t. (S3, p2, SO(3)) are constant functions and their S3-index is

the identity. �

Proof of Theorem C.13c: Since the S3-index of a function g̃ ∈ C±per(R
k, S3) is the

identity iff g̃ is 2π-periodic one observes that the set Cper(R
k, S3) consists of those

functions in C±per(R
k, S3) whose S3-index is the identity. Let g̃, g̃′ ∈ C±per(R

k, S3) and

let me abbreviate s := Ind1,k(g̃), s
′ := Ind1,k(g̃

′). Thus, for φ ∈ Rk, i = 1, ..., k, I

compute

g̃(φ+ 2πei)g̃′(φ+ 2πei) = (si, 0, ..., 0)T g̃(φ)(s′i, 0, ..., 0)T g̃′(φ)

= (si, 0, ..., 0)T (s′i, 0, ..., 0)T g̃(φ)g̃′(φ) = (sis
′
i, 0, ..., 0)T g̃(φ)g̃′(φ) , (C.3)

where in the second equality I used the fact that (±1, 0, ..., 0)T belong to the center

of the group S3. Since g̃g̃′ ∈ C(Rk, S3) I conclude from (C.3) that g̃g̃′ ∈ C±per(R
k, S3)

and Ind1,k(g̃g̃
′) = ss′. Using again the fact that (±1, 0, ..., 0)T belong to the center
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of the group S3, one obtains

g̃−1(φ+ 2πei) = ((si, 0, ..., 0)T g̃(φ))−1 = (g̃(φ))−1(si, 0, ..., 0)T

= (si, 0, ..., 0)T (g̃(φ))−1 ,

whence g̃−1 ∈ C±per(R
k, S3). Here I also used the fact that g̃−1 ∈ C(Rk, S3) which

follows from the facts that g̃ ∈ C(Rk, S3) and that S3 is a topological group. Since

C±per(R
k, S3) is a subgroup of the multiplicative group C(Rk, S3) and since, for g̃, g̃′ ∈

C±per(R
k, S3) we have g̃g̃′, g̃−1 ∈ C±per(R

k, S3) I conclude that the set C±per(R
k, S3) is a

subgroup of Cper(R
k, S3). In particular, since Ind1,k(g̃g̃

′) = ss′, Ind1,k is a group

homomorphism of the multiplicative group C±per(R
k, S3) into the multiplicative group

{1,−1}k. �

Proof of Theorem C.13d: Let G ∈ C(Rk × [0, 1], SO(3)) such that, for all t ∈
[0, 1], G(·, t) ∈ Cper(R

k, SO(3)). By Theorem C.13a, G(·, 0) has a lifting of g w.r.t.

(S3, p2, SO(3)) and by Corollary C.9, (S3, p2, SO(3)) is a Hurewicz fibration. Thus,

by Definition C.5, a G̃ ∈ C(Rk × [0, 1], S3) exists such that G = p2 ◦ G̃. It thus

follows by Theorem C.13b that, for all t ∈ [0, 1], we have that G̃(·, t) ∈ C±per(R
k, S3)

whence G̃(·, t) has a S3-index, say s(t). By the group multiplication in S3 and due to

Definition C.12, we have, for i = 1, ..., k, G̃(φ + 2πei, t)(G̃(φ, t))−1 = (si(t), 0, 0, 0)T .

By the continuity of G̃ one concludes that si(t) is continuous in t whence constant.

Let H̃ be an arbitrary lifting of G w.r.t. (S3, p2, SO(3)). By Theorem C.13a, for

t ∈ [0, 1], a κ(t) ∈ {1,−1} exists such that H̃(·, t) = (κ(t), 0, 0, 0)T G̃(·, t) whence

H̃(·, t)G̃−1(·, t) = (κ(t), 0, 0, 0)T . Since G̃ and H̃ are continuous functions and S3 is

a topological group, it follows that κ is constant. It follows by Theorem C.13b that

Ind1,k(G̃(·, 0)) = Ind1,k(G̃(·, t)) = Ind1,k(−G̃(·, t)) = Ind1,k(−G̃(·, 0)). �

Proof of Theorem C.13e: Since SO3(2) is a topological group w.r.t. matrix multi-

plication, C(Rk, SO3(2)) is a group under pointwise multiplication of SO3(2)-valued

functions. Let g, g′ ∈ Cper(R
k, SO3(2)). Since SO3(2) is a topological group w.r.t.
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matrix multiplication, it follows that gg′ and g−1 are in Cper(R
k, SO3(2)) whence

Cper(R
k, SO3(2)) is a subgroup of C(Rk, SO3(2)). By Definition C.12 we have

g(φ) = exp(J [NTφ+ 2πh(φ)]) , g′(φ) = exp(J [N ′Tφ+ 2πh′(φ)]) ,

where N := Ind2,k(g), N
′ := Ind2,k(g

′) and h := PHF (g), h′ := PHF (g′). Clearly

g(φ)g′(φ) = exp(J [(N +N ′)Tφ+ 2πh(φ) + 2πh′(φ)]) ,

whence Ind2,k(gg
′) = N + N ′ = Ind2,k(g) + Ind2,k(g

′) so that Ind2,k is a group

homomorphism. Of course Ind2,k is onto Zk which completes the proof that Ind2,k

is a group homomorphism from Cper(R
k, SO3(2)) onto Zk. �

Dealing with liftings of functions g ∈ Cper(R
k, SO(3)) w.r.t. (S3, p2, SO(3)) is, in

the context of polarized beams in storage rings, called the ‘quaternion formalism’.

We see by Theorem C.13 that every continuous function g ∈ Cper(R
k, SO(3)) has two

counterparts ±g̃ ∈ C±per(R
k, S3) in the quaternion formalism. Beyond its importance

for the study of [Tk, SO(3)] (see Section C.3), the quaternion formalism also has

advantages in terms of numerical efficiency (this aspect is not covered in this work -

see however the references mentioned in the context of the code SPRINT in Section

8.5).

Definition C.14 (SO(3)-index) Let g ∈ Cper(R
k, SO(3)). Then the common S3-

index of both liftings ±f̃ of g in Theorem C.13b will be called the ‘SO(3)-index of

g’ and I define the function Ind3,k : Cper(R
k, SO(3)) → {1,−1}k by Ind3,k(g) :=

Ind1,k(f̃). Note that, by Theorem C.13b, the SO(3)-index of a constant function in

Cper(R
k, SO(3)) is the identity. Furthermore I define the function Ind4,k : C(Tk, SO(3))→

{1,−1}k by Ind4,k(F ) := Ind3,k(F ◦ p4,k) and I call Ind4,k(F ) the ‘SO(3)-index of

F ’. For s ∈ {1,−1}k I define the function g̃
(s)
k ∈ C(Rk, S3) by

g̃
(s)
k (φ) :=

(
cos(

1

4

k∑
i=1

(1− si)φi), 0, 0, sin(
1

4

k∑
i=1

(1− si)φi)

)T

, (C.4)
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and the function g
(s)
k ∈ Cper(R

k, SO3(2)) by g
(s)
k (φ) := exp(1

2
J ∑k

i=1(1 − si)φi).

Clearly g̃
(s)
k has the S3-index s whence g̃

(s)
k ∈ C±per(R

k, S3). Thus every s ∈ {1,−1}k is

the S3-index s of some function in C±per(R
k, S3) whence, by recalling Theorem C.13c,

the group homomorphism Ind1,k is onto {1,−1}k. Note also that 1
2
(1−s1, ..., 1−sk)

T

is the SO3(2)-index of g
(s)
k . �

Theorem C.15 a) If g, g′ ∈ Cper(R
k, SO(3)) with SO(3)-indices s, s′ respectively

then their product gg′ is in Cper(R
k, SO(3)) and has SO(3)-index ss′. The set

Cper(R
k, SO(3)) is a group under pointwise multiplication of SO(3) valued func-

tions. The function Ind3,k is a group homomorphism of the multiplicative group

Cper(R
k, SO(3)) onto the multiplicative group {1,−1}k.

b) Let g ∈ C(Rk, SO3(2)) and let f ∈ C(Rk,R) be a lifting of g w.r.t. (R, p1, SO3(2)).

Then the function g̃ ∈ C(Rk, S3), defined by

g̃(φ) :=

(
cos(

f(φ)

2
), 0, 0, sin(

f(φ)

2
)

)T

, (C.5)

is a lifting of g w.r.t. (S3, p2, SO(3)). If g ∈ Cper(R
k, SO3(2)) then

Ind3,k(g) = ((−1)N1 , ..., (−1)Nk)T where N := Ind2,k(g).

c) Let s ∈ {1,−1}k. Then g
(s)
k = p2 ◦ g̃(s)

k , i.e., g̃
(s)
k is a lifting of g

(s)
k w.r.t.

(S3, p2, SO(3)). Moreover Ind3,k(g
(s)
k ) = s.

Proof of Theorem C.15a: Let g, g′ ∈ Cper(R
k, SO(3)) with SO(3)-indices s, s′ re-

spectively and let g̃, g̃′ be liftings of g, g′ w.r.t. (S3, p2, SO(3)). Clearly, by Def-

inition C.14, g̃, g̃′ have S3-indices s, s′ respectively. Since SO(3) is a topological

group, gg′ ∈ Cper(R
k, SO(3)) whence gg′ has an SO(3)-index. Because p2 is a

homomorphism we have gg′ = p2(g̃)p2(g̃
′) = p2(g̃g̃

′). Since, by Theorem C.13c,

g̃g̃′ has S3-index ss′, one finds that gg′ has SO(3)-index ss′. Of course g−1 = gT

whence g−1 ∈ Cper(R
k, SO(3)). Since Cper(R

k, SO(3)) is a subset of the multiplica-

tive group C(Rk, SO(3)) and since gg′, g−1 ∈ Cper(R
k, SO(3)) one concludes that
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Cper(R
k, SO(3)) is a subgroup of C(Rk, SO(3)). In particular, since Ind3,k(gg

′) =

ss′ = Ind3,k(g)Ind3,k(g
′), Ind3,k is a group homomorphism of the multiplicative

group Cper(R
k, SO(3)) into the multiplicative group {1,−1}k. Since Ind1,k(g̃

(s)
k ) = s

and since, by Theorem C.13b, p2 ◦ g̃(s)
k ∈ Cper(R

k, SO(3)) we have that Ind3,k(p2 ◦
g̃

(s)
k ) = s whence Ind3,k is onto {1,−1}k. �

Proof of Theorem C.15b: Let g ∈ C(Rk, SO3(2)) and let f be a lifting of g w.r.t.

(R, p1, SO3(2)). Then the function g̃ ∈ C(Rk, S3), defined by (C.5), satisfies, for

x = (x1, x2, x3)
T ∈ R3, by using Definition C.2,

p2(g̃(φ))x = p2

(
cos(

f(φ)

2
), 0, 0, sin(

f(φ)

2
)

)
x

=

(
2 cos2(

f(φ)

2
)− 1

)
x+ 2 sin2(

f(φ)

2
)x3e

3 + 2 cos(
f(φ)

2
) sin(

f(φ)

2
)(e3 × x)

= cos(f(φ))x+ (1− cos(f(φ))x3e
3 + sin(f(φ))(e3 × x) ,

whence p2(g̃(φ))) = exp(J f(φ)) = (p1 ◦ f)(φ) = g(φ), i.e., g̃ is a lifting of g w.r.t.

(S3, p2, SO(3)). Let g in addition be in Cper(R
k, SO3(2)). By Theorem C.11b and

Definition C.12 there exists a fper ∈ Cper(R
k,R) such that

f(φ) = NTφ+ fper(φ) , (C.6)

227



Appendix C. Topological concepts and facts

where N := Ind2,k(g). It follows from (C.5) and (C.6) that for j = 1, ..., k

g̃(φ+ 2πej) =

(
cos(

1

2
f(φ+ 2πej)), 0, 0, sin(

1

2
f(φ+ 2πej))

)T

=

⎛
⎜⎜⎜⎜⎜⎝

cos(1
2
[NT (φ+ 2πej) + fper(φ+ 2πej)])

0

0

sin(1
2
[NT (φ+ 2πej) + fper(φ+ 2πej)])

⎞
⎟⎟⎟⎟⎟⎠

=

(
cos(πNj +

1

2
[NTφ+ fper(φ)]), 0, 0, sin(πNj +

1

2
[NTφ+ fper(φ)])

)T

= (−1)Nj

(
cos(

1

2
[NTφ+ fper(φ)]), 0, 0, sin(

1

2
[NTφ+ fper(φ)])

)T

= (−1)Nj

(
cos(

f(φ)

2
), 0, 0, sin(

f(φ)

2
)

)T

= (−1)Nj g̃(φ) .

Thus ((−1)N1 , ..., (−1)Nk)T is the S3-index of g̃

whence ((−1)N1 , ..., (−1)Nk)T = Ind1,k(g̃) = Ind3,k(p2 ◦ g̃) = Ind3,k(g). �

Proof of Theorem C.15c: Let s ∈ {1,−1}k. We first observe, by Definition C.14, that

the function f ∈ C(Rk,R), defined by f(φ) := 1
2

∑k
i=1(1 − si)φi, is a lifting of g

(s)
k

w.r.t. (R, p1, SO3(2)). Thus, by Theorem C.15b, the function g̃ ∈ C(Rk, S3), defined

by

g̃(φ) :=

(
cos(

1

4

k∑
i=1

(1− si)φi), 0, 0, sin(
1

4

k∑
i=1

(1− si)φi)

)T

, (C.7)

is a lifting of g
(s)
k w.r.t. (S3, p2, SO(3)). However, g̃ in (C.7) is equal to g̃

(s)
k whence g̃

(s)
k

is a lifting of g
(s)
k w.r.t. (S3, p2, SO(3)). Since, by Definition C.14, Ind1,k(g̃

(s)
k ) = s, I

conclude by Definition C.14 that Ind3,k(g
(s)
k ) = s. �

Since Ind2,k(g
(s)
k ) = 1

2
(1 − s1, ..., 1 − sk)

T , the claim of Theorem C.15c, that

Ind3,k(g
(s)
k ) = s, confirms the last claim of Theorem C.15b.
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C.3 Liftings of 2π-periodic functions on Rk and ba-

sic properties of [Tk, SO(3)]

With Section C.2 I have obtained a string of theorems about liftings w.r.t. the

four fiber structures in Corollary C.9, giving important clues about Cper(R
k, X) for

various topological spaces X. The final touch on Cper(R
k, X) will be provided in the

present section where I make systematic use of factors of functions g ∈ Cper(R
k, X)

w.r.t. (Rk, p4,k,T
k). Most importantly, the factors will allow me to define equivalence

classes on Cper(R
k, X) in terms of the homotopy classes in C(Tk, X). This, in turn,

will give insight into the relevance of the SO3(2)-index, SO(3)-index, and S3-index

for Homotopy Theory and, in particular, will allow me to determine the homotopy

classes in C(Tk, SO(3)) for k = 1, 2, 3.

Lemma C.16 Let X ′ be a set and g′ : Rk → X ′ be a 2π-periodic function. Then

there exists one and only one function f ′ : Tk → X ′ such that g′ = f ′ ◦ p4,k.

Let X be a topological space and g ∈ Cper(R
k, X). Then there exists one and only

one function f ∈ C(Tk, X) such that g = f ◦ p4,k, i.e., g has the unique factor f

w.r.t. (Rk, p4,k,T
k).

Proof of Lemma C.16: Let X ′ be a set and g′ : Rk → X ′ be a 2π-periodic function.

Since p4,k is onto Tk, f ′ is unique (if it exists). To prove existence I define the function

f ′ : Tk → X ′ by f ′(exp(i2πx1), ..., exp(i2πxk)) := g′(2πx) where x = (x1, ..., xk)
T ∈

[0, 1)k. Clearly, for arbitrary x ∈ Rk, we have

g′(2πx) = g′(2π�x1�, ..., 2π�xk�) = f ′(exp(i2π�x1�), ..., exp(i2π�xk�))

= f ′(exp(i2πx1), ..., exp(i2πxk)) = f ′(p′4,k(2πx)) , (C.8)

where in the first and third equalities I used the 2π-periodicity of g′. It follows from

(C.8) that g′ = f ′ ◦ p4,k.
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Let X be a topological space and g ∈ Cper(R
k, X). By the first claim there

exists one and only one function f : Tk → X such that g = f ◦ p4,k. To prove the

continuity of f I first note by Proposition C.8a that p4,k is a covering map w.r.t. Rk

and Tk. It follows (see [SZ, 6.1.3]) that p4,k is identifying whence (see [SZ, 1.2.9])

f is continuous. Using Definition C.1, this implies that f is the unique factor of g

w.r.t. (Rk, p4,k,T
k). �

Lemma C.16 leads to the following definition.

Definition C.17 Let X be a topological space. Then, by using Lemma C.16, I de-

fine, for every positive integer k, the function FACk(·;X) : Cper(R
k, X)→ C(Tk, X)

by FACk(g;X) := f where f is the unique factor of g ∈ Cper(R
k, X) w.r.t. (Rk, p4,k,T

k).

Let gi ∈ Cper(R
k, X) where i = 0, 1. Then g0 and g1 are called ‘2π-homotopic

w.r.t. X’, written g0 �2π
X g1, if FACk(g0;X) �X FACk(g1;X). Moreover, a

g ∈ Cper(R
k, X) is called ‘2π-nullhomotopic w.r.t. X’ if FACk(g;X) is nullhomotopic

w.r.t. X. �

Proposition C.18 a) Let X be a topological space and G ∈ C(Rk × [0, 1], X) such

that each G(·, t) is in Cper(R
k, X). Then the function F : Tk × [0, 1]→ X, defined by

F (·, t) := FACk(G(·, t), X), is in C(Tk × [0, 1], X).

b) Let X be a topological space and let gi ∈ Cper(R
k, X) where i = 0, 1. Then

g0 �2π
X g1 iff a G ∈ C(Rk × [0, 1], X) exists such that G(·, i) = gi and G(·, t) ∈

Cper(R
k, X). Moreover �2π

X is an equivalence relation on Cper(R
k, X). Further-

more a h0 ∈ Cper(R
k, X) is 2π-nullhomotopic w.r.t. X iff a constant function

h1 ∈ Cper(R
k, X) exists such that h0 �2π

X h1.

c) Let X be a path-connected topological space. Then all functions in Cper(R
k, X),

which are 2π-nullhomotopic w.r.t. X, are 2π-homotopic w.r.t. X.

d) Let X and Y be topological spaces and let gi ∈ Cper(R
k, X) and fi ∈ C(X, Y ) where
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i = 0, 1. Then the fi ◦ gi are in Cper(R
k, Y ) and, if f0 �Y f1 and g0 �2π

X g1, then

f1 ◦ g1 �2π
Y f0 ◦ g0.

e) If g0, g1 ∈ Cper(R
k, SO(3)) with g0 �2π

SO(3) g1 then Ind3,k(g0) = Ind3,k(g1). If

g ∈ Cper(R
k, SO(3)) is 2π-nullhomotopic w.r.t. SO(3) then Ind3,k(g) is the identity.

f) Let X be a topological space. Let g be in Cper(R
k, X) and φ0 ∈ Rk. Then g(·) �2π

X

g(·+ φ0) and Ind3,k(g(·)) = Ind3,k(g(·+ φ0)).

Proof of Proposition C.18a: Let X be a topological space and G ∈ C(Rk × [0, 1], X)

such that each G(·, t) is in Cper(R
k, X). I define the function F : Tk × [0, 1] → X

by F (·, t) := FACk(G(·, t), X). Of course, G(φ, t) = F (p4,k(φ), t) whence G = F ◦ h
where the function h : Rk× [0, 1]→ Tk× [0, 1] is defined by h(φ, t) := (p4,k(φ), t). We

know from the proof of Lemma C.16 that p4,k is identifying. Since [0, 1] is compact

and Hausdorff, I conclude that the function h is identifying (see [Du, Section XII.4]).

Because G = F ◦ h and h is identifying I thus conclude that F is continuous (see

[SZ, 1.2.9]).

Proof of Proposition C.18b: Let X be a topological space and let gi ∈ Cper(R
k, X)

where i = 0, 1. I abbreviate fi := FACk(gi;X) ∈ Cper(T
k, X).

I first assume that g0 �2π
X g1. Then, by Definition C.17, f0 �X f1 whence

a function F ∈ C(Tk × [0, 1], X) exists such that F (·, i) = fi(·). The function

G : Rk × [0, 1] → X, defined by G(φ, t) := F (p4,k(φ), t), is continuous and G(φ, t)

is 2π-periodic in φ whence G(·, t) ∈ Cper(R
k, X). Moreover G(φ, i) = F (p4,k(φ), i) =

fi(p4,k(φ)) = gi(φ).

To prove the other direction I assume that a function G ∈ C(Rk× [0, 1], X) exists

such that G(·, i) = gi and such that each G(·, t) is in Cper(R
k, X). I define the

function F : Tk× [0, 1]→ X by F (·, t) := FACk(G(·, t), X). Clearly F (·, i) = fi and,

by Proposition C.18a, F ∈ C(Tk × [0, 1], X). Therefore f0 �X f1 whence g0 �2π
X g1.
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The second claim follows from the facts that �X is an equivalence relation on

C(Tk, X) and that FACk(·, X) is a function from Cper(R
k, X) into C(Tk, X).

To prove the third claim I first consider a h0 ∈ Cper(R
k, X) which is 2π-nullhomotopic

w.r.t. X. Then, by Definition C.17, FACk(h0, X) is nullhomotopic w.r.t. X

whence a function K ∈ C(Tk × [0, 1], X) exists such that K(·, 0) = FACk(h0, X)

and such K(·, 1) is a constant function. Clearly the function h1 ∈ Cper(R
k, X), de-

fined by h1 := K(·, 1) ◦ p4,k, is constant and satisfies K(·, 1) = FACk(h1, X). Thus

FACk(h1, X) = K(·, 1) �X K(·, 0) = FACk(h0, X) whence h0 �2π
X h1, i.e., h0 is

2π-homotopic w.r.t. X to the constant function h1.

To prove the other direction I consider h0, h1 ∈ Cper(R
k, X) such that h1 is con-

stant and h0 �2π
X h1. Thus FACk(h0, X) �X FACk(h1, X) and FACk(h1, X) is

constant. It follows that FACk(h0, X) is nullhomotopic w.r.t. X whence h0 is 2π-

nullhomotopic w.r.t. X. �

Proof of Proposition C.18c: Let X be a path-connected topological space and let

g0, g1 ∈ Cper(R
k, X) be 2π-nullhomotopic w.r.t. X. Thus FACk(g0, X), FACk(g1, X)

are nullhomotopic w.r.t. X. Since X is path-connected I conclude from Proposition

C.4c that FACk(g0, X) �X FACk(g1, X). It follows from Definition C.17 that g0 �2π
X

g1. �

Proof of Proposition C.18d: LetX and Y be topological spaces and let gi ∈ Cper(R
k, X)

and fi ∈ C(X, Y ) where i = 0, 1. Clearly the fi ◦ gi are in Cper(R
k, Y ). Let

also f0 �Y f1 and g0 �2π
X g1. Thus a F ∈ C(X × [0, 1], Y ) exists such that

F (·, i) = fi(·). Furthermore, by Proposition C.18b, a G ∈ C(Rk × [0, 1], X) ex-

ists such that G(·, i) = gi(·) and such that each G(·, t) is in Cper(R
k, X). The

function H : Rk × [0, 1] → Y , defined by H(x, t) := F (G(x, t), t), is continuous

and satisfies H(x, i) = F (G(x, i), i) = F (gi(x), i) = fi(gi(x)). Furthermore each

H(·, t) is in Cper(R
k, Y ). Using again Proposition C.18b, we thus have shown that
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f1 ◦ g1 �2π
Y f0 ◦ g0. �

Proof of Proposition C.18e: Let g0, g1 ∈ Cper(R
k, SO(3)) with g0 �2π

SO(3) g1. By

Proposition C.18b a G ∈ C(Rk × [0, 1], SO(3)) exists such that gi(·) = G(·, i) and

G(·, t) ∈ Cper(R
k, SO(3)) where i = 0, 1. It follows from Theorem C.13d that a G̃ ∈

C(Rk× [0, 1], S3) exists such that G = p2 ◦ G̃ and such that, for all t ∈ [0, 1], G̃(·, t) ∈
C±per(R

k, S3) and Ind1,k(G̃(·, 0)) = Ind1,k(G̃(·, t)). Defining g̃0, g̃1 ∈ C±per(R
k, S3) by

g̃i(·) := G̃(·, i) we get Ind1,k(g̃0) = Ind1,k(G̃(·, 0)) = Ind1,k(G̃(·, 1)) = Ind1,k(g̃1)

and gi = p2 ◦ g̃i whence Ind3,k(g0) = Ind3,k(p2 ◦ g̃0) = Ind1,k(g̃0) = Ind1,k(g̃1) =

Ind3,k(p2 ◦ g̃1) = Ind3,k(g1).

Let g ∈ Cper(R
k, SO(3)) be 2π-nullhomotopic w.r.t. SO(3). Thus, by Proposition

C.18b, a constant function h ∈ Cper(R
k, SO(3)) exists such that g �2π

SO(3) h. Since,

by Definition C.14, Ind3,k(h) = (1, ..., 1)T one concludes from the first claim that

Ind3,k(g) = (1, ..., 1)T . �

Proof of Proposition C.18f: Let X be a topological space. Let g be in Cper(R
k, X)

and φ0 ∈ Rk. I define the function G ∈ C(Rk × [0, 1], X) by G(φ, t) := g(φ + tφ0).

Clearly G(·, 0) = g(·), G(·, 1) = g(·+φ0) and each G(·, t) is in Cper(R
k, X). Thus, by

Proposition C.18b, g(·) �2π
X g(· + φ0) whence, by Proposition C.18e, Ind3,k(g(·)) =

Ind3,k(g(·+ φ0)). �

Definition C.19 Let X be a topological space. Using the fact from Proposition

C.18b that �2π
X is an equivalence relation on Cper(R

k, X) I denote the set of equiva-

lence classes w.r.t. �2π
X by [Rk, X]2π.

Let g̃0, g̃1 ∈ C±per(R
k, S3). Then, by Theorem C.13b, p2◦g̃0, p2◦g̃1 ∈ Cper(R

k, SO(3))

and I write g̃0 �2π,±
S3 g̃1 if p2◦g̃0 �2π

SO(3) p2◦g̃1. Clearly �2π,±
S3 is an equivalence relation

on C±per(R
k, S3). I denote by [Rk, S3]±2π the set of equivalence classes w.r.t. �2π,±

S3 . �
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Recalling Definitions C.17,C.19 and using the fact that FACk(·, X) is onto C(Tk, X),

it follows that [Rk, X]2π and [Tk, X] have the same cardinality. Moreover, by Theorem

C.13b, each g ∈ Cper(R
k, SO(3)) has a lifting f̃ ∈ C±per(R

k, S3) w.r.t. (S3, p2, SO(3))

whence [Rk, S3]±2π and [Rk, SO(3)]2π have the same cardinality so that [Rk, S3]±2π,

[Rk, SO(3)]2π, and [Tk, SO(3)] have the same cardinality.

Proposition C.20 Let G be a topological group and X be a topological space. Then

the following hold.

a) Let g, g0, g1 ∈ C(X,G). Then g0 �G g1 iff g0g �G g1g and g0 �G g1 iff gg0 �G gg1.

b) Let f, f0, f1 ∈ Cper(R
k, G). Then f0 �2π

G f1 iff f0f �2π
G f1f and f0 �2π

G f1 iff

ff0 �2π
G ff1.

Proof of Proposition C.20a: Let G be a topological group, X be a topological space

and g, g0, g1 ∈ C(X,G).

If g0 �G g1 then a F ∈ C(X × [0, 1], G) exists with F (·, i) = gi(·) so that, since

G is a topological group, gF, Fg ∈ C(X × [0, 1], G) with g(·)F (·, i) = g(·)gi(·) and

F (·, i)g(·) = gi(·)g(·) whence g0g �G g1g and gg0 �G gg1.

To prove the other direction let g0g �G g1g. Thus H ∈ C(X × [0, 1], G) exists

with H(·, i) = gi(·)g(·). Since G is a topological group, Hg−1 ∈ C(X × [0, 1], G) with

H(·, i)g−1 = gi(·) whence g0 �G g1. Analogously, gg0 �G gg1 implies g0 �G g1. �

Proof of Proposition C.20b: Let f, f0, f1 ∈ Cper(R
k, G). I abbreviate

g′ := FACk(f,G) ∈ C(Tk, G) and g′i := FACk(fi, G) ∈ C(Tk, G) where i = 0, 1.

Clearly FACk(fif,G) ◦ p4,k = fif = (FACk(fi, G) ◦ p4,k)(FACk(f,G) ◦ p4,k) =

(g′i ◦ p4,k)(g
′ ◦ p4,k) = (g′ig

′) ◦ p4,k whence g′ig
′ = FACk(fif,G) and, analogously,

g′g′i = FACk(ffi, G).
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I first assume that f0 �2π
G f1. Thus, by Definition C.17, g′0 �G g′1 whence, by

Proposition C.20a, g′0g
′ �G g′1g

′ and g′g′0 �G g′g′1. Thus FACk(f0f,G) = g′0g
′ �G

g′1g
′ = FACk(f1f,G) and FACk(ff0, G) = g′g′0 �G g′g′1 = FACk(ff1, G) whence,

by Definition C.17, f0f �2π
G f1f and ff0 �2π

G ff1.

To prove the other direction let f0f �2π
G f1f . Thus, by Definition C.17,

g′0g
′ = FACk(f0f,G) �G FACk(f1f,G) = g′1g

′ whence, by Proposition C.20a, g′0 �G

g′1 so that, by Definition C.17, f0 �2π
G f1. Analogously, ff0 �2π

G ff1 implies f0 �2π
G f1.

�

The following definition provides important tools I need for studying [R3, SO(3)]2π

and [T3, SO(3)].

Definition C.21 (deg, Deg, DEG)

As is well known [tDi1, Section II.9], since the topological space T3 carries the

structure of a compact, orientable, connected three-dimensional C∞ manifold without

boundary, two functions in C(T3, S3) are homotopic w.r.t. S3 iff they have the same

degree. The ‘degree’ deg(F ) of a function F ∈ C(T3, S3) is an integer, defined in an

analytic fashion, as follows [tDi1, Section II.9]. For any C∞ function F̂ in C(T3, S3)

one picks a regular value y of F̂ and defines the ‘degree’ of F̂ by

deg(F̂ ) :=

⎧⎨
⎩
∑

x∈F̂−1(y) sig(TxF̂ ) if F̂−1(y) 
= ∅
0 if F̂−1(y) = ∅

,

where TxF̂ is the derivative of F̂ at x and where sig(TxF̂ ) = 1 if TxF̂ is orientation

preserving and = −1 otherwise. Note that y being a regular value of F̂ means that

either F̂−1(y) = ∅ or that, for every x ∈ F̂−1(y), the linear function TxF̂ is nonsin-

gular. One can show that the integer deg(F̂ ) is independent of the choice of y and is

the same for any C∞ function in C(T3, S3) which is homotopic to F̂ w.r.t. S3. Thus,

for every F ∈ C(T3, S3), one defines deg(F ) := deg(F̂ ), where F̂ is any C∞ function
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in C(T3, S3) which is homotopic to F w.r.t. S3 (note that there is always such a F̂ ).

Furthermore, by the aforementioned properties of T3, there exists, for every integer

n, a function F ∈ C(T3, S3) whose degree is n whence the degree induces a bijection

from [T3, S3] onto Z. Moreover a function F ∈ C(T3, S3) is nullhomotopic w.r.t. S3

iff deg(F ) = 0.

If g̃ ∈ Cper(R
3, S3), I define Deg(g̃) := deg(FAC3(g̃, S

3)) ∈ Z. Since S3 is a path-

connected and since, by Definition C.2, for x ∈ S3, −x = x(−1, 0, 0, 0)T , a function

f ∈ C([0, 1], S3) exists such that f(0) = (1, 0, 0, 0)T and f(1) = (−1, 0, 0, 0)T . Thus,

since S3 is a topological group, for F ∈ C(T3, S3), I define G ∈ C(T3 × [0, 1], S3)

by G(z, t) := F (z)f(t). Clearly G(z, 0) = F (z), G(z, 1) = −F (z) whence, for

F ∈ C(T3, S3), we have F �S3 (−F ) so that deg(F ) = deg(−F ). It follows that

if g̃ ∈ Cper(R
3, S3), then Deg(−g̃) = deg(FAC3(−g̃, S3)) = deg(−FAC3(g̃, S

3)) =

deg(FAC3(g̃, S
3)) = Deg(g̃). The equality Deg(−g̃) = Deg(g̃) will be needed for the

definition of DEG in the following paragraph.

Let g ∈ Cper(R
3, SO(3)) and let ±g̃ be the liftings of g w.r.t. (S3, p2, SO(3)).

Abbreviating s := Ind3,3(g), we get, by Definition C.14, Ind1,3(±g̃) = s whence, by

Theorem C.13c and Definition C.14, Ind1,3(±(g̃g̃
(s)
3 )) = Ind1,3((±g̃)g̃(s)

3 )

= Ind1,3(±g̃)Ind1,3(g̃
(s)
3 ) = ss = (1, ..., 1)T so that, by Definition C.12, ±(g̃g̃

(s)
3 ) ∈

Cper(R
3, S3). I define DEG(g) := Deg(g̃g̃

(s)
3 ). Note that this definition is meaningful

since, by the previous paragraph, DEG(g) = Deg(g̃g̃
(s)
3 ) = Deg(−g̃g̃(s)

3 ), i.e., the

definition of DEG(g) is independent of the choice of the lifting g̃.

Note finally that while the degree ’deg’ is an ubiquitious definition, the definition

of ’Deg’ and ’DEG’ is introduced here just for the purposes of the present work. �

Remarkably, parts c) and f) of the following theorem reveal, for k = 1, 2, 3, the

structure of [Rk, SO(3)]2π and [Tk, SO(3)] solely in terms of Ind3,k and DEG.
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Theorem C.22 a) For k = 1, 2, all functions in C(Tk, S3) are nullhomotopic w.r.t.

S3 and [Tk, S3] is a singleton.

b) Let g ∈ Cper(R
k, SO(3)) where k = 1, 2. Then Ind3,k(g) is the identity iff g is

2π-nullhomotopic w.r.t. SO(3).

c) Let g0, g1 ∈ Cper(R
k, SO(3)) and k = 1, 2. Then g0 �2π

SO(3) g1 iff Ind3,k(g0) =

Ind3,k(g1). Let F0, F1 ∈ C(Tk, SO(3)) and k = 1, 2. Then F0 �SO(3) F1 iff Ind3,k(F0◦
p4,k) = Ind3,k(F1 ◦ p4,k).

d) Let the SO(3)-index of g0, g1 ∈ Cper(R
3, SO(3)) be the identity. Then g0 �2π

SO(3) g1

iff DEG(g0) = DEG(g1).

e) Let g ∈ Cper(R
3, SO(3)) and let me abbreviate s := Ind3,3(g). Then DEG(g) =

DEG(gg
(s)
3 ).

f) Let g0, g1 ∈ Cper(R
3, SO(3)). Then g0 �2π

SO(3) g1 iff Ind3,3(g0) = Ind3,3(g1) and

DEG(g0) = DEG(g1). Let F0, F1 ∈ C(T3, SO(3)). Then F0 �SO(3) F1 iff Ind3,3(F0 ◦
p4,3) = Ind3,3(F1 ◦ p4,3) and DEG(F0 ◦ p4,3) = DEG(F1 ◦ p4,3).

g) Let g0, g1 ∈ Cper(R
k, SO3(2)). Then g0 �2π

SO(3) g1 iff Ind3,k(g0) = Ind3,k(g1).

Moreover a g ∈ Cper(R
k, SO3(2)) is 2π-nullhomotopic w.r.t. SO(3) iff Ind3,k(g) is

the identity. Furthermore a g ∈ Cper(R
k, SO3(2)) is 2π-nullhomotopic w.r.t. SO(3)

iff the components of Ind2,k(g) are even integers.

Proof of Theorem C.22a: The topological space Tk carries the structure of a k-

dimensional C∞ manifold without boundary. It thus follows, for k = 1, 2, that all

functions in C(Tk, S3) are nullhomotopic w.r.t. S3 [Bre, Section II.11]. Since S3

is path-connected, this implies by Proposition C.4c that, for k = 1, 2, [Tk, S3] is a

singleton. �

Proof of Theorem C.22b: Let g0 ∈ Cper(R
k, SO(3)) where k = 1, 2. Let g̃0 be a lifting

of g0 w.r.t. (S3, p2, SO(3)).
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I first assume that the SO(3)-index of g0 is the identity. Thus, by Definition C.14,

Ind1,k(g̃0) is the identity whence, by Definition C.12, g̃0 ∈ Cper(R
k, S3) and I define

F0 ∈ C(Tk, S3) by F0 := FACk(g̃0, S
3). By Theorem C.22a, F0 is nullhomotopic w.r.t.

S3 whence a constant function F1 ∈ C(Tk, S3) exists such that F0 �S3 F1. It follows

that p2 ◦ F1 is a constant function in C(Tk, SO(3)) and that, by Proposition C.4a,

p2◦F0 �SO(3) p2◦F1. Applying Definition C.17, one concludes that p2◦F0◦p4,k �2π
SO(3)

p2 ◦F1 ◦ p4,k. Note that p2 ◦F0 ◦ p4,k = p2 ◦ g̃0 = g0. Defining g1 ∈ Cper(R
k, SO(3)) by

g1 := p2 ◦ F1 ◦ p4,k, one observes that g1 is constant and that g0 �2π
SO(3) g1. Since g1

is constant one concludes from Proposition C.18b that g0 is 2π-nullhomotopic w.r.t.

SO(3).

To prove the other direction, let g ∈ Cper(R
k, SO(3)) be 2π-nullhomotopic w.r.t.

SO(3). Thus, by Proposition C.18b, a constant function f ∈ Cper(R
k, SO(3)) exists

such that f �2π
SO(3) g. Therefore Proposition C.18e gives me Ind3,k(f) = Ind3,k(g).

Since f is a constant function in Cper(R
k, SO(3)), it follows from Definition C.14 that

Ind3,k(f) is the identity whence Ind3,k(g) is the identity. �

Proof of Theorem C.22c: Let g0, g1 ∈ Cper(R
k, SO(3)) where k = 1, 2. If g0 �2π

SO(3) g1

then, by Proposition C.18e, Ind3,k(g0) = Ind3,k(g1). To prove the converse impli-

cation, let Ind3,k(g0) = Ind3,k(g1) =: s. Clearly, by Theorem C.15a,c, we have

Ind3,k(gig
(s)
k ) = (1, ..., 1)T where i = 0, 1. It follows from Theorem C.22b that

g0g
(s)
k , g1g

(s)
k are 2π-nullhomotopic w.r.t. SO(3). This implies, by Proposition C.18c,

that g0g
(s)
k �2π

SO(3) g1g
(s)
k . Applying now Proposition C.20b one concludes that

g0 �2π
SO(3) g1.

To prove the second claim let F0, F1 ∈ C(Tk, SO(3)) and k = 1, 2. Defining

g′i := Fi ◦ p4,k ∈ Cper(R
k, SO(3)) one observes that Fi = FACk(g

′
i, SO(3)) where

i = 0, 1.
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I first assume that F0 �SO(3) F1. Definition C.17 gives me g′0 �2π
SO(3) g

′
1 so that,

by Proposition C.18e, Ind3,k(F0 ◦ p4,k) = Ind3,k(g
′
0) = Ind3,k(g

′
1) = Ind3,k(F1 ◦ p4,k).

To prove the other direction, let Ind3,k(F0 ◦ p4,k) = Ind3,k(F1 ◦ p4,k) whence

Ind3,k(g
′
0) = Ind3,k(g

′
1). Thus by the first claim g′0 �2π

SO(3) g
′
1. Applying Definition

C.17 one concludes that F0 �SO(3) F1. �

Proof of Theorem C.22d: Let the SO(3)-index of g0, g1 ∈ Cper(R
3, SO(3)) be the

identity.

I first assume that g0 �2π
SO(3) g1. Thus, by Proposition C.18b, a G ∈ C(R3 ×

[0, 1], SO(3)) exists such that G(·, i) = gi and G(·, t) ∈ Cper(R
3, SO(3)) where i =

0, 1 and t ∈ [0, 1]. By Theorem C.13d a lifting G̃ ∈ C(R3 × [0, 1], S3) of G ex-

ists w.r.t. (S3, p2, SO(3)) such that G̃(·, t) ∈ C±per(R
3, S3) and Ind1,3(G̃(·, 0)) =

Ind1,3(G̃(·, t)). I define g̃′i ∈ C±per(R
3, S3) by g̃′i(·) := G̃(·, i) where i = 0, 1. Since

p2 ◦ g̃′i(·) = p2 ◦ G̃(·, i) = G(·, i) = gi(·) one obtains from Definition C.14 that

(1, 1, 1)T = Ind3,3(gi) = Ind1,3(g̃
′
i) = Ind1,3(G̃(·, i)) = Ind1,3(G̃(·, t)) whence, by

Definition C.12, g̃′i, G̃(·, t) ∈ Cper(R
3, S3) where i = 0, 1 and t ∈ [0, 1]. I can

thus define F ′
i ∈ C(T3, S3) by F ′

i := FAC3(g̃
′
i, S

3) where i = 0, 1. Since, for

i = 0, 1 and t ∈ [0, 1], G̃(·, t) ∈ Cper(R
3, S3) and g̃′i(·) = G̃(·, i) we have, by

Proposition C.18b, that g̃′0 �2π
S3 g̃′1 whence, by Definition C.17, F ′

0 �S3 F ′
1. How-

ever, by Definition C.21, F ′
0 �S3 F ′

1 implies deg(F ′
0) = deg(F ′

1). Of course, for

i = 0, 1, we have, by Definition C.21, deg(F ′
i ) = Deg(g̃′i) whence Deg(g̃′0) = Deg(g̃′1).

Furthermore, for i = 0, 1, we have s := Ind3,3(gi) = (1, 1, 1)T whence, by Def-

inition C.14, g̃
(s)
3 is the constant function in Cper(R

3, S3) with value (1, 0, 0, 0)T ,

i.e., g̃
(s)
3 is identity of the group C±per(R

3, S3). Thus, for i = 0, 1, we have, by

Definition C.21, DEG(gi) = Deg(g̃′ig̃
(s)
3 ) = Deg(g̃′i(1, 0, 0, 0)T ) = Deg(g̃′i) whence

DEG(g0) = DEG(g1).
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To prove the other direction let DEG(g0) = DEG(g1). Let g̃i be a lifting of gi

w.r.t. (S3, p2, SO(3)) where i = 0, 1. Clearly, by Definition C.14, the S3-index of g̃i is

the identity whence, by Definition C.12, g̃i is in Cper(R
k, S3) where i = 0, 1. I define

Fi ∈ C(T3, S3) by Fi := FAC3(g̃i, S
3) where i = 0, 1. Recalling that, for i = 0, 1,

s = Ind3,3(gi) = (1, 1, 1)T and that g̃
(s)
3 is the constant function in Cper(R

3, S3)

with value (1, 0, 0, 0)T we get, by Definition C.21, that DEG(gi) = Deg(g̃ig̃
(s)
3 ) =

Deg(g̃i(1, 0, 0, 0)T ) = Deg(g̃i). Thus Deg(g̃0) = Deg(g̃1) whence, by Definition C.21,

deg(F0) = deg(F1). Applying again Definition C.21, we get F0 �S3 F1 whence, by

Definition C.17, g̃0 �2π
S3 g̃1. It follows from Proposition C.18d that g0 = p2 ◦ g̃0 �2π

SO(3)

p2 ◦ g̃1 = g1. �

Proof of Theorem C.22e: Let g ∈ Cper(R
3, SO(3)) and let me abbreviate s :=

Ind3,3(g). Let ±g̃ be the liftings of g w.r.t. (S3, p2, SO(3)). Definition C.21 gives

DEG(g) = Deg(g̃g̃
(s)
3 ). To compute DEG(gg

(s)
3 ) we recall that p2 is a group ho-

momorphism whence, by Theorem C.15c, p2 ◦ (g̃g̃
(s)
3 ) = (p2 ◦ g̃)(p2 ◦ g̃(s)

3 ) = gg
(s)
3

so that g̃′ := g̃g̃
(s)
3 ∈ C±per(R

3, S3) is a lifting of gg
(s)
3 w.r.t. (S3, p2, SO(3)). More-

over, by Definition C.14, Ind1,3(g̃) = Ind1,3(g̃
(s)
3 ) = s whence, by Theorem C.13c,

s′ := Ind1,3(g̃
′) = Ind1,3(g̃g̃

(s)
3 ) = Ind1,3(g̃)Ind1,3(g̃

(s)
3 ) = ss = (1, 1, 1)T so that, by

Definition C.21, DEG(gg
(s)
3 ) = Deg(g̃′g̃(s′)

3 ) = Deg(g̃g̃
(s)
3 g̃

(s′)
3 ). Recalling the proof of

Theorem C.22d, g̃
(s′)
3 is the identity of the group C±per(R

3, S3) whence g̃g̃
(s)
3 g̃

(s′)
3 = g̃g̃

(s)
3

so that DEG(gg
(s)
3 ) = Deg(g̃g̃

(s)
3 g̃

(s′)
3 ) = Deg(g̃g̃

(s)
3 ) = DEG(g). �

Proof of Theorem C.22f: Let g0, g1 ∈ Cper(R
3, SO(3)). I first assume that g0 �2π

SO(3)

g1. Then, by Proposition C.18e, Ind3,3(g0) = Ind3,3(g1) =: s. To prove that

DEG(g0) = DEG(g1), we recall that SO(3) is a topological group whence, by Propo-

sition C.20b,

g0g
(s)
3 �2π

SO(3) g1g
(s)
3 . Since Ind3,3(gi) = s and, by Theorem C.15c, Ind3,3(g

(s)
3 ) = s

one obtains from Theorem C.15a that Ind3,3(gig
(s)
3 ) = Ind3,3(gi)Ind3,3(g

(s)
3 ) = ss =

(1, 1, 1)T where i = 0, 1. Thus and since g0g
(s)
3 �2π

SO(3) g1g
(s)
3 Theorem C.22d gives
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me DEG(g0g
(s)
3 ) = DEG(g1g

(s)
3 ). Since Ind3,3(g0) = Ind3,3(g1) = s, Theorem C.22e

gives me DEG(gig
(s)
3 ) = DEG(gi) whence DEG(g0) = DEG(g1).

To prove the other direction, let Ind3,3(g0) = Ind3,3(g1) =: s′ and DEG(g0) =

DEG(g1). Theorem C.22e gives me DEG(g0g
(s′)
3 ) = DEG(g0) = DEG(g1)

= DEG(g1g
(s′)
3 ) and Theorem C.15a gives me Ind3,3(gig

(s′)
3 ) = Ind3,3(gi)Ind3,3(g

(s′)
3 ) =

s′s′ = (1, 1, 1)T where i = 0, 1. This implies by Theorem C.22d that g0g
(s′)
3 �2π

SO(3)

g1g
(s′)
3 . Applying Proposition C.20b we get g0 �2π

SO(3) g1 which completes the proof

of the first claim.

To prove the second claim let F0, F1 ∈ C(T3, SO(3)). I abbreviate g′i := Fi ◦p4,3 ∈
Cper(R

3, SO(3)) whence Fi = FAC3(g
′
i, SO(3)) where i = 0, 1. By Definition C.17

we have F0 �SO(3) F1 iff g′0 �2π
SO(3) g′1. Thus, by the first claim, F0 �SO(3) F1

iff Ind3,3(g
′
0) = Ind3,3(g

′
1) and DEG(g′0) = DEG(g′1). By the definition of g′0, g

′
1

one thus concludes that F0 �SO(3) F1 iff Ind3,3(F0 ◦ p4,3) = Ind3,3(F1 ◦ p4,3) and

DEG(F0 ◦ p4,3) = DEG(F1 ◦ p4,3). �

Proof of Theorem C.22g: Let g, g′ ∈ Cper(R
k, SO3(2)). By Definition C.12 we have,

for φ ∈ Rk,

g(φ) = exp(J [NTφ+ 2πf(φ)]) , g′(φ) = exp(J [N ′Tφ+ 2πf ′(φ)]) , (C.9)

where N = (N1, ..., Nk)
T := Ind2,k(g), N

′ = (N ′
1, ..., N

′
k)

T := Ind2,k(g
′) and f :=

PHF (g), f ′ := PHF (g′).

I first assume that g �2π
SO(3) g

′. Then, by Proposition C.18e, Ind3,k(g) = Ind3,k(g
′).

To prove the other direction, let Ind3,k(g) = Ind3,k(g
′). I define the functions

G,G′ ∈ C(Rk × [0, 1], SO(3)) by

G(φ, t) := exp(J [NTφ+ t2πf(φ)]) , G′(φ, t) := exp(J [N ′Tφ+ t2πf ′(φ)]) . (C.10)
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By (C.9),(C.10) we have G(·, 1) = g(·), G′(·, 1) = g′(·). Also G(·, t), G′(·, t) ∈
Cper(R

k, SO(3)) whence, by defining h, h′ ∈ Cper(R
k, SO3(2)) for φ ∈ Rk,

h(φ) := G(φ, 0) = exp(JNTφ) , h′(φ) := G′(φ, 0) = exp(JN ′Tφ) , (C.11)

we get from Proposition C.18b that h(·) = G(·, 0) �2π
SO(3) G(·, 1) = g(·) and h′(·) =

G′(·, 0) �2π
SO(3) G

′(·, 1) = g′(·). Since the aim is to show that g �2π
SO(3) g

′, we are done

if I show that h �2π
SO(3) h

′, i.e., by Proposition C.18b, I just have to find a H ∈ C(Rk×
[0, 1], SO(3)) such that H(·, 0) = h(·),H(·, 1) = h′(·) and H(·, t) ∈ Cper(R

k, SO(3)).

Since h �2π
SO(3) g and h′ �2π

SO(3) g
′ we have, by Proposition C.18e, that Ind3,k(h) =

Ind3,k(g) = Ind3,k(g
′) = Ind3,k(h

′). Clearly, by (C.11) and Definition C.12, we have

Ind2,k(h) = N, Ind2,k(h
′) = N ′ whence, by Theorem C.15b,

((−1)N1, ..., (−1)Nk)T = Ind3,k(h) = Ind3,k(h
′) = ((−1)N ′

1 , ..., (−1)N ′
k)T . (C.12)

I now define, for j = 1, ..., k, φ ∈ R, the functions hj, h
′
j ∈ Cper(R, SO3(2)) by

hj(φ) := exp(JNjφ) , h′j(φ) := exp(JN ′
jφ) , (C.13)

whence (C.11) gives me, for φ ∈ Rk,

h(φ) = exp(JN1φ1) · · · exp(JNkφk) = h1(φ1) · · ·hk(φk) ,

h′(φ) = exp(JN ′
1φ1) · · · exp(JN ′

kφk) = h′1(φ1) · · ·h′k(φk) .

(C.14)

By (C.13) we have Ind2,1(hj) = Nj , Ind2,1(h
′
j) = N ′

j whence, by (C.12) and Theorem

C.15b,

Ind3,1(hj) = (−1)Nj = (−1)N ′
j = Ind3,1(h

′
j) , (C.15)

where j = 1, ..., k. Applying Theorem C.22c one observes by (C.15) that hj �2π
SO(3) h

′
j

whence, by Proposition C.18b, a Hj ∈ C(R× [0, 1], SO(3)) exists such that Hj(·, 0) =
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hj(·), Hj(·, 1) = h′j(·) and Hj(·, t) ∈ Cper(R, SO(3)) where j = 1, ..., k. I define

H ∈ C(Rk × [0, 1], SO(3)) by

H(φ, t) := H1(φ1, t) · · ·Hk(φk, t) . (C.16)

Clearly H(·, t) ∈ Cper(R
k, SO(3)). It follows from (C.14),(C.16) that, for φ ∈ Rk,

H(φ, 0) = H1(φ1, 0) · · ·Hk(φk, 0) = h1(φ1) · · ·hk(φk) = h(φ) ,

H(φ, 1) = H1(φ1, 1) · · ·Hk(φk, 1) = h′1(φ1) · · ·h′k(φk) = h′(φ) ,

whence, by Proposition C.18b, h �2π
SO(3) h

′ so that g �2π
SO(3) g

′. This concludes the

proof of the first claim, i.e., the claim that g �2π
SO(3) g

′ iff Ind3,k(g) = Ind3,k(g
′).

To prove the second claim let g ∈ Cper(R
k, SO3(2)). I first assume that g ∈

Cper(R
k, SO3(2)) is 2π-nullhomotopic w.r.t. SO(3). Thus, by Proposition C.18b,

a constant function f ∈ Cper(R
k, SO(3)) exists such that f �2π

SO(3) g. Therefore

Proposition C.18e gives me Ind3,k(f) = Ind3,k(g). Since f is a constant function in

Cper(R
k, SO(3)), it follows from Definition C.14 that Ind3,k(f) is the identity whence

Ind3,k(g) is the identity. To prove the other direction, let Ind3,k(g) be the identity.

By Definition C.14 the SO(3)-index of the constant function f ′ ∈ Cper(R
k, SO3(2))

whose constant value is I3×3, is the identity. Thus by the first claim g �2π
SO(3) f

′.

Since f ′ is constant one concludes from Proposition C.18b that g is 2π-nullhomotopic

w.r.t. SO(3). This concludes the proof of the second claim.

The third claim follows from the second claim and Theorem C.15b. �

Lemma C.23 a) Let (E, p, B) be a Hurewicz fibration. Let also G ∈ C(Rk×[0, 1], B)

be such that every G(·, t) is in Cper(R
k, B) and let the function G(·, 0) ∈ Cper(R

k, B)

have a 2π-periodic lifting h w.r.t. (E, p, B). Then G has a lifting H w.r.t. (E, p, B)

such that H(·, 0) = h(·) and such that every H(·, t) is in Cper(R
k, E).

b) Let (E, p, B) be a Hurewicz fibration. Then every g ∈ Cper(R
k, B) which is 2π-

nullhomotopic w.r.t. B has a 2π-periodic lifting w.r.t. (E, p, B).
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c) Let (E, p, B) be a fiber structure and let k, k′ be positive integers such that k ≤
k′. Let g ∈ Cper(R

k, B) have no 2π-periodic lifting w.r.t. (E, p, B). Then a g′ ∈
Cper(R

k′
, B) exists which has no 2π-periodic lifting w.r.t. (E, p, B). If g is of class

C∞ then g′ can be chosen such that it is of class C∞.

Proof of Lemma C.23a: Let (E, p, B) be a Hurewicz fibration. Let also G ∈
C(Rk × [0, 1], B) be such that every G(·, t) is in Cper(R

k, B) and let the function

G(·, 0) ∈ Cper(R
k, B) have a 2π-periodic lifting h w.r.t. (E, p, B). I abbreviate

f := FACk(h,E). By Proposition C.18a, the function F : Tk × [0, 1] → B, de-

fined by F (·, t) := FACk(G(·, t), B), is in C(Tk × [0, 1], B). One concludes, for

φ ∈ Rk, that F (p4,k(φ), 0) = G(φ, 0) = p ◦ h(φ) = p ◦ f ◦ p4,k(φ) whence F (·, 0) =

FACk(F (p4,k(·), 0), B) = FACk(p ◦ f ◦ p4,k, B) = p ◦ f . Thus F (·, 0) has the lifting

f w.r.t. (E, p, B). Since (E, p, B) is a Hurewicz fibration we conclude from Defini-

tion C.5 that F has a lifting F ′ w.r.t. (E, p, B) such that F ′(·, 0) = f(·). Defining

the function H ∈ C(Rk × [0, 1], E) by H(φ, t) := F ′(p4,k(φ), t) one concludes that

(p ◦ H)(φ, t) = p(F ′(p4,k(φ), t)) = F (p4,k(φ), t)) = G(φ, t) whence H is a lifting of

G w.r.t. (E, p, B). Clearly H(·, t) ∈ Cper(R
k, E) and H(φ, 0) = F ′(p4,k(φ), 0) =

f(p4,k(φ)) = h(φ). �

Proof of Lemma C.23b: Let (E, p, B) be a Hurewicz fibration and let g ∈ Cper(R
k, B)

be 2π-nullhomotopic w.r.t. B. It follows by Proposition C.18b that a function

G ∈ C(Rk × [0, 1], B) exists such that G(·, t) ∈ Cper(R
k, B) and such that G(·, 0) is

constant and G(·, 1) = g(·). Because p is onto B, a constant function f ∈ Cper(R
k, E)

exists such that G(·, 0) = p ◦ f . Applying Lemma C.23a one obtains a function

H ∈ C(Rk × [0, 1], E) such that G = p ◦ H and such that H(·, t) ∈ Cper(R
k, E). It

follows that H(·, 1) is a 2π-periodic lifting of g w.r.t. (E, p, B). �

Proof of Lemma C.23c: Let (E, p, B) be a fiber structure and let k, k′ be positive

integers such that k ≤ k′. Let g ∈ Cper(R
k, B) have no 2π-periodic lifting w.r.t.

(E, p, B). I define the function g′ ∈ Cper(R
k′
, B) by g′(φ1, ..., φk′) := g(φ1, ..., φk). I
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now show, by contraposition, that g′ has no 2π-periodic lifting w.r.t. (E, p, B).

Assume that g′ has a 2π-periodic lifting f ′ w.r.t. (E, p, B). It follows, for φ ∈ Rk′
,

that p◦f ′(φ1, ..., φk′) = g′(φ1, ..., φk′) = g(φ1, ..., φk). Note that f ′ ∈ Cper(R
k′
, E). The

function f ∈ Cper(R
k, E), defined by f(φ1, ..., φk) := f ′(φ1, ..., φk, 0, ..., 0), satisfies

p ◦ f(φ1, ..., φk) = p ◦ f ′(φ1, ..., φk, 0, ..., 0) = g′(φ1, ..., φk, 0, ..., 0) = g(φ1, ..., φk).

Therefore one is led to the wrong conclusion that g has the 2π-periodic lifting f

w.r.t. (E, p, B).

This completes the proof that g′ has no 2π-periodic lifting w.r.t. (E, p, B). Clearly

if g is of class C∞ then g′ is of class C∞. �

Theorem C.24 a) Let g ∈ Cper(R
k, S2). If g is 2π-nullhomotopic w.r.t. S2 then g

has a 2π-periodic lifting f w.r.t. (SO(3), p3, S
2), i.e., a f ∈ Cper(R

k, SO(3)) exists

such that g = p3 ◦ f = fe3.

b) If g ∈ Cper(R, S
2), then g is 2π-nullhomotopic w.r.t. S2 and has a 2π-periodic

lifting w.r.t. (SO(3), p3, S
2). If h ∈ Cper(R

2, S2), then it has a 2π-periodic lifting

w.r.t. (SO(3), p3, S
2) iff h is 2π-nullhomotopic w.r.t. S2.

c) If k ≥ 2 is a positive integer, then there exists a function g ∈ Cper(R
k, S2) of class

C∞ which has no 2π-periodic lifting w.r.t. (SO(3), p3, S
2).

Proof of Theorem C.24a: We know from Corollary C.9 that (SO(3), p3, S
2) is a

Hurewicz fibration. The claim then follows from Lemma C.23b. �

Proof of Theorem C.24b: Let g ∈ Cper(R, S
2). I define F := FAC1(g, S

2) ∈ C(T, S2).

The topological space T carries the structure of a 1-dimensional C∞ manifold without

boundary. It thus follows that all functions in C(T, S2) are nullhomotopic w.r.t. S2

[Bre, Section II.11]. Thus, by Definition C.17, g is 2π-nullhomotopic w.r.t. S2. This

implies, by Theorem C.24a, that g has a 2π-periodic lifting w.r.t. (SO(3), p3, S
2)

which completes the proof of the first claim.
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To prove the second claim, let h ∈ Cper(R
2, S2). If h is 2π-nullhomotopic w.r.t.

S2 then, by Theorem C.24a, h has a 2π-periodic lifting w.r.t. (SO(3), p3, S
2).

To prove the other direction, let h have a 2π-periodic lifting f w.r.t. (SO(3), p3, S
2).

I define s := Ind3,2(f). By Theorem C.15c we have Ind3,2(g
(s)
2 ) = s whence, by The-

orem C.22c, g
(s)
2 �SO(3)

2π f so that, by Proposition C.18d, p3 ◦ g(s)
2 �S2

2π p3 ◦ f . Clearly

p3 ◦ f(φ) = h(φ) and, by Definition C.14, p3 ◦ g(s)
2 (φ) = g

(s)
2 (φ)e3 = e3 whence h is

2π-homotopic w.r.t. S2 to a constant function so that, by Proposition C.18b, h is

2π-nullhomotopic w.r.t. S2. �

Proof of Theorem C.24c: I first prove the claim for k = 2. I define the func-

tions gi ∈ Cper(R,R
3) by g1(t) := (1/2 + cos(t), 0, sin(t))T and g2(t) := (−1/2 −

cos(t),− sin(t), 0)T . Clearly g1, g2 are of class C∞ and g1−g2 has no zeros. I thus can

define the function g ∈ Cper(R
2, S2) by g(φ1, φ2) := (g1(φ1)−g2(φ2))/|g1(φ1)−g2(φ2)|.

Clearly g is of class C∞. Abbreviating f := FAC2(g, S
2) ∈ C(T2, S2) one knows (see

[BG, Section 7.4]) that f is not nullhomotopic w.r.t. S2. Thus, by Definition C.17,

g is not 2π-nullhomotopic w.r.t. S2. It follows by Theorem C.24b, that g has no

2π-periodic lifting w.r.t. (SO(3), p3, S
2). This proves the claim for k = 2.

Let k′ be a positive integer such that k′ ≥ 2. Since g is of class C∞ and since

g has no 2π-periodic lifting w.r.t. (SO(3), p3, S
2) it follows from Lemma C.23c that

there exists a function g′ ∈ Cper(R
k′
, S2) of class C∞ which has no 2π-periodic lifting

w.r.t. (SO(3), p3, S
2). �

Proposition C.25 Let (E, p, B) be a fiber structure and let there be a positive in-

teger k such that a g ∈ Cper(R
k, B) exists which has no 2π-periodic lifting w.r.t.

(E, p, B). Let me denote the smallest of those integers k by k0. Then, for the fiber

structures (R, p1, SO3(2)), (S3, p2, SO(3)),(Rm, p4,m,T
m), we have k0 = 1 where m is

a positive integer. Moreover, for the fiber structure (SO(3), p3, S
2), we have k0 = 2.
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Proof of Proposition C.25: I first consider the fiber structure (R, p1, SO3(2)) and

I will show, by contraposition, that the function g
(−1)
1 ∈ Cper(R, SO3(2)) has no

2π-periodic lifting w.r.t. (R, p1, SO3(2)). In fact, lets assume that g
(−1)
1 has a 2π-

periodic lifting f w.r.t. (R, p1, SO3(2)). Then, by Theorem C.15b, g
(−1)
1 has a 2π-

periodic lifting g̃ w.r.t. (S3, p2, SO(3)) where g̃ is given by (C.5). Thus, by Definition

C.12, Ind1,1(g̃) = 1 whence, by Definition C.14, Ind3,1(g
(−1)
1 ) = 1. However, by

Theorem C.15c, Ind3,1(g
(−1)
1 ) = −1 which poses a contradiction. One concludes that

g
(−1)
1 has no 2π-periodic lifting w.r.t. (R, p1, SO3(2)). Thus, for the fiber structure

(R, p1, SO3(2)), we have k0 = 1.

I now consider the fiber structure (S3, p2, SO(3)) and I will show that the function

g
(−1)
1 ∈ Cper(R, SO3(2)) has no 2π-periodic lifting w.r.t. (S3, p2, SO(3)). In fact, by

Theorems C.13a,C.15c, ±g̃(−1)
1 are the liftings of g

(−1)
1 w.r.t. (S3, p2, SO(3)). By

Definition C.14 Ind1,1(g̃
(−1)
1 ) = −1 whence, by Definition C.12, g̃

(−1)
1 is not 2π-

periodic so that both liftings of g
(−1)
1 w.r.t. (S3, p2, SO(3)) are not 2π-periodic.

Thus, for the fiber structure (S3, p2, SO(3)), we have k0 = 1.

I now consider the fiber structure (Rm, p4,m,T
m) where m is a positive integer.

I will show that the function g ∈ Cper(R,T
m), defined by g(t) := (exp(it), 1, ..., 1)T ,

has no 2π-periodic lifting w.r.t. (Rm, p4,m,T
m). In fact f ∈ C(R,Rm), defined

by f(t) := (t, 0, ..., 0)T , is a lifting of g w.r.t. (Rm, p4,m,T
m). Thus, by Theorem

C.11d, every lifting of g w.r.t. (Rm, p4,m,T
m) is not 2π-periodic so that, for the fiber

structure (Rm, p4,m,T
m), we have k0 = 1.

I now consider the fiber structure (SO(3), p3, S
2). Clearly, by Theorem C.24b,

every g ∈ Cper(R, S
2) has a 2π-periodic lifting w.r.t. (SO(3), p3, S

2) whence either

k0 > 1 or k0 does not exist. However by Theorem C.24c, a function g ∈ Cper(R
2, S2)

exists which has no 2π-periodic lifting w.r.t. (SO(3), p3, S
2). Thus, for the fiber

structure (SO(3), p3, S
2), we have k0 = 2. �
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Fourier analytic concepts and facts

D.1 Quasiperiodic functions

Definition D.1 Let f ∈ Cper(R
d, X) with X = Cj or X = Cj×j for some positive

integer j. If χ ∈ Rd then f is called the ‘χ-generator’ of the function F : Z → X

defined by F (n) = f(2πnχ). A function F : Z → X is called ‘χ–quasiperiodic’ if it

has a χ-generator and it is called ‘quasiperiodic’ if it has a χ-generator for some χ.

With χ ∈ Rk I define

Yχ := {mTχ+ n : m ∈ Zk, n ∈ Z} . (D.1)

A χ ∈ Rk is said to be ‘nonresonant’ if the equation mTχ = 0, together with the con-

dition m ∈ Zk, can only be fulfilled for m = 0 (whenever I write Zk, this implies that

k is a positive integer). A spin-orbit torus (ω,A) is said to be ‘off orbital resonance’

if (1, ω) is nonresonant. Otherwise the spin-orbit torus is ‘on orbital resonance’. �

Remark:
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(1) I choose the sets R and C such that R = {x ∈ C : �m{x} = 0}, i.e. R ⊂ C.

Thus if F is a quasiperiodic function whose components are real then it has

a generator f whose components are real (just take the real part of a given

generator!). �

A χ-generator f of a χ–quasiperiodic function F fulfills three conditions: F (n) =

f(2πnχ), the 2π–periodicity of f and the ‘regularity’ condition that f is continuous.

Unlike the former two conditions, the third condition is a matter of choice. Thus the

regularity condition determines the quasiperiodicity properties one has to deal with.

The regularity of f can basically vary between the extremes ‘f being continuous’ and

‘f being analytic’. In this paper I choose f to be continuous because it is convenient

and because the emphasis in this work is on continuity.

Since A(φ0+2πnω) is a ω–quasiperiodic function of n, the dynamical system (6.8)

has ω–quasiperiodic equations of motion. This circumstance makes the concept of

quasiperiodicity relevant for spin motions.

While the trivial solution S(n) = 0 always exists and is ω–quasiperiodic it is a

natural question of whether nonzero ω–quasiperiodic spin trajectories exist. However

I must leave this interesting question open. Nevertheless, experience with explicitly

solvable models indicates that the answer is positive (for every φ0).

D.2 A dense subset of Rk

Theorem D.2 Let φ0, ω ∈ Rk and let (1, ω) be nonresonant. Then the set {φ0 +

2πnω + 2πm : m ∈ Zk, n ∈ Z} is dense in Rk.
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Proof of Theorem D.2: Let φ0, ω ∈ Rk and let (1, ω) be nonresonant. I define

A := {φ0 + 2πnω + 2πm : m ∈ Zk, n ∈ Z} , A′ := p4,k(A) ,

A′′ := Rk \ Ā , A′′′ := Tk \ A′ .

Since the aim is to show that A is dense in Rk I have to show that A′′ is empty. I

first note (see for example [HK2, Section 1.4]) that A′ is dense in Tk, i.e.,

A′ = Tk . (D.2)

The second observation is that, by the special form of A,

p−1
4,k(A

′) = p−1
4,k(p4,k(A)) = A . (D.3)

It is now easy to prove the claim. One concludes from (D.2) and (D.3) that

p−1
4,k(A

′′′) = p−1
4,k(T

k \ A′) = Rk \ p−1
4,k(A

′) = Rk \ A ⊃ Rk \ Ā = A′′ ,

whence

A′′′ = p4,k(p
−1
4,k(A

′′′)) ⊃ p4,k(A
′′) . (D.4)

Recalling Proposition C.8a, p4,k is a covering map whence it is open. Thus p4,k(A
′′)

is open in Tk whence p4,k(A
′′) is open and a subset of the complement A′′′ of A′.

However, by (D.2) the only open set in the complement of A′ is the empty set

whence p4,k(A
′′) = ∅ which implies that A′′ = ∅. �

Corollary D.3 a) Let f ∈ Cper(R
k,R) and let χ be in Rk such that (1, χ) is nonres-

onant. If, for all φ ∈ Rk, f(φ + 2πχ) = f(φ) then f is constant, i.e., f(φ) = f(0)

for all φ ∈ Rk.

b) Let χ ∈ Rk such that (1, χ) is nonresonant and let j be a positive integer. If

F : Z → Rj is a χ–quasiperiodic function then it has exactly one χ-generator and

this χ-generator is Rj-valued. If F : Z→ Rj×j is a χ–quasiperiodic function then it

has exactly one χ-generator and this χ-generator is Rj×j-valued.
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Proof of Corollary D.3a: Let f ∈ Cper(R
k,R). Let χ be in Rk such that (1, χ) is

nonresonant and let, for all φ ∈ Rk, f(φ+ 2πχ) = f(φ).

By induction in n one obtains that, for all integers n, f(2πnχ) = f(0). Defining

A := {2πnχ+ 2πm : m ∈ Zk, n ∈ Z} , A′ := {φ ∈ Rk : f(φ) = f(0)} ,

one obtains that A ⊂ A′ whence Ā ⊂ A′ = A′ where I used the fact that A′ is closed.

Using Theorem D.2 we have Ā = Rk whence A′ = Rk. �

Proof of Corollary D.3b: Let χ ∈ Rk such that (1, χ) is nonresonant and let F : Z→
R be a χ–quasiperiodic function. By Definition D.1, F has a χ-generator which is a

function f ∈ Cper(R
k,C) such that, for n ∈ Z, F (n) = f(2πnχ). To show that f is

the only χ-generator of F let g be an arbitrary χ-generator of F , i.e., g ∈ Cper(R
k,C)

such that, for n ∈ Z, F (n) = g(2πnχ). Since f and g are 2π-periodic we have for

m ∈ Zk, n ∈ Z that f(2πnχ + 2πm) = g(2πnχ + 2πm). Thus, defining the set

A := {2πnχ + 2πm : m ∈ Zk, n ∈ Z}, we see that f(φ) = g(φ) for all φ ∈ A. Since

(1, χ) is nonresonant, one concludes from Theorem D.2 that the set A is dense in Rk.

Since A is dense in Rk and since f and g are continuous, it thus follows that f = g

whence f is the unique χ-generator of F .

To show that f is R-valued, I define h ∈ Cper(R
k,R) by h := (f + f ∗)/2 where

f ∗(φ) denotes the complex conjugate of f(φ). Clearly, for n ∈ Z, we have that

2h(2πnχ) = f(2πnχ)+f ∗(2πnχ) = F (n)+F ∗(n) = 2F (n) whence h is a χ-generator

of F . However since f is the unique χ-generator of F we have h = f whence f is

real valued.

Let j be a positive integer and F : Z → X be a χ–quasiperiodic function,

where either X = Rj or X = Rj×j. Then each component of F is a real valued

χ–quasiperiodic function. Thus, having already proven the claims for R-valued F ,

one concludes that each component of F has a unique χ-generator and that this

χ-generator is real valued. I thus define the function f ∈ Cper(R
k, X) such that each
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of its components is the unique χ-generator of the corresponding component of F .

Clearly f is the unique χ-generator of F . Of course all components of f are real

valued which completes the proof. �

D.3 Applying Fejér’s multivariate theorem

In this section I first present (see Lemma D.4a) Fejér’s multivariate theorem and

then derive from that several facts needed in this work.

If F : Z→ C is a function and λ ∈ [0, 1), N ∈ Z+, I define

aN (F, λ) := (N + 1)−1

N∑
n=0

F (n) exp(−2πinλ) ,

where Z+ denotes the set of nonnegative integers. I denote by Λtot(F ) the set of

those λ ∈ [0, 1) for which aN(F, λ) converges as N →∞. If λ ∈ Λtot(F ) I denote the

limit of aN (F, λ) by a(F, λ) and I define the ‘spectrum Λ(F ) of F ’ by Λ(F ) := {λ ∈
Λtot(F ) : a(F, λ) 
= 0}.

I define the function Ec : Z→ C by Ec(n) := exp(i2πnc) where n ∈ Z and where

c is an arbitrary real number. Clearly, we have Λtot(Ec) = [0, 1) and, for λ ∈ [0, 1),

a(Ec, λ) =

⎧⎨
⎩ 1 if λ = �c�

0 if λ 
= �c� ,

whence

Λ(Ec) = {�c�} . (D.5)

Let f : Rk → C be a continuous and 2π–periodic function. Then for m ∈ Rk the

‘m-th Fourier coefficient’ of f is defined by

fm :=
1

(2π)k

∫ 2π

0

· · ·
∫ 2π

0

f(φ) exp(−imTφ)dφ1 · · · dφk . (D.6)
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If m ∈ Rk, N ∈ Z+ I define

Ak
N,m :=

k∏
n=1

N + 1− |mn|
N + 1

, ||m|| := max(|m1|, ..., ||mk|) . (D.7)

Lemma D.4 a) (Fejér’s multivariate theorem) Let f : Rk → C be a continuous and

2π–periodic function. Defining for N ∈ Z+ the continuous and 2π–periodic function

fN : Rk → C by

fN(φ) :=
∑
m∈Zk

||m||≤N

Ak
N,mfm exp(imTφ) , (D.8)

the sequence fN converges uniformly on Rk to f as N →∞.

b) Let F : Z → C be a χ–quasiperiodic function where χ ∈ Rk and let f be a χ-

generator of F , i.e., F (n) = f(2πnχ). Defining for N ∈ Z+ the function FN : Z→ C

by

FN(n) :=
∑
m∈Zk

||m||≤N

Ak
N,mfm exp(i2πnmTχ) , (D.9)

where fm is the m-th Fourier coefficient of f , then the sequence FN converges uni-

formly on Z to F as N →∞. Furthermore Λtot(F
N) = [0, 1) and Λ(FN) ⊂ Yχ.

c) Let F : Z → C be a χ–quasiperiodic function where χ ∈ Rk such that (1, χ) is

nonresonant. Let f be a χ-generator of F , i.e., F (n) = f(2πnχ) and let me define

for N ∈ Z+ the function FN : Z → C by (D.9), where fm is the m-th Fourier

coefficient of f . Then Yχ ⊂ Λtot(F ) and, for every m ∈ Zk, fm = a(F,mTχ).

d) Let F : Z → C be a χ–quasiperiodic function and let Λtot(F ) = [0, 1). Then

Λ(F ) ⊂ Yχ.

Proof of Lemma D.4a: Let f : Rk → C be a continuous and 2π–periodic function.

That the sequence fN converges uniformly on Rk to f , is the generalization of Fejér’s
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univariate theorem from k = 1 to arbitrary k (see for example [Maa, Sec. III.22],[Ko,

Sec. 79]). �

Proof of Lemma D.4b: Let F : Z → C be a χ–quasiperiodic function where χ ∈ Rk

and let f be a χ-generator of F .

Defining for N ∈ Z+ the continuous and 2π–periodic function fN : Rk → C by

(D.8), it follows from Lemma D.4a that the sequence fN converges uniformly on Rk

to f as N → ∞. Defining for N ∈ Z+ the function FN : Z → C by (D.9), it is

clear that FN(n) = fN(2πnχ). By the uniform convergence of fN I conclude that

the sequence FN converges uniformly on Z to F as N →∞.

That Λtot(F
N) = [0, 1) follows from the facts that FN is a finite sum of exponen-

tial functions Ec and that Λtot(Ec) = [0, 1).

To prove the last claim let λ ∈ Λ(FN). Then a(FN , λ) 
= 0 whence there ex-

ists an m ∈ Zk such that λ belongs to the spectrum of the exponential function

exp(i2πnmTχ), i.e., a(Ec, λ) 
= 0 for c = mTχ. It thus follows from (D.5) that

λ = �mTχ� whence λ ∈ Yχ. I thus have shown that Λ(FN) ⊂ Yχ. �

Proof of Lemma D.4c: Let F : Z → C be a χ–quasiperiodic function where χ ∈ Rk

such that (1, χ) is nonresonant. Let f be a χ-generator of F and let me define for

N ∈ Z+ the function FN : Z→ C by (D.9), where fm is the m-th Fourier coefficient

of f .

By using a ‘map’ version of Weyl’s equidistribution theorem ([CFS, Chapter 3]),

one obtains, for m ∈ Zk, that mTχ ∈ Λtot(F ) and that fm = a(F,mTχ). Since,

for N ∈ Z+, n ∈ Z we have aN(F,mTχ + n) = aN (F,mTχ) one concludes that

Yχ ⊂ Λtot(F ). �

Proof of Lemma D.4d: Let F : Z → C be a χ–quasiperiodic function where χ ∈ Rk

and let Λtot(F ) = [0, 1). Let λ be in [0, 1).
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It follows from Lemma D.4b that a sequence of functions FN : Z → C exists

which converges uniformly on Z to F as N → ∞ and such that Λtot(F
N) = [0, 1),

Λ(FN) ⊂ Yχ. Thus since a(FN , λ) and a(F, λ) exist, we have

|a(FN , λ)− a(F, λ)| = |a(FN − F, λ)|

= | lim
T→∞

1

T + 1

T∑
n=0

(FN(n)− F (n)) exp(−2πiλn)| ≤ sup
n
|FN(n)− F (n)| ,

where I also used the fact that FN and F are bounded functions. It follows that

lim
N→∞

a(FN , λ) = a(F, λ) , (D.10)

since FN converges uniformly on Z to F as N → ∞. Note that (D.10) holds for

every λ ∈ [0, 1). If λ ∈ [0, 1) \ Yχ, then, since Λ(FN) ⊂ Yχ and Λtot(F
N) = [0, 1), we

have that λ ∈ Λtot(F
N) \ Λ(FN). Thus a(FN , λ) = 0 and (D.10) gives a(F, λ) = 0

whence λ ∈ [0, 1) \ Λ(F ). Thus [0, 1) \ Yχ ⊂ [0, 1) \ Λ(F ) whence Λ(F ) ⊂ Yχ. �

Remark:

(1) One can show that every quasiperiodic function F : Z → C has the property

Λtot(F ) = [0, 1). Thus the assumption in Lemma D.4d, that Λtot(F ) = [0, 1),

is redundant. However since it would be tedious to prove that this assumption

is redundant in Lemma D.4d and since I apply Lemma D.4d only to functions

F where we know that Λtot(F ) = [0, 1), we see that Lemma D.4d is convenient

for our purposes. Note also that my only application of Lemma D.4d is the

proof of Theorem D.5. �

While it is obvious thatEc is c–quasiperiodic, it is a natural but not quite trivial ques-

tion of whether there are other vectors χ for which the function Ec is χ–quasiperiodic

(obviously χ = c is one of these vectors). The answer to this question is given by

the following theorem.
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Theorem D.5 Let c be a real number and let Ec : Z → C be the c–quasiperiodic

function, defined by Ec(n) := exp(i2πnc). Let also χ ∈ Rk. Then Ec is χ–quasiperiodic

iff c ∈ Yχ.

Proof of Theorem D.5: I first consider the case that Ec is χ–quasiperiodic. Recalling

that Λtot(Ec) = [0, 1), I can apply Lemma D.4d and thus obtain Λ(Ec) ⊂ Yχ. It thus

follows from (D.5) that {�c�} ⊂ Yχ, i.e., that �c� ∈ Yχ whence (recall (D.1)) there

exist m ∈ Zk, n ∈ Z such that �c� = mTχ+ n. It follows that c ∈ Yχ.

I now consider the case that c ∈ Yχ. Then m ∈ Zk, n ∈ Z exist such that

c = mTχ + n whence Ec(n) = exp(i2πnc) = exp(i2πnmTχ). It follows that Ec is

χ–quasiperiodic. �

Remark:

(2) The claim of Theorem D.5 is obvious if one makes the assumption that the

χ–quasiperiodic function Ec has a χ-generator which is a trigonometric poly-

nomial. In fact, under that assumption the proof of Theorem D.5 would be

trivial whence Lemma D.4 would be superfluous in the proof of Theorem D.5.

However, it is of course not allowed to assume that every χ-generator of Ec

is a trigonometric polynomial whence Lemma D.4 is crucial for the proof of

Theorem D.5. �
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Principal bundles and their

associated bundles

In this section I provide those concepts and facts from the theory of principal bundles

which are needed for Section 9.3. I follow the elegant treatment of Husemoller’s

book [Hus] avoiding the sometimes clumsy machinery of coordinate bundles (the

latter is covered for example in [St]). Note that the principal bundles defined in

[Hus] are sometimes (for example in: [Mac]) called ‘Cartan principal bundles’. Since

principal bundles are bundles refined by group actions, the present section builds up

on Appendices B and C. Adhering to the philosophy practiced in Appendices B-D I

present the material in such detail that it is essentially self contained. Most of the

material of the present section is an elaboration on material from Sections 1-6 in

[Hus].

This section is structured as follows. In the basic Sections E.1-E.5 I provide facts

and concepts about principal bundles and their associated bundles and in Section

E.6 I reconsider Sections E.1-E.5 in the special case of the product principal bundle

since this will be applied in Section 9.3 of this work.
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In Section E.1 I introduce, in descending order of generality, G-prebundles, G-

bundles and principal G-bundles where G is an arbitrary topological group. Fur-

thermore the category Bun(G) of principal G-bundles is introduced and the auto-

morphism group AutBun(G)(λ) of a principal G-bundle λ is defined. Proposition E.1

is proved which gives a necessary and sufficient condition for a G-prebundle to be a

G-bundle and which is applied in Section E.6.1 to prove that the product principal

G-bundle is indeed a principal bundle.

In Section E.2 an arbitrary associated bundle λ[F, L] of a principal G-bundle λ is

considered and properties are derived which are essential for Sections E.3 and E.5.

Section E.3 introduces the left AutBun(G)(λ) actions L′, L′′. In Section E.3.1 I

introduce L′ which acts on the total space of the associated bundle λ[F, L] and I

show that L′ is based on fibre morphisms of the associated bundle. In Section E.3.2

I introduce L′′ which acts on the cross sections of λ[F, L] and which builds up on L′.

In Section E.5 I introduce the H-reductions of principal G-bundles where H

is a closed topological subgroup. The H-reductions are at the heart of the Feres

machinery since they are the vehicles for the reductions theorems.

In Section E.6 I reconsider Sections E.1-E.5 in the special case of the product

principal G-bundle which in fact is the principal bundle that is eventually applied in

Section 9.3 of this work.

E.1 Principal G-bundles

Let

ξ = (E, p, B) (E.1)
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be a bundle. Bundles form a category, Bun, and I denote the set of morphisms from

ξ to itself by MorBun(ξ). Note that, by definition, MorBun(ξ) consists of the pairs

(ϕ, ϕ̄) for which ϕ ∈ C(E,E) and ϕ̄ ∈ C(B,B) such that

ϕ̄ ◦ p = p ◦ ϕ . (E.2)

The identity morphism in MorBun(ξ) is (idE , idB) and the composition law in Bun

reads for (ϕi, ϕ̄i) ∈ MorBun(ξ) and i = 1, 2 as (ϕ2, ϕ̄2)(ϕ1, ϕ̄1) = (ϕ2 ◦ ϕ1, ϕ̄2 ◦ ϕ̄1).

Analogously the composition law of Bun is defined for morphisms which connect

different bundles and so Category Theory provides the concepts of isomorphism and

automorphism in Bun.

Let G be a topological group and R be a right G-action on E such that (E,R) is

a topological right G-space. Let the quadruple λ be defined by

λ := (ξ, R) = (E, p, B,R) . (E.3)

I call λ a ‘G-prebundle’ if p is a G-map from the right G-space (E,R) to the trivial

right G-space over B, i.e., if for x ∈ E, g ∈ G

p(R(g; x)) = p(x) . (E.4)

Thus λ in (E.3) is a G-prebundle iff for all x ∈ E, g ∈ G the set p−1(p(x)) is invariant

under R(g; ·). This implies that if λ in (E.3) is a G-prebundle then for every x ∈ E
the function Rx : G × p−1(p(x)) → p−1(p(x)), defined as the restriction of R to

G× p−1(p(x)), is a right G-action on p−1(p(x)).

Recalling the orbit space E/R and the canonical surjection pR : E → E/R from

Appendix B one observes that if λ in (E.3) is a G-prebundle and if x, x′ ∈ E satisfy

x′ ∈ pR(x) then a g ∈ G exists such that x′ = R(g; x) whence, by (E.4), p(x′) = p(x)

so that x′ ∈ p−1(p(x)). Thus if λ is a G-prebundle then for every x ∈ E I get the

inclusion

pR(x) ⊂ p−1(p(x)) , (E.5)
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which plays a major role in the proof of Proposition E.1. I define the fiber structure

α(E,R) := (E, pR, E/R) , (E.6)

where the α-notation is taken from [Hus]. Defining also the quadruple

λR := (α(E,R), R) = (E, pR, E/R,R) , (E.7)

one observes, since pR is a G-map from the right G-space (E,R) to the trivial right

G-space over E/R, that λR is a G-prebundle.

I now consider the problem of finding, under the assumption that λ aG-prebundle,

a function f on E/R which satisfies

f ◦ pR = p . (E.8)

Note that since pR is onto E/R there exists at most one such f . Since p is continuous

and pR is onto E/R and identifying, one observes [Hu, Section II.6] that f , if it exists,

is continuous. Furthermore if p is onto B, then f is onto B if it exists. To show that

f exists I define the function πλ : E/R→ B for x ∈ E by

πλ(pR(x)) := p(x) . (E.9)

Note that πλ is defined by (E.9) for all z ∈ E/R since pR is onto E/R. Note also that

πλ is single valued since if x, x′ ∈ E and pR(x) = pR(x′) then, recalling Appendix B,

a g ∈ G exists such that R(g; x) = x′ whence one gets by (E.9)

πλ(pR(x′)) = p(x′) = p(R(g; x)) = p(x) = πλ(pR(x)) , (E.10)

where in the third equality of (E.10) I used the fact that λ is a G-prebundle. With

(E.10) I have completed the proof that πλ is a function: E/R → B if λ is a G-

prebundle. It is clear by (E.9) that f = πλ satisfies (E.8) so that, by the remarks

after (E.8), f = πλ is the unique solution of (E.8) and

πλ ◦ pR = p . (E.11)
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I thus conclude by the remarks after (E.8) that πλ is continuous and, if p is onto B,

πλ is onto B. I call πλ the ‘prebundle function’ of the G-prebundle λ. Therefore by

the remarks after (E.8) a prebundle function is always continuous (of course, w.r.t.

the topological spaces E/R,B). Note that since idE/R ◦ pR = pR the prebundle

function of the G-prebundle λR is idE/R. Note also that since pR is onto E/R it

follows from [Du, Section VI.3] and (E.11) that the prebundle function is identifying

iff p is identifying.

If λ in (E.3) is aG-prebundle then it is called a ‘G-bundle’ if its prebundle function

is a homeomorphism onto B. If λ in (E.3) is a G-bundle and if the topological right

G-space (E,R) is principal then λ is called a ‘principal G-bundle’. These definitions

of G-bundle and principal G-bundle are the distinguishing features of the elegant

treatment in Husemoller’s book [Hus] (I added, since it is convenient, the definition of

G-prebundle). Note that these definitions don’t involve local triviality (in particular

no coordinate bundles are involved). Note also that G is called the ‘structure group’

of λ and that the principal bundles defined in this way are sometimes called ‘Cartan

principal bundles’.

Of course if λ in (E.3) is a G-bundle or even a principal G-bundle then, due to

(E.11), p is onto B, i.e., ξ is a fiber structure. The standard example of a G-bundle

is the G-prebundle λR since, as mentioned above, its prebundle function is idE/R.

Thus λR is a principal G-bundle iff the topological right G-space (E,R) is principal.

The principal G-bundles form a category, Bun(G), and in this category I de-

note the set of morphisms from λ to itself by MorBun(G)(λ). Note that, by def-

inition, MorBun(G)(λ) consists of those elements (ϕ, ϕ̄) of MorBun(ξ) for which ϕ

is a G-map on the right G-space (E,R). The identity morphism, (idE , idB), in

MorBun(G)(λ) is the same as in MorBun(ξ) and the composition law in Bun(G) is

the same as in Bun. Category Theory provides the concepts of isomorphism and

automorphism in Bun(G). In particular the automorphisms on λ are those ele-
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ments (ϕ, ϕ̄) of MorBun(G)(λ) for which a (ϕ̃, ¯̃ϕ) ∈ MorBun(G)(λ) exists such that

(ϕ, ϕ̄)(ϕ̃, ¯̃ϕ) = (idE, idB) = (ϕ̃, ¯̃ϕ)(ϕ, ϕ̄) and I denote the set of these automorphisms

by AutBun(G)(λ). Note that AutBun(G)(λ) is a group under the composition law

of Bun(G) with neutral element (idE, idB). Clearly if (ϕ, ϕ̄) ∈ AutBun(G)(λ) then

ϕ ∈ HOMEO(E,E) and ϕ̄ ∈ HOMEO(B,B). I define

GauBun(G)(λ) := {ϕ ∈ C(E,E) : (ϕ, idB) ∈ AutBun(G)(λ)} . (E.12)

Clearly the (ϕ, idB) with ϕ ∈ GauBun(G)(λ) form a subgroup of AutBun(G)(λ) whence

GauBun(G)(λ) is a group under the composition of functions. One calls GauBun(G)(λ)

the ‘gauge group of λ’ [Hus].

For the following proposition ‘transitivity on fibres’ is an important criterion. If

λ in (E.3) is a G-prebundle then, as mentioned above, we have for every x ∈ E the

right G-action Rx on p−1(p(x)) and I call R ‘transitive on the fibres of p’ if all Rx

are transitive.

Part c) of the following proposition will be applied in Section E.6.1.

Proposition E.1 Let G be a topological group and let the quadruple λ in (E.3) be

a G-prebundle. Denoting the prebundle function of λ by πλ the following hold:

a) πλ is one-one iff for every x ∈ E

pR(x) ⊃ p−1(p(x)) . (E.13)

b) R is transitive on all fibres of p iff (E.13) holds for every x ∈ E.

c) λ is a G-bundle iff p is onto B and identifying and R is transitive on all fibres of

p.

Proof of Proposition E.1a: I first consider the case where πλ is one-one so let x ∈
E, x′ ∈ p−1(p(x)) whence p(x′) = p(x) so that by (E.11) I obtain πλ(pR(x′)) =
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πλ(pR(x)). Since πλ is one-one this entails pR(x′) = pR(x) whence x′ ∈ pR(x) so that

(E.13) holds.

I now consider the case where (E.13) holds for every x ∈ E. To show that πλ

is one-one let x, x′ ∈ E such that πλ(pR(x′)) = πλ(pR(x)). Thus I am done when

pR(x′) = pR(x). Note that since pR is onto E/R, every element of the domain of πλ

belongs to the image of pR. By (E.11) we have p(x′) = p(x) whence by (E.5),(E.13)

I obtain pR(x) = p−1(p(x)) = p−1(p(x′)) = pR(x′). �

Proof of Proposition E.1b: I first consider the case where R is transitive on all fibres of

p so let x ∈ E and x′ ∈ p−1(p(x)). Thus x, x′ ∈ p−1(p(x)) whence, by the transitivity

of Rx, a g ∈ G exists such that x′ = Rx(g; x) = R(g; x) which entails x′ ∈ pR(x).

I now consider the case where (E.13) holds for every x ∈ E. Thus by Proposition

E.1a πλ is one-one. Let x ∈ E so I am done when I show that Rx is transitive. Let

therefore x′, x′′ ∈ p−1(p(x)) whence by (E.11) πλ(pR(x)) = p(x) = p(x′) = πλ(pR(x′))

so that, since πλ is one-one, pR(x) = pR(x′) and, analogously, pR(x) = pR(x′′).

Thus g′, g′′ ∈ G exist such that x′ = R(g′; x) and x′′ = R(g′′; x) whence x′′ =

R(g′−1g′′; x′) = Rx(g
′−1g′′; x′) which proves the transitivity of Rx. �

Proof of Proposition E.1c: I first consider the case where λ is a G-bundle, i.e.,

πλ ∈ HOMEO(E/R,B). Thus πλ is onto B whence, by (E.11), p is onto B. Since

pR is onto E/R and πλ, pR are identifying I obtain from (E.11) that p is identifying

[Du, Section VI.3]. Moreover since πλ is one-one one concludes from Propositions

E.1a-b that R is transitive on all fibres of p.

I now consider the case where p is onto B and identifying and R is transitive

on all fibres of p. The latter entails by Propositions E.1a-b that πλ is one-one.

Since pR is onto E/R and p, pR are identifying I obtain from [Du, Section VI.3] and

(E.11) that πλ is identifying. Also since p is onto B we have by (E.11) that πλ is

onto B. I thus have shown that πλ is one-one, onto B and identifying. Therefore
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πλ ∈ HOMEO(E/R,B) whence λ is a G-bundle. �

I will apply Proposition E.1 time and again in the ensuing sections and in this

paragraph I give a first example of that by showing that, if λ in (E.3) is a principal

G-bundle, then each fibre of p is homeomorphic to G. Let therefore λ be a principal

G-bundle and b ∈ B. Picking an x ∈ p−1(b) I define the function u : G → p−1(b),

for g ∈ G, by u(g) := R(g; x). Clearly u is continuous and, due to Proposition

E.1c, u is onto p−1(b). To show that u is a homeomorphism onto p−1(b) I define

the function u′ : p−1(b) → G for g ∈ G by u′(R(g; x)) := g. Note that, due to

Proposition E.1c, u′ is defined for the whole domain p−1(b). Moreover, u′ is single

valued since the right G-action R is free. On the other hand we have, for g ∈ G,

u′(u(g)) = u′(R(g; x)) = g, and u(u′(R(g; x))) = u(g) = R(g; x), whence u′ is the

inverse of u. Furthermore, recalling Appendix B, we have, for x′ ∈ p−1(b), that

u′(x′) = τR(x, x′). Since λ is a principal G-bundle, the translation function τR of R

is continuous whence u′ is continuous which entails that u is a homeomorphism onto

p−1(b) as was to be shown. It is interesting to observe that the above proof uses the

continuity of τR, shedding thus a first glimpse of light on a property of τR which at

first sight may look artificial. In fact, in the ensuing sections the continuity of τR

will bear further fruits.

E.2 Bundles associated with principal G-bundles

As in Section E.1 I consider the quadruple λ in (E.3) and I here assume that it is a

principal G-bundle. Thus λ is a G-bundle whence, by Proposition E.1c, p is onto B.
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E.2.1 Defining associated bundles

Let (F, L) be a topological left G-space. To come to the corresponding associated

bundle λ[F, L] one defines the topological space

E ′ := E × F , (E.14)

and the function R′ : G× E ′ → E ′ by

R′(g; x, y) := (R(g; x), L(g−1; y)) , (E.15)

and observes that (E ′, R′) is a topological right G-space. To define the bundle λ[F, L],

one considers the problem of finding a function q′ : E ′/R′ → B which satisfies

q′ ◦ pR′ = p ◦ q , (E.16)

where the function q : E ′ → E is defined for x ∈ E, y ∈ F by

q(x, y) := x . (E.17)

Note that since pR′ is onto E ′/R′ there is at most one such q′. Since p is onto B and

since q is onto E one observes from (E.16) that q′, if it exists, is onto B. Furthermore

since p ◦ q is continuous and pR′ is onto E ′/R′ and identifying, one observes (see for

example [Hu, Section II.6]) from (E.16) that q′, if it exists, is continuous.

To show that q′ exists I define the function p′ : E ′/R′ → B for (x, y) ∈ E ′ by

p′(pR′(x, y)) := p(x) . (E.18)

Note that p′ is defined by (E.18) for all z ∈ E ′/R′ since pR′ is onto E ′/R′. Note also

that p′, defined by (E.18), is single valued since if (x, y), (x′, y′) ∈ E ′ and pR′(x, y) =

pR′(x′, y′) then, recalling Appendix B, a g ∈ G exists such that R′(g; x, y) = (x′, y′),

i.e., by (E.15)

(x′, y′) = R′(g; x, y) = (R(g; x), L(g−1; y)) , (E.19)
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so that

p(x′) = p(R(g; x)) = p(x) , (E.20)

where in the second equality of (E.20) I used the fact that p is a G-map (which

follows from the fact that λ is a G-prebundle). With (E.20) I have completed the

proof that p′ is a function: E ′/R′ → B. Clearly we have by (E.18) that q′ = p′

satisfies (E.16) so that I conclude by the remarks after (E.17) that q′ = p′ is the

unique function: E ′/R′ → B which satisfies (E.16) whence I got

p′ ◦ pR′ = p ◦ q . (E.21)

I conclude from (E.21) and the remarks after (E.17) that p′ is onto B and continuous.

Furthermore, since p ◦ q is continuous and q is onto E and identifying and since p

is identifying I obtain from [Du, Section VI.3] that p ◦ q is identifying whence, by

(E.21), p′ ◦ pR′ is identifying. Thus and since pR′ is onto E ′/R′ and identifying I

obtain from [Du, Section VI.3] and (E.21) that p′ is identifying. Note also that,

recalling Definition C.1, it follows from (E.21) that p′ is a factor of p ◦ q w.r.t. the

fiber structure α(E ′, R′) = (E ′, pR′ , E ′/R′). Equipped with p′ one defines ξ′ by

ξ′ := λ[F, L] := (E ′/R′, p′, B) . (E.22)

Note that ξ′ is called the ‘associated bundle’, or more precisely, the bundle ‘associated

with λ via the topological left G-space (F, L)’. Clearly ξ′ is a fiber structure.

E.2.2 Correspondence between cross sections and pseudo

cross sections of an associated bundle

Let, as in Section E.2.1, (F, L) be a topological left G-space. In the theory of

reductions of the principal bundle λ the cross sections of λ[F, L] play an important

role (see Section E.6.6 and recall the definition of cross sections in Section C.1).
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On the other hand, working with Γ(λ[F, L]) is facilitated by using a correspondence

between cross sections and pseudo cross sections which I introduce now. I denote the

set of pseudo cross sections associated with λ via (F, L) by the symbol Γ̃λ,F,L. The

set Γ̃λ,F,L consists of those functions ψ in C(E,F ) which satisfy, for g ∈ G, x ∈ E,

ψ(R(g; x)) = L(g−1;ψ(x)) . (E.23)

The correspondence between Γ(λ[F, L]) and Γ̃λ,F,L is established by the function

γλ,F,L : Γ̃λ,F,L → Γ(λ[F, L]) which is defined for ψ ∈ Γ̃λ,F,L by

γλ,F,L(ψ) := σ , (E.24)

where the function σ : B → E ′/R′ is defined for x ∈ E by

σ(p(x)) := pR′(x, ψ(x)) . (E.25)

Note that σ is defined by (E.25) on the whole set B since p is onto B. To show that

σ is single valued let x, x′ ∈ E such that p(x′) = p(x) whence, by Proposition E.1c, a

g ∈ G exists such that x′ = R(g; x) so that one concludes from (E.15),(E.23),(E.25)

σ(p(x′)) = pR′(x′, ψ(x′)) = pR′(R(g; x), ψ(R(g; x))) = pR′(R(g; x), L(g−1;ψ(x)))

= pR′(R′(g; x, ψ(x))) = pR′(x, ψ(x)) = σ(p(x)) . (E.26)

Thus indeed σ is a function: B → E ′/R′. Since, by (E.25), σ ◦ p is continuous

and since p is onto B and identifying it follows (see, e.g., [Hu, Section II.6]) that

σ is continuous. Furthermore I conclude from (E.18),(E.25) that, for x ∈ E, (p′ ◦
σ)(p(x)) = p′(pR′(x, ψ(x))) = p(x), whence, since p is onto B,

p′ ◦ σ = idB . (E.27)

Since σ ∈ C(B,E′/R′) it follows from (E.22), (E.27) that σ ∈ Γ(λ[F, L]). This

completes the proof that γλ,F,L is a function: Γ̃λ,F,L → Γ(λ[F, L]). Note that γλ,F,L is
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one-one. In fact let ψ, ψ′ ∈ Γ̃λ,F,L such that γλ,F,L(ψ′) = γλ,F,L(ψ). Thus by (E.24),

(E.25) we have, for x ∈ E,

pR′(x, ψ′(x)) = pR′(x, ψ(x)) ,

whence a g ∈ G exists such that (x, ψ′(x)) = R′(g; x, ψ(x)) which entails by (E.15)

(x, ψ′(x)) = R′(g; x, ψ(x)) = (R(g; x), L(g−1;ψ(x))) . (E.28)

Since λ is a principal G-bundle, the right G-action R is free so that, by (E.28), g = eG

whence, by (E.28), ψ′ = ψ. Thus γλ,F,L is one-one. Under mild conditions on λ, F, L

one can even show that γλ,F,L is a bijection onto Γ(λ[F, L]) and this property makes

γλ,F,L a useful tool. In fact in the case of the product principal bundle I will prove

the bijection property of γλ,F,L (see Section E.6.4).

E.3 Two canonical left actions of the automor-

phism group of a principal G-bundle

I here assume that the quadruple λ in (E.3) is a principal G-bundle. I here apply the

Feres machinery by showing how AutBun(G)(λ) acts from the left in two canonical

ways. A pivotal role is played by those morphisms in MorBun(ξ′) which are fibre

morphisms.

E.3.1 The canonical left action on the total space of an as-

sociated bundle

Since λ is a principal G-bundle I can apply the tools of Section E.2.1 to construct the

left AutBun(G)(λ)-action L′ on the total space E ′/R′ of the associated bundle ξ′ =

λ[F, L] so let (ϕ, ϕ̄) ∈ AutBun(G)(λ). Note that by Section E.1 ϕ is a homeomorphism
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onto E and a G-map on the right G-space (E,R). I define the function ϕ′ : E ′ → E ′

for (x, y) ∈ E ′ by

ϕ′(x, y) := (ϕ(x), y) (E.29)

and observe by (E.2) that for (x, y) ∈ E ′

(p ◦ q)(ϕ′(x, y)) = (p ◦ q)(ϕ(x), y) = p(ϕ(x)) = ϕ̄(p(x)) = ϕ̄(p(q(x, y))) ,

i.e.,

p ◦ q ◦ ϕ′ = ϕ̄ ◦ p ◦ q . (E.30)

Basic to the construction of the group action on E ′/R′ is the consideration of the

problem of finding a function ϕ′′ : E ′/R′ → E ′/R′ which satisfies

ϕ′′ ◦ pR′ = pR′ ◦ ϕ′ . (E.31)

Note that since pR′ is onto E ′/R′ there is at most one such ϕ′′. Moreover since

ϕ is onto E one observes from (E.29) that ϕ′ is onto E ′ whence, since pR′ is onto

E ′/R′, (E.31) entails that ϕ′′, if it exists, is onto E ′/R′. Furthermore since pR′ ◦ ϕ′

is continuous and pR′ is onto E ′/R′ and identifying, one observes [Hu, Section II.6]

that ϕ′′, if it exists, is continuous. Also, if ϕ′′ exists, then by (E.21),(E.30),(E.31),

p′ ◦ ϕ′′ ◦ pR′ = p′ ◦ pR′ ◦ ϕ′ = p ◦ q ◦ ϕ′ = ϕ̄ ◦ p ◦ q = ϕ̄ ◦ p′ ◦ pR′ . (E.32)

Since pR′ is onto E ′/R′ it follows from (E.32) that, if ϕ′′ exists, then

p′ ◦ ϕ′′ = ϕ̄ ◦ p′ , (E.33)

whence (ϕ′′, ϕ̄) ∈ MorBun(ξ′). To show that ϕ′′ exists I define the function ϕ̃ :

E ′/R′ → E ′/R′ for (x, y) ∈ E ′ by

ϕ̃(pR′(x, y)) := (pR′ ◦ ϕ′)(x, y) = pR′(ϕ(x), y) , (E.34)
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where in the second equality I used (E.29). Note that ϕ̃ is defined for all z ∈ E ′/R′

by (E.34) since pR′ is onto E ′/R′. Note also that ϕ̃, defined by (E.34), is single valued

since if (x, y), (x′, y′) ∈ E ′ and pR′(x, y) = pR′(x′, y′) then, recalling Section E.2.1, a

g ∈ G exists such that (E.19) holds which implies by (E.15),(E.34)

ϕ̃(pR′(x′, y′)) = pR′(ϕ(x′), y′) = pR′(ϕ(R(g; x)), L(g−1; y))

= pR′(R(g;ϕ(x)), L(g−1; y)) = pR′(R′(g;ϕ(x), y)) = pR′(ϕ(x), y)

= ϕ̃(pR′(x, y)) , (E.35)

where in the third equality I used the fact that ϕ is a G-map on (E,R). With (E.35)

I have completed the proof that ϕ̃ is a function: E ′/R′ → E ′/R′. Clearly we have by

(E.34) that ϕ′′ = ϕ̃ satisfies (E.31) so that one concludes by the remarks after (E.31)

that ϕ′′ = ϕ̃ is the unique function: E ′/R′ → E ′/R′ which satisfies (E.31) whence I

got

ϕ̃ ◦ pR′ = pR′ ◦ ϕ′ . (E.36)

I define the function L′ : AutBun(G)(λ) × E ′/R′ → E ′/R′ for (ϕ, ϕ̄) ∈ AutBun(G)(λ)

and z ∈ E ′/R′ by

L′(ϕ, ϕ̄; z) := ϕ̃(z) . (E.37)

Thus ϕ′′ = L′(ϕ, ϕ̄; ·) is the unique function: E ′/R′ → E ′/R′ which satisfies (E.31)

whence I got

L′(ϕ, ϕ̄; ·) ◦ pR′ = pR′ ◦ ϕ′ . (E.38)

By the remarks after (E.31) I also have that L′(ϕ, ϕ̄; ·) is onto E ′/R′, is continuous

and satisfies

p′ ◦ L′(ϕ, ϕ̄; ·) = ϕ̄ ◦ p′ , (E.39)

whence, by recalling the definition of MorBun in Section E.1,

(L′(ϕ, ϕ̄; ·), ϕ̄) ∈MorBun(ξ′) . (E.40)
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Clearly by (E.29),(E.38) we have for (x, y) ∈ E ′

L′(ϕ, ϕ̄; pR′(x, y)) = (pR′ ◦ ϕ′)(x, y) = pR′(ϕ(x), y) . (E.41)

To prove that L′ is a group action I compute for (x, y) ∈ E ′ by (E.41)

L′(idE, idB; pR′(x, y)) = pR′(x, y) , (E.42)

and for (ϕ1, ϕ̄1), (ϕ2, ϕ̄2) ∈ AutBun(G)(λ) and (x, y) ∈ E ′ by using again (E.41)

(
L′(ϕ2, ϕ̄2; ·) ◦ L′(ϕ1, ϕ̄1; ·)

)
(pR′(x, y)) = L′(ϕ2, ϕ̄2;L

′(ϕ1, ϕ̄1; pR′(x, y)))

= L′(ϕ2, ϕ̄2; pR′(ϕ1(x), y)) = pR′(ϕ2(ϕ1(x)), y) = pR′((ϕ2 ◦ ϕ1)(x), y)

= L′(ϕ2 ◦ ϕ1, ϕ̄2 ◦ ϕ̄1; pR′(x, y)) , (E.43)

where in the fifth equality I used the fact that AutBun(G)(λ) is a group under the

composition law in Bun(G). Because pR′ is onto E ′/R′ it follows from (E.42),(E.43)

that L′ is a left AutBun(G)(λ)-action on E ′/R′. The following remark puts L′ into

perspective.

Remark:

(1) A ‘fibre morphism’ on the associated bundle ξ′ = λ[F, L] is an element (f, f̄) of

MorBun(ξ′) for which a continuous G-map f ′ exists on the topological right G-

space (E ′, R′) such that f ◦pR′ = pR′ ◦f ′ [Hus, Section 4.6]. Thus by (E.40) the

question arises of whether (L′(ϕ, ϕ̄; ·), ϕ̄) is a fibre morphism on ξ′. In fact it

follows from (E.38) that if ϕ′ is aG-map on (E ′, R′) then (L′(ϕ, ϕ̄; ·), ϕ̄) is a fibre

morphism on ξ′. I thus compute by (E.15), (E.29) for (ϕ, ϕ̄) ∈ AutBun(G)(λ)

and g ∈ G, x ∈ E, y ∈ F ,

ϕ′(R′(g; x, y)) = ϕ′(R(g; x), L(g−1; y)) = (ϕ(R(g; x)), L(g−1; y))

= (R(g;ϕ(x)), L(g−1; y)) = R′(g;ϕ(x), y) = R′(g;ϕ′(x, y)) , (E.44)
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where in the third equality I used the fact that ϕ is a G-map on (E,R). It

follows from (E.44) that the continuous function ϕ′ is a G-map on (E ′, R′)

whence (L′(ϕ, ϕ̄; ·), ϕ̄) is a fibre morphism on ξ′.

Note also that since L′ is a left AutBun(G)(λ)-action on E ′/R′ and L′(ϕ, ϕ̄; ·)
is continuous I conclude that each L′(ϕ, ϕ̄; ·) is a homeomorphism onto E ′/R′

whence (L′(ϕ, ϕ̄; ·), ϕ̄) is an automorphism in Bun. �

E.3.2 The canonical left action on the cross sections of an

associated bundle

The Feres machinery provides me also with a canonical left AutBun(G)(λ)-action,

L′′, on the set Γ(ξ′) of cross sections of the associated bundle ξ′ = λ[F, L] and this

goes as follows. One defines the function L′′ : AutBun(G)(λ) × Γ(ξ′) → Γ(ξ′) for

(ϕ, ϕ̄) ∈ AutBun(G)(λ) and σ ∈ Γ(ξ′) by

L′′(ϕ, ϕ̄; σ) := L′(ϕ, ϕ̄; ·) ◦ σ ◦ ϕ̄−1 , (E.45)

i.e., for z ∈ B,

(L′′(ϕ, ϕ̄; σ))(z) = L′(ϕ, ϕ̄; σ(ϕ̄−1(z))) . (E.46)

Since L′(ϕ, ϕ̄; ·), σ, and ϕ̄−1 are continuous functions it follows from (E.45) that

L′′(ϕ, ϕ̄; σ) ∈ C(B,E′/R′). Furthermore by Definition C.1 and (E.22) we have for

σ ∈ Γ(ξ′) that p′ ◦ σ = idB whence we obtain from (E.39),(E.45) that for (ϕ, ϕ̄) ∈
AutBun(G)(λ) and σ ∈ Γ(ξ′)

p′ ◦ L′′(ϕ, ϕ̄; σ) = p′ ◦ L′(ϕ, ϕ̄; ·) ◦ σ ◦ ϕ̄−1 = ϕ̄ ◦ p′ ◦ σ ◦ ϕ̄−1 = ϕ̄ ◦ idB ◦ ϕ̄−1 = idB ,

so that, by Definition C.1, L′′(ϕ, ϕ̄; σ) ∈ Γ(ξ′) which completes the proof that L′′ is

a function: AutBun(G)(λ) × Γ(ξ′) → Γ(ξ′). To show that L′′ is a left AutBun(G)(λ)-

action on Γ(ξ′) let (ϕ1, ϕ̄1), (ϕ2, ϕ̄2) ∈ AutBun(G)(λ) and σ ∈ Γ(ξ′) and let me define
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σ′ ∈ Γ(ξ′) by

σ′ := L′′(ϕ1, ϕ̄1; σ) . (E.47)

Note that for z ∈ B we have by (E.46),(E.47)

σ′(z) = L′(ϕ1, ϕ̄1; σ(ϕ̄1
−1(z))) . (E.48)

Since L′ is a left AutBun(G)(λ)-action on E ′/R′ it follows from (E.46),(E.47),(E.48)

that for (ϕ1, ϕ̄1), (ϕ2, ϕ̄2) ∈ AutBun(G)(λ) and z ∈ B

(L′′(idE , idB; σ))(z) = L′(idE , idB; σ(z)) = σ(z) , (E.49)(
L′′(ϕ2 ◦ ϕ1, ϕ̄2 ◦ ϕ̄1; σ)

)
(z) = L′(ϕ2 ◦ ϕ1, ϕ̄2 ◦ ϕ̄1; (σ ◦ ϕ̄1

−1 ◦ ϕ̄2
−1)(z))

= L′(ϕ2, ϕ̄2;L
′(ϕ1, ϕ̄1; (σ ◦ ϕ̄1

−1 ◦ ϕ̄2
−1)(z))) = L′(ϕ2, ϕ̄2; σ

′(ϕ̄2
−1(z)))

= (L′′(ϕ2, ϕ̄2; σ
′))(z) = (L′′(ϕ2, ϕ̄2;L

′′(ϕ1, ϕ̄1; σ)))(z) . (E.50)

I conclude from (E.49),(E.50) that L′′ is a left AutBun(G)(λ)-action on Γ(ξ′).

E.4 Group homomorphisms into the automorphism

group of a principal G-bundle

Let the quadruple λ in (E.3) be a principal G-bundle. If K is a group then I denote

the set of group homomorphisms from K into AutBun(G)(λ) by HOMK(λ). If Φ ∈
HOMK(λ) then Φ(K) is a subgroup of AutBun(G)(λ) and, for k ∈ K, I write

Φ(k) = (ϕ(k; ·), ϕ̄(k; ·)) , (E.51)

where (ϕ(k; ·), ϕ̄(k; ·)) ∈ AutBun(G)(λ). Let ϕ̃ ∈ GauBun(G)(λ), i.e., by (E.12), Φ̃ :=

(ϕ̃, idB) is in AutBun(G)(λ). If Φ ∈ HOMK(λ) then I define the function Φ′ : K →
AutBun(G)(λ) for k ∈ K by

Φ′(k) := Φ̃−1Φ(k)Φ̃ = (ϕ̃, idB)−1Φ(k)(ϕ̃, idB) = (ϕ̃−1 ◦ ϕ(k; ·) ◦ ϕ̃, ϕ̄(k; ·)) , (E.52)
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where I used the notation of (E.51). Clearly Φ′ ∈ HOMK(λ) and Φ′(K) is a subgroup

of AutBun(G)(λ). In fact, the groups Φ(K),Φ′(K) are conjugate via Φ̃.

E.5 Reducing the structure group G

Let G be a topological group and let H be a closed topological subgroup of G. Let

also λ in (E.3) be a principal G-bundle and λ̂ be a principal H-bundle where I write

λ̂ = (Ê, p̂, B, R̂) . (E.53)

If f ∈ C(Ê, E) exists such that, for x ∈ Ê, h ∈ H ,

f(R̂(h; x)) = R(h; f(x)) , (E.54)

then I call λ̂ a ‘H-quasireduction of λ’. With f I can define the function f̄ : B → B

for x ∈ Ê by

f̄(p̂(x)) := (p ◦ f)(x) . (E.55)

Note that f̄ is defined by (E.55) for all b ∈ B since, by Proposition E.1c, p̂ is onto

B. To show that f̄ is single valued let x, x′ ∈ Ê such that p̂(x′) = p̂(x) whence,

by Proposition E.1c, a h ∈ H exists such that x′ = R̂(h; x) so that I conclude from

(E.54),(E.55)

f̄(p̂(x′)) = (p ◦ f)(x′) = (p ◦ f)(R̂(h; x)) = p(R(h; f(x)) = p(f(x)) = f̄(p̂(x)) .

Thus indeed f̄ is a function: B → B. Since p ◦ f is continuous and since, by Propo-

sition E.1c, p̂ is onto B and identifying, it follows (see, e.g., [Hu, Section II.6]) from

(E.55) that f̄ is continuous. I call the pair (f, f̄) a ‘quasihomomorphism from λ̂ to

λ’. Clearly a principal H-bundle λ̂ is a H-quasireduction of λ iff a quasihomomor-

phism from λ̂ to λ exists. Note by (E.55) that, since p̂ is onto B, the only function
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g : B → B which satisfies g◦ p̂ = p◦f is given by g = f̄ . If λ̂ is a H-quasireduction of

λ and if, in the notation of (E.53), its total space Ê is a closed topological subspace

of E then I call λ̂ a ‘H-reduction of λ’ if a quasihomomorphism from λ̂ to λ exists

which has the form (f, idB) where f is the natural injection: Ê → E. Of course if λ̂

is a H-reduction of λ then by (E.55)

p̂ = p
∣∣∣Ê , (E.56)

and, by (E.54), R̂ is the restriction of R to H × Ê, i.e.,

R̂ = R
∣∣∣(H × Ê) . (E.57)

Clearly the H-reductions of λ form a set and I denote this set by REDH(λ). I also

note that, in the notation of (E.53), a principal H-bundle λ̂ is a H-reduction of λ iff

the following hold: Ê is a closed topological subspace of E and (E.56),(E.57) hold.

Moreover it is clear by (E.56),(E.57) that if λ̂ and λ̂′ are principal H-bundles in

REDH(λ) which have the same total space then λ̂ = λ̂′. In particular a H-reduction

of λ is completely determined by its total space. In other words, if Ê is a closed

subspace of E then a H-reduction of λ with total space Ê is, if it exists at all, given

by (Ê, p
∣∣∣Ê, B,R∣∣∣(H × Ê)).

If (ϕ, ϕ̄) ∈ AutBun(G)(λ) then I call a H-reduction λ̂ of λ ‘invariant under (ϕ, ϕ̄)’

if, in the notation of (E.53), Ê is invariant under ϕ, i.e., ϕ(Ê) = Ê. Analogously,

using the notation of Section E.4, if K is a group and Φ ∈ HOMK(λ) then I call a

H-reduction λ̂ of λ ‘invariant under the group Φ(K)’ if, in the notation of (E.53),

Ê is invariant under Φ(k) for every k ∈ K. This concept of invariant H-reduction

is very important since it underlies the so-called reduction theorems (see Section

E.6.6).

To study H-reductions it is, as will become clear in Section E.6.6, very useful to

introduce the topological spaceG/H and I first define the functionRG/H : H×G→ G
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for h ∈ H, g ∈ G by

RG/H(h; g) := gh . (E.58)

Clearly (E,RG/H) is a topological right H-space. I denote the orbit of a g ∈ G under

RG/H by gH , i.e.,

gH := {RG/H(h; g) : h ∈ H} = {gh : h ∈ H} . (E.59)

The orbit space will be denoted by G/H , i.e.,

G/H := {gH : g ∈ G} . (E.60)

Following Appendix B, I define the function pRG/H
: G→ G/H for g ∈ G by

pRG/H
(g) = gH , (E.61)

and I equip G/H with the identifying topology w.r.t. pRG/H
. Thus pRG/H

is identify-

ing and even open. I now define the function LG/H : G×G/H → G/H for g, g′ ∈ G
by

LG/H(g′; gH) := (g′g)H . (E.62)

Clearly LG/H is a transitive left G-action on G/H . To show that LG/H is continuous

it is now helpful to have RG/H at hand. In fact, defining the auxiliary function

j ∈ C(G×G,G× (G/H)) for g, g′ ∈ G by

j(g′, g) := (g′, pRG/H
(g)) = (g′, gH) , (E.63)

we have by (E.61),(E.62) for g, g′ ∈ G

(LG/H ◦ j)(g′, g) = LG/H(g′; gH) = (g′g)H = pRG/H
(g′g) . (E.64)

Since idG and pRG/H
are open functions and j is the cartesian product of idG and

pRG/H
, one concludes that j is an open function so that, by [Hu, Section II.6], j is
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identifying. Because j is onto G× (G/H) and identifying and since, due to (E.64),

LG/H ◦ j is continuous one concludes by [Hu, Section II.6] that LG/H is continuous.

Thus (G/H,LG/H) is a topological left G-space. The importance of (G/H,LG/H)

lies in the fact that the associated bundle λ[G/H,LG/H ] is a tool for studying the

H-reductions of λ (see Section E.6.6). I now draw an important conclusion from my

assumption that H is closed in G. I observe by (E.59),(E.61) that p−1
RG/H

(eGH) = H .

Since H is closed in G and pRG/H
is identifying I conclude that the singleton eGH

is closed in G/H . However since the continuous left G-action LG/H is transitive, it

follows that every singleton in G/H is closed, i.e., G/H is a T1 space.

E.6 The special case of the product principal G-

bundles

I here reconsider Sections E.1-E.5 in the special case where the quadruple λ in (E.3)

is a product principal G-bundle. The product principal G-bundles are important for

this work because Section 9.3 is based on a product principal SO(3)-bundle.

To define the product principal G-bundle I first define

E := B ×G , (E.65)

whence by (E.1),(E.3)

ξ = (B ×G, p,B) , (E.66)

λ = (ξ, R) = (B ×G, p,B,R) . (E.67)

Furthermore p : E → B is defined for b ∈ B, g ∈ G by

p(b, g) := b , (E.68)
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and R : G× E → E is defined for g, g′ ∈ G, b ∈ B by

R(g′; b, g) := (b, gg′) . (E.69)

Of course (E,R) given by (E.65),(E.69) is a topological right G-space and p is,

due to (E.68), onto B. In the following section I will show that λ, defined by

(E.67),(E.68),(E.69), is a principal G-bundle.

E.6.1 The automorphism group of a product principal G-

bundle

In the present section I show that λ, defined by (E.67),(E.68),(E.69), is a principal

G-bundle and that AutBun(G)(λ) has a simple structure (the latter will pay off in

Section E.6.3). To show that λ is a principal G-bundle we have to remind us of

Appendix B and Section E.1 and I first note that for g, g′ ∈ G, b ∈ B we have by

(E.68),(E.69)

p(R(g′; b, g)) = p(b, gg′) = b = p(b, g) , (E.70)

whence λ is a G-prebundle. I next use Proposition E.1 to show that λ is a G-bundle.

Firstly I note by (E.68) that p is onto B and identifying since it is the projection

onto the first argument. Secondly, for b ∈ B, the fibre of p over b reads by (E.68) as

p−1(b) = {b} ×G , (E.71)

whence, for (b′, g′), (b′′, g′′) ∈ p−1(b), we have b = b′ = b′′ and R(g′−1g′′; b′, g′) =

(b′, g′g′−1g′′) = (b′, g′′) = (b′′, g′′) so that R is transitive on all fibres of p. With these

two properties of λ one concludes from Proposition E.1c that λ is a G-bundle. To

show that λ is a principal G-bundle it remains to be shown that (E,R) is principal.

First of all if for g, g′ ∈ G, b ∈ B I impose the condition R(g′; b, g) = (b, g) then by

(E.69) (b, gg′) = (b, g) whence g′ = eG which entails that the right G-action R is free.
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Recalling Appendix B I define E∗ := {(b, g, R(g′; b, g)) : b ∈ B, g, g′ ∈ G} whence by

(E.69)

E∗ = {(b, g, b, gg′) : b ∈ B, g, g′ ∈ G} = {(b, g, b, g′) : b ∈ B, g, g′ ∈ G} . (E.72)

I define the function τR : E∗ → G for (b, g, b, g′) ∈ E∗ by

τR(b, g, b, g′) := g−1g′ , (E.73)

and observe for (b, g, b, g′) ∈ E∗ that by (E.69)

R(τR(b, g, b, g′); b, g) = R(g−1g′; b, g) = (b, gg−1g′) = (b, g′) , (E.74)

so that τR is the translation function of R. Clearly τR is continuous whence the

topological right G-space (E,R) is principal which completes the proof that λ is a

principal G-bundle. Note also that λ is called a ‘product principal G-bundle’.

Most importantly, since in the present context λ is a product principal G-bundle,

its automorphism group, which is defined in Section E.1, has quite a simple structure

as I will now demonstrate. Defining the function r : E → G for b ∈ B, g ∈ G by

r(b, g) := g, every ϕ ∈ C(E,E) reads as ϕ = (p◦ϕ, r◦ϕ) and we have p◦ϕ ∈ C(E,B),

r◦ϕ ∈ C(E,G). If (ϕ, ϕ̄) ∈MorBun(ξ) then for b ∈ B, g ∈ G we have by (E.2),(E.68)

ϕ̄(b) = (ϕ̄ ◦ p)(b, g) = (p ◦ ϕ)(b, g) , (E.75)

whence

ϕ(b, g) = (ϕ̄(b), (r ◦ ϕ)(b, g)) . (E.76)

If (ϕ, ϕ̄) ∈MorBun(G)(λ) then for b ∈ B, g, g′ ∈ G we have by (E.69),(E.76) and by

recalling Section E.1

(ϕ̄(b), (r ◦ ϕ)(b, g)g′) = R(g′; ϕ̄(b), (r ◦ ϕ)(b, g)) = R(g′;ϕ(b, g)) = ϕ(R(g′; b, g))

= ϕ(b, gg′) = (ϕ̄(b), (r ◦ ϕ)(b, gg′)) , (E.77)
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where in the third equality I used the fact that ϕ is a G-map on (E,R). Of course

by (E.77) we have for b ∈ B, g ∈ G that (r ◦ ϕ)(b, eG)g = (r ◦ ϕ)(b, g) so that by

(E.76) ϕ(b, g) = (ϕ̄(b), (r ◦ ϕ)(b, eG)g) whence

MorBun(G)(λ) ⊂ {(ϕ, ϕ̄) ∈ C(E,E)× C(B,B) :

[(∀ b ∈ B, g ∈ G)ϕ(b, g) = (ϕ̄(b), f(b)g)], f ∈ C(B,G)} . (E.78)

Furthermore if (ϕ, ϕ̄) is an element of the set on the rhs of (E.78) then for b ∈ B, g ∈ G
we have ϕ(b, g) = (ϕ̄(b), f(b)g) where ϕ̄ ∈ C(B,B) and f ∈ C(B,G). Note also that

f(b) = r(ϕ(b, eG)). This (ϕ, ϕ̄) satisfies (E.2), whence (ϕ, ϕ̄) ∈ MorBun(ξ), and for

b ∈ B, g, g′ ∈ G this (ϕ, ϕ̄) satisfies by (E.69)

R(g′;ϕ(b, g)) = R(g′; ϕ̄(b), f(b)g) = (ϕ̄(b), f(b)gg′) = ϕ(b, gg′) = ϕ(R(g′; b, g)) ,

so that ϕ is a G-map on (E,R). Thus I have shown that every element of the set on

the rhs of (E.78) belongs to MorBun(G)(λ) whence by (E.78) I got

MorBun(G)(λ) = {(ϕ, ϕ̄) ∈ C(E,E)× C(B,B) :

[(∀ b ∈ B, g ∈ G)ϕ(b, g) = (ϕ̄(b), f(b)g)], f ∈ C(B,G)} . (E.79)

To determine AutBun(G)(λ) I recall from Section E.1 that if (ϕ, ϕ̄) ∈ AutBun(G)(λ)

then (ϕ, ϕ̄) ∈MorBun(G)(λ) and ϕ̄ ∈ HOMEO(B,B) so that by (E.79)

AutBun(G)(λ) ⊂ {(ϕ, ϕ̄) ∈ C(E,E)×HOMEO(B,B) :

[(∀ b ∈ B, g ∈ G)ϕ(b, g) = (ϕ̄(b), f(b)g)], f ∈ C(B,G)} . (E.80)

To show that equality holds in (E.80) let (ϕ, ϕ̄) be an element of the set on the rhs of

(E.80), i.e., let ϕ̄ ∈ HOMEO(B,B) and f ∈ C(B,G) such that for b ∈ B, g ∈ G we

have ϕ(b, g) = (ϕ̄(b), f(b)g). I now define the function ϕ̃ ∈ C(E,E) for b ∈ B, g ∈ G
by

ϕ̃(b, g) := (ϕ̄−1(b), (f(ϕ̄−1(b)))−1g) . (E.81)
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Since ϕ̄ ∈ HOMEO(B,B) I have ϕ̄−1 ∈ C(B,B) whence, by (E.79),(E.81), (ϕ̃, ϕ̄−1) ∈
MorBun(G)(λ). I now compute by (E.81) for b ∈ B, g ∈ G

ϕ(ϕ̃(b, g)) = ϕ(ϕ̄−1(b), (f(ϕ̄−1(b)))−1g) = (ϕ̄(ϕ̄−1(b)), f(ϕ̄−1(b))(f(ϕ̄−1(b)))−1g)

= (b, g) ,

ϕ̃(ϕ(b, g)) = ϕ̃(ϕ̄(b), f(b)g) = (ϕ̄−1(ϕ̄(b)), (f(ϕ̄−1(ϕ̄(b))))−1f(b)g)

= (b, (f(b))−1f(b)g) = (b, g) ,

whence by the composition rule in Bun(G) (recall Section E.1)

(ϕ, ϕ̄)(ϕ̃, ϕ̄−1) = (ϕ ◦ ϕ̃, ϕ̄ ◦ ϕ̄−1) = (idE , idB) = (ϕ̃ ◦ ϕ, ϕ̄−1 ◦ ϕ̄) = (ϕ̃, ϕ̄−1)(ϕ, ϕ̄) ,

which entails that (ϕ, ϕ̄) ∈ AutBun(G)(λ) so that by (E.80)

AutBun(G)(λ) = {(ϕ, ϕ̄) ∈ C(E,E)×HOMEO(B,B) :

[(∀ b ∈ B, g ∈ G)ϕ(b, g) = (ϕ̄(b), f(b)g)], f ∈ C(B,G)} . (E.82)

This simple formula becomes important in Section E.6.3 where I consider the canon-

ical left AutBun(G)(λ)-actions L′, L′′.

E.6.2 The triviality of the associated bundles of a product

principal G-bundle

Since the motto of Section E.6 is to reconsider Sections E.1-E.5 in the case when λ

is the product principal G-bundle, defined by (E.67),(E.68),(E.69), I now reconsider

Section E.2.1, i.e., I study the bundle ξ′ = λ[F, L] in (E.22) which is the bundle

associated with λ via the topological left G-space (F, L).

In fact in the present case ξ′ is remarkably simple since, as I now show, it is

trivial. Thus the task of this section is to construct an appropriate isomorphism

from ξ′ to the product bundle ξ′′ which is defined by

ξ′′ = (B × F, p′′, B) , (E.83)
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where the function p′′ : B×F → B is defined for (b, y) ∈ B×F by p′′(b, y) := b. The

main burden of my task is to find an appropriate homeomorphism, r′′, from E ′/R′

onto B × F . With (E.14),(E.65) we have E ′ = E × F = B ×G×F and I define the

function r′ : E ′ → B × F for b ∈ B, g ∈ G, y ∈ F by

r′(b, g, y) := (b, L(g; y)) . (E.84)

Note that r′ is onto B×F and continuous. I will see below that finding an appropriate

homeomorphism boils down to the problem of finding a function h : E ′/R′ → B×F
which satisfies

h ◦ pR′ = r′ . (E.85)

Note that since pR′ is onto E ′/R′ there is at most one such h. Moreover since r′

is onto B × F one observes that h, if it exists, is onto B × F . Furthermore since

r′ is continuous and pR′ is onto E ′/R′ and identifying, one observes [Hu, Section

II.6] that h, if it exists, is continuous. To show that h exists I define the function

r′′ : E ′/R′ → B × F for (b, g, y) ∈ E ′ by

r′′(pR′(b, g, y)) := r′(b, g, y) = (b, L(g; y)) . (E.86)

Note that r′′ is defined for all z ∈ E ′/R′ by (E.86) since pR′ is onto E ′/R′. To

show that r′′, defined by (E.86), is single valued, let (b, g, y), (b′, g′, y′) ∈ E ′ and

pR′(b, g, y) = pR′(b′, g′, y′) whence, recalling Appendix B, a g′′ ∈ G exists such that

R′(g′′; b, g, y) = (b′, g′, y′), i.e., by (E.15),(E.69) I obtain

(b′, g′, y′) = R′(g′′; b, g, y) = (R(g′′; b, g), L(g′′−1; y)) = (b, gg′′, L(g′′−1; y)) . (E.87)

It follows from (E.84),(E.86),(E.87) that r′′ is single valued since I compute:

r′′(pR′(b′, g′, y′)) = r′(b′, g′, y′) = r′(b, gg′′, L(g′′−1; y)) = (b, L(gg′′;L(g′′−1; y)))

= (b, L(g; y)) = r′(b, g, y) = r′′(pR′(b, g, y)) , (E.88)
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where in the fourth equality I used the fact that L is a left G-action on F . With

(E.88) I have completed the proof that r′′ is a function: E ′/R′ → B × F .

To establish r′′ as the main stepping stone for an isomorphism from ξ′ to ξ′′ I

first show that it is a homeomorphism onto B × F . Clearly we have by (E.86) that

h = r′′ satisfies (E.85) so that one concludes by the remarks after (E.85) that h = r′′

is the unique function: E ′/R′ → B × F which satisfies (E.85) whence I got

r′′ ◦ pR′ = r′ . (E.89)

It also follows from the remarks after (E.85) that r′′ is continuous and onto B × F .

To show that r′′ is a homeomorphism onto B × F I first demonstrate that r′ is

identifying. Defining the functions r′1 : E ′ → E ′, r′2 : E ′ → E ′, r′3 : E ′ → B × F for

b ∈ B, g ∈ G, y ∈ F by

r′1(b, g, y) := (b, g, L(g; y)) , r′2(b, g, y) := (b, g, L(g−1; y)) , r′3(b, g, y) := (b, y) ,

I observe by (E.84) that

r′ = r′3 ◦ r′1 , (E.90)

r′1 ◦ r′2 = r′2 ◦ r′1 = idE′ . (E.91)

Moreover r′1, r
′
2, r

′
3 are continuous and r′3, being the projection onto the first and

third component, is identifying. Since r′1, r
′
2 are continuous we have by (E.91) that

r′1 ∈ HOMEO(E ′, E ′) whence r′1 is identifying. Since r′1, r
′
3 are identifying and r′1 is

onto E ′ it follows from (E.90) and [Du, Section VI.3] that r′ is identifying.

To finish the proof that r′′ is a homeomorphism onto B×F I define the function

r̃′′ : B × F → E ′/R′ for (b, g, y) ∈ E ′ by

r̃′′(r′(b, g, y)) := pR′(b, g, y) , (E.92)

and show that it is a continuous inverse of r′′. Note that r̃′′ is defined for all z ∈ B×F
by (E.92) since r′ is onto B × F . Note also that r̃′′, defined by (E.92), is single
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valued since if (b, g, y), (b′, g′, y′) ∈ E ′ and r′(b, g, y) = r′(b′, g′, y′) then, by (E.84),

(b, L(g; y)) = (b′, L(g′; y′)) so that

b = b′ , L(g′−1g; y) = y′ . (E.93)

Thus by (E.15),(E.69),(E.92),(E.93)

r̃′′(r′(b′, g′, y′)) = pR′(b′, g′, y′) = pR′(b, g′, L(g′−1g; y))

= pR′

(
R′(g′−1g; b, g′, L(g′−1g; y))

)
= pR′

(
R(g′−1g; b, g′), L(g−1g′;L(g′−1g; y))

)
= pR′(b, g, y) = r̃′′(r′(b, g, y)) , (E.94)

where in the fifth equality I used the fact that L is a left G-action on F . This

completes the proof that r̃′′ is a function: B × F → E ′/R′. Since pR′ is continuous

and r′ is onto B × F and identifying, I conclude [Hu, Section II.6] from (E.92) that

r̃′′ is continuous. It follows from (E.89),(E.92) that

r′ = r′′ ◦ pR′ = r′′ ◦ r̃′′ ◦ r′ , (E.95)

r̃′′ ◦ r′′ ◦ pR′ = r̃′′ ◦ r′ = pR′ . (E.96)

Since r′ is onto B × F it follows from (E.95) that

r′′ ◦ r̃′′ = idB×F , (E.97)

and since pR′ is onto E ′/R′ it follows from (E.96) that

r̃′′ ◦ r′′ = idE′/R′ . (E.98)

I conclude from (E.97),(E.98) that the continuous function r̃′′ is the inverse of the

continuous function r′′ whence r′′ ∈ HOMEO(E ′/R′, B × F ). To construct an

isomorphism from ξ′ to ξ′′ I compute by (E.84),(E.89) for (b, g, y) ∈ E ′

(p′′ ◦ r′′ ◦ pR′)(b, g, y) = (p′′ ◦ r′)(b, g, y) = p′′(b, L(g; y)) = b , (E.99)

and by (E.21),(E.68) for (b, g, y) ∈ E ′

(p′ ◦ pR′)(b, g, y) = (p ◦ q)(b, g, y) = p(b, g) = b , (E.100)
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where q is defined in Section E.2.1. I conclude from (E.99),(E.100) that p′′◦r′′◦pR′ =

p′ ◦ pR′ , whence, since pR′ is onto E ′/R′,

p′′ ◦ r′′ = p′ . (E.101)

Since r′′ is a homeomorphism onto B×F it follows from (E.101) that (r′′, idB) is an

isomorphism from ξ′ to ξ′′ in the category Bun of bundles whence the bundle ξ′ is

trivial [Hus, Section 2.3]. Note also that (E.101) entails that r′′ is an isomorphism

from ξ′ to ξ′′ in the category BunB of bundles over B.

E.6.3 The two canonical left actions of the automorphism

group of a product principal G-bundle

Since the motto of Section E.6 is to reconsider Sections E.1-E.5 in the case when λ

is the product principal G-bundle, defined by (E.67),(E.68),(E.69), I now reconsider

Section E.3, i.e., I study the left AutBun(G)(λ)-actions L′ and L′′. The isomorphism

(r′′, idB) from ξ′ to ξ′′, which I derived in Section E.6.2, is now the key tool.

I first consider L′. I define the function L̃′ : AutBun(G)(λ)× B × F → B × F for

(ϕ, ϕ̄) ∈ AutBun(G)(λ) and z ∈ E ′/R′ by

L̃′(ϕ, ϕ̄; r′′(z)) := r′′(L′(ϕ, ϕ̄; z)) . (E.102)

Note that since r′′ is a bijection onto B × F , (E.102) indeed defines a function:

AutBun(G)(λ) × B × F → B × F . Note also that by (E.102) we have for (ϕ, ϕ̄) ∈
AutBun(G)(λ)

L̃′(ϕ, ϕ̄; ·) ◦ r′′ = r′′ ◦ L′(ϕ, ϕ̄; ·) . (E.103)

Since, as shown in Section E.3.1, L′ is a left AutBun(G)(λ)-action on E ′/R′ and r′′ is a

bijection onto B×F , it follows from (E.103) that L̃′ is a left AutBun(G)(λ)-action on
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B×F and that, most importantly, the left AutBun(G)(λ)-spaces (E ′/R′, L′), (B×F, L̃′)

are conjugate. I will now see that L̃′ has a very simple structure. It follows from

(E.41),(E.84),(E.89), (E.102) that for (ϕ, ϕ̄) ∈ AutBun(G)(λ) and (b, g, y) ∈ E ′

L̃′(ϕ, ϕ̄; b, L(g; y)) = L̃′(ϕ, ϕ̄; r′(b, g, y)) = L̃′(ϕ, ϕ̄; r′′(pR′(b, g, y)))

= r′′
(
L′(ϕ, ϕ̄; pR′(b, g, y))

)
= r′′(pR′(ϕ(b, g), y)) = r′(ϕ(b, g), y) ,

whence for (ϕ, ϕ̄) ∈ AutBun(G)(λ) and (b, g, y) ∈ E ′

L̃′(ϕ, ϕ̄; b, y) = r′(ϕ(b, g), L(g−1; y)) . (E.104)

If (ϕ, ϕ̄) ∈ AutBun(G)(λ) then, by (E.82), we have for (b, g) ∈ E

ϕ(b, g) = (ϕ̄(b), f(b)g) , (E.105)

where f ∈ C(B,G) is determined by ϕ via f(b) := (r ◦ϕ)(b, eG) with r being defined

in Section E.6.1. By (E.84),(E.104),(E.105) we have for (b, g, y) ∈ E ′

L̃′(ϕ, ϕ̄; b, y) = r′(ϕ̄(b), f(b)g, L(g−1; y)) = (ϕ̄(b), L(f(b)g;L(g−1; y)))

= (ϕ̄(b), L(f(b); y)) , (E.106)

which indeed is remarkably simple.

I now consider L′′. I define the function r′′′ : Γ(ξ′)→ Γ(ξ′′) for σ ∈ Γ(ξ′) by

r′′′(σ) := r′′ ◦ σ . (E.107)

Clearly r′′′(σ) ∈ C(B,B × F ) and by (E.101),(E.107) and Definition C.1 we have

p′′ ◦ r′′′(σ) = p′′ ◦ r′′ ◦ σ = p′ ◦ σ = idB , (E.108)

so that indeed r′′′ is a function: Γ(ξ′) → Γ(ξ′′). If σ̃ ∈ Γ(ξ′′) then, since r′′ ∈
HOMEO(E ′/R′, B × F ), we have (r′′−1 ◦ σ̃) ∈ C(B,E ′/R′) whence by (E.101)

p′ ◦ r′′−1 ◦ σ̃ = p′′ ◦ σ̃ = idB , (E.109)

286



Appendix E. Principal bundles and their associated bundles

which entails (r′′−1◦σ̃) ∈ Γ(ξ′) so that, since r′′′(r′′−1◦σ̃) = r′′◦r′′−1◦σ̃ = σ̃, I conclude

that r′′′ is onto Γ(ξ′′). Furthermore it is clear by (E.107) that r′′′ is one-one whence

r′′′ is a bijection onto Γ(ξ′′). I define the function L̃′′ : AutBun(G)(λ)×Γ(ξ′′)→ Γ(ξ′′)

for (ϕ, ϕ̄) ∈ AutBun(G)(λ) and σ ∈ Γ(ξ′) by

L̃′′(ϕ, ϕ̄; r′′′(σ)) := r′′′(L′′(ϕ, ϕ̄; σ)) . (E.110)

Note that since r′′′ is a bijection onto Γ(ξ′′), (E.110) indeed defines a function:

AutBun(G)(λ)× Γ(ξ′′)→ Γ(ξ′′). Note that by (E.110)

L̃′′(ϕ, ϕ̄; ·) ◦ r′′′ = r′′′ ◦ L′′(ϕ, ϕ̄; ·) . (E.111)

Since, as shown in Section E.3.2, L′′ is a left AutBun(G)(λ)-action on Γ(ξ′) and r′′′ is a

bijection onto Γ(ξ′′), it follows from (E.111) that L̃′′ is a left AutBun(G)(λ)-action on

Γ(ξ′′) and, most importantly, that the left AutBun(G)(λ)-spaces (Γ(ξ′), L′′), (Γ(ξ′′), L̃′′)

are conjugate. I will now see that L̃′′ has a very simple structure. I compute for

(ϕ, ϕ̄) ∈ AutBun(G)(λ) and σ ∈ Γ(ξ′′) by (E.45),(E.103),(E.107),(E.110)

L̃′′(ϕ, ϕ̄; σ) = r′′′
(
L′′(ϕ, ϕ̄; r′′′−1(σ))

)
= r′′′

(
L′(ϕ, ϕ̄; ·) ◦ r′′′−1(σ) ◦ ϕ̄−1

)
= r′′ ◦ L′(ϕ, ϕ̄; ·) ◦ r′′′−1(σ) ◦ ϕ̄−1 = L̃′(ϕ, ϕ̄; ·) ◦ r′′ ◦ r′′′−1(σ) ◦ ϕ̄−1

= L̃′(ϕ, ϕ̄; ·) ◦ r′′′(r′′′−1(σ)) ◦ ϕ̄−1 = L̃′(ϕ, ϕ̄; ·) ◦ σ ◦ ϕ̄−1 , (E.112)

whence for (ϕ, ϕ̄) ∈ AutBun(G)(λ) and σ ∈ Γ(ξ′′), b ∈ B(
L̃′′(ϕ, ϕ̄; σ)

)
(b) = L̃′(ϕ, ϕ̄; σ(ϕ̄−1(b))) . (E.113)

Recalling Definition C.1 we have for σ ∈ Γ(ξ′′) that p′′ ◦ σ = idB whence for b ∈ B
we have σ(b) = (b, σ̂(b)) where σ̂ can be any elemment of C(B,F ). I thus obtain

from (E.106),(E.113) for (ϕ, ϕ̄) ∈ AutBun(G)(λ) and σ ∈ Γ(ξ′′), b ∈ B that(
L̃′′(ϕ, ϕ̄; σ)

)
(b) = L̃′(ϕ, ϕ̄; σ(ϕ̄−1(b))) = L̃′

(
ϕ, ϕ̄; ϕ̄−1(b), σ̂(ϕ̄−1(b))

)

=

(
b, L(f(ϕ̄−1(b)); σ̂(ϕ̄−1(b)))

)
, (E.114)

287



Appendix E. Principal bundles and their associated bundles

where ϕ is given by (E.105) with f ∈ C(B,G) being determined by ϕ via f(b) :=

(r ◦ ϕ)(b, eG). Eq. (E.114) is indeed remarkably simple. Formulas (E.106),(E.114)

are important in Section 9.3 where they provide the link between spin-orbit tori and

a product principal SO(3)-bundle.

E.6.4 Correspondence between cross sections and pseudo

cross sections of an associated bundle

Since the motto of Section E.6 is to reconsider Sections E.1-E.5 in the case when λ

is the product principal G-bundle, defined by (E.67),(E.68),(E.69), I now reconsider

Section E.2.2, i.e., I reconsider the correspondence γ = γλ,F,L between Γ(λ[F, L])

and Γ̃λ,F,L. In fact I here show that, in the present case, γλ,F,L is a bijection from

Γ̃λ,F,L onto Γ(λ[F, L]). The bijection property of γλ,F,L becomes very important in

the context of H-reductions (see Section E.6.6).

Recall that we already know from Section E.2.2 that γ is one-one. Since r′′′,

defined in (E.107), is a bijection from Γ(λ[F, L]) onto Γ(ξ′′) I am done if I show that

the function γ̃ : Γ̃λ,F,L → Γ(ξ′′), defined by

γ̃λ,F,L = γ̃ := r′′′ ◦ γ , (E.115)

is a bijection onto Γ(ξ′′). I first observe from (E.107),(E.115) that for ψ ∈ Γ̃λ,F,L

σ̃ = (r′′′ ◦ γ)(ψ) = r′′ ◦ σ , (E.116)

where σ ∈ Γ(λ[F, L]) and σ̃ ∈ Γ(ξ′′) are defined by

σ := γ(ψ) , σ̃ := γ̃(ψ) . (E.117)

Of course by (E.25),(E.68) we have, for b ∈ B, g ∈ G,

σ(b) = σ(p(b, g)) = pR′(b, g, ψ(b, g)) . (E.118)
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It follows from (E.89),(E.116),(E.118) that, for b ∈ B, g ∈ G,

σ̃(b) = (r′′ ◦ σ)(b) = (r′′ ◦ pR′)(b, g, ψ(b, g)) = r′(b, g, ψ(b, g)) . (E.119)

On the other hand, recalling Section E.2.2, Γ̃λ,F,L consists of those functions ψ in

C(B ×G,F ) which satisfy, for g, g′ ∈ G, b ∈ B,

ψ(b, gg′) = ψ(R(g′; b, g)) = L(g′−1;ψ(b, g)) , (E.120)

where in the first equality I used (E.69). Thus Γ̃λ,F,L consists of those functions ψ in

C(E,F ) which satisfy, for g ∈ G, b ∈ B,

ψ(b, g) = L(g−1;ψ(b, eG)) . (E.121)

In other words, Γ̃λ,F,L consists of those functions ψ : B × G → F which read for

g ∈ G, b ∈ B as

ψ(b, g) = L(g−1; f(b)) , (E.122)

where f is an arbitrary function in C(B,F ). I thus define the function γ̂λ,F,L :

C(B,F )→ Γ̃λ,F,L for b ∈ B, g ∈ G, f ∈ C(B,F ) by

γ̂λ,F,L(f) := ψ , ψ(b, g) := L(g−1; f(b)) . (E.123)

Clearly γ̂λ,F,L is a bijection onto Γ̃λ,F,L. One also sees by (E.122) that the pseudo cross

sections have, in the present case, a remarkably simple structure. Returning to the

computation of σ̃ I conclude from (E.84),(E.117), (E.119),(E.121) for g ∈ G, b ∈ B

(γ̃(ψ))(b) = σ̃(b) = r′(b, g, ψ(b, g)) = (b, L(g;ψ(b, g)) = (b, L(g;L(g−1;ψ(b, eG))))

= (b, ψ(b, eG)) . (E.124)

Since γ, r′′′ are one-one we observe by (E.115) that γ̃ is one-one. To show that γ̃ is

onto Γ(ξ′′) let σ′ ∈ Γ(ξ′′). Thus by the remarks after (E.113) we have for b ∈ B that

σ′(b) = (b, f ′(b)) where f ′ ∈ C(B,F ). To show that σ′ belongs to the image of γ̃ I
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define the function ψ′ ∈ C(B × G,F ) for g ∈ G, b ∈ B by ψ′(b, g) := L(g−1; f ′(b)).

It follows from the remarks after (E.121) that ψ′ ∈ Γ̃λ,F,L and from (E.122),(E.124)

that for b ∈ B

(γ̃(ψ′))(b) = (b, ψ′(b, eG)) = (b, L(eG; f ′(b)) = (b, f ′(b)) = σ′(b) , (E.125)

whence γ̃ is onto Γ(ξ′′) which completes the proof that γ̃ is a bijection onto Γ(ξ′′).

Clearly γ̃λ,F,L ◦ γ̂λ,F,L is a bijection onto Γ(ξ′′).

E.6.5 Group homomorphisms into the automorphism group

of a principal G-bundle

Since the motto of Section E.6 is to reconsider Sections E.1-E.5 in the case when λ

is the product principal G-bundle, defined by (E.67),(E.68),(E.69), I now reconsider

Section E.4.

If K is a group and Φ ∈ HOMK(λ) then by (E.51),(E.82) I can write for k ∈
K, b ∈ B, g ∈ G

(Φ(k))(b, g) = (ϕ(k; b, g), ϕ̄(k; b)) , (E.126)

where (ϕ(k; ·), ϕ̄(k; ·)) ∈ AutBun(G)(λ), i.e., ϕ̄(k, ·) ∈ HOMEO(B,B) and

ϕ(k; b, g) = (ϕ̄(k; b), ϕ̂(k; b)g) , (E.127)

with ϕ̂(k; ·) ∈ C(B,G) being uniquely determined by ϕ via ϕ(k; ·, eG) = (ϕ̄(k; ·), ϕ̂(k; ·)).
If K is a topological group then the product principal G-bundle λ provides me

with a correspondence between G-cocycles and group homomorphisms from K into

AutBun(G)(λ) (recall the definition of cocycles in Appendix B). More precisely, this

correspondence is established by the function ρB,K,G : COC(B,K,G)→ HOMK(λ)

which is defined for (l, ϕ̂) ∈ COC(B,K,G) by

ρB,K,G(l, ϕ̂) := Φ , (E.128)
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where Φ(k) is given, for k ∈ K, by (E.126),(E.127) with

ϕ̄ := l . (E.129)

To show that Φ, as defined by (E.126),(E.129), is in HOMK(λ) I first note by

(E.129) that ϕ̄(k; ·) ∈ HOMEO(B,B) whence, since ϕ̂(k; ·) ∈ C(B,G) I obtain from

(E.82),(E.126) that Φ(k) ∈ AutBun(G)(λ). Moreover it follows from (B.8),(E.127),

(E.129) that for k, k′ ∈ K, b ∈ B, g ∈ G,

ϕ̄(k′k; b) = l(k′k; b) = l(k′; l(k; b)) = ϕ̄(k′; ϕ̄(k; b)) = (ϕ̄(k′; ·) ◦ ϕ̄(k; ·))(b) , (E.130)

ϕ(k′k; b, g) = (ϕ̄(k′k; b), ϕ̂(k′k; b)g) = (ϕ̄(k′; ϕ̄(k; b)), ϕ̂(k′; l(k; b))ϕ̂(k; b)g)

= (ϕ̄(k′; ϕ̄(k; b)), ϕ̂(k′; ϕ̄(k; b))ϕ̂(k; b)g) = ϕ(k′; ϕ̄(k; b), ϕ̂(k; b)g)

= ϕ(k′;ϕ(k; b, g)) = (ϕ(k′; ·) ◦ ϕ(k; ·))(b, g) , (E.131)

where I also used the fact that l is a left K-action. It follows from (E.126),(E.130)

and the composition law of Bun(G)

Φ(k′k) = (ϕ(k′k; ·), ϕ̄(k′k; ·)) = (ϕ(k′; ·) ◦ ϕ(k; ·), ϕ̄(k′; ·) ◦ ϕ̄(k; ·))

= (ϕ(k′; ·), ϕ̄(k′; ·))(ϕ(k; ·), ϕ̄(k; ·)) = Φ(k′)Φ(k) , (E.132)

which completes the proof that Φ ∈ HOMK(λ). Thus indeed ρB,K,G is a func-

tion: COC(B,K,G) → HOMK(λ). To show that ρB,K,G is one-one let (l′, ϕ̂′) ∈
COC(B,K,G) such that

ρB,K,G(l, ϕ̂) = ρB,K,G(l′, ϕ̂′) . (E.133)

Clearly

ρB,K,G(l′, ϕ̂′) = Φ′ , (E.134)

where Φ′(k) is given, for k ∈ K, b ∈ B, g ∈ G, by

(Φ′(k))(b, g) = (ϕ′(k; b, g), l′(k; g)) , (E.135)
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with ϕ̄′(k, ·) ∈ HOMEO(B,B) and

ϕ′(k; b, g) = (l′(k; b), ϕ̂′(k; b)g) . (E.136)

Since Φ = Φ′ we have, by (E.126),(E.135), that ϕ = ϕ′ whence, by (E.127),(E.129),

(E.136), l = l′ and ϕ̂ = ϕ̂′ so that ρB,K,G is one-one. The function ρB,K,G thus allows

to store information about G-cocycles, in a ‘lossless’ way, in the automorphism group

of the product principal G-bundle λ. I will apply this technique in Section 9.3 to

spin-orbit tori (in that case, (B,K,G) = (Rd,Z, SO(3))). The following remark puts

ρB,K,G into perspective.

Remark:

(1) I define σ ∈ Γ(B × G, p,B) for b ∈ B by σ(b) := (b, eG). Let (l, f) ∈
COC(B,K,G) and let ρB,K,G(l, f) =: Φ. Using the notation of (E.126) I

obtain ϕ̄ = l, ϕ̂ = f and from (E.69), (E.127) that, for k ∈ K, b ∈ B,

ϕ(k; σ(b)) = ϕ(k; b, eG) = (l(k; b), f(k; b)) = R(f(k; b); l(k; b), eG)

= R(f(k; b); σ(l(k; b))) ,

i.e.,

ϕ(k; σ(b)) = R(f(k; b); σ(l(k; b))) . (E.137)

One can easily show that (E.126),(E.129), (E.137) fix Φ for every (l, f) in

COC(B,K,G). In other words, the injection ρB,K,G is induced by the cross

section σ. The point to be made here is that one can even show that for every

σ ∈ Γ(B×G, p,B), an injection from COC(B,K,G) into HOMK(λ) is induced

by σ via (E.137). �

If the topological group K is discrete (e.g., if K = Z) then one has the stronger result

that ρB,K,G is a bijection onto HOMK(λ). To prove this, let K be discrete and Φ ∈
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HOMK(λ) so I am looking for a (l, f) ∈ COC(B,K,G) such that ρB,K,G(l, f) = Φ.

Since Φ is a group homomorphism, we have

Φ(eK) = (idB×G, idB) , (E.138)

and, for k, k′ ∈ K, by using the notation of (E.126)

(ϕ(k′; ·) ◦ ϕ(k; ·), ϕ̄(k′; ·) ◦ ϕ̄(k; ·)) = (ϕ(k′; ·), ϕ̄(k′; ·))(ϕ(k; ·), ϕ̄(k; ·))

= Φ(k′)Φ(k) = Φ(k′k) = (ϕ(k′k; ·), ϕ̄(k′k; ·)) . (E.139)

Defining l by (E.129), one observes by (E.126),(E.129), (E.138),(E.139) that, for

k, k′ ∈ K, b ∈ B,

l(eK ; b) = ϕ̄(eK ; b) = b , l(k′; l(k; b)) = ϕ̄(k′; ϕ̄(k; b)) = ϕ̄(k′k; b) = l(k′k; b) ,

whence (B, l) is a left K-space. Moreover since ϕ̄(k; ·) ∈ C(B,B) and since K is

discrete, we have ϕ̄ ∈ C(K×B,B) whence, by (E.129), l ∈ C(K×B,B) so that (B, l)

is a topological left K-space. Using the notation of (E.127), where ϕ̂(k; ·) ∈ C(B,G)

is uniquely determined by ϕ via ϕ(k; ·, eG) = (ϕ̄(k; ·), ϕ̂(k; ·)), I define f by

f := ϕ̂ . (E.140)

Since K is discrete and f(k; ·) ∈ C(B,G) I conclude that f ∈ C(K ×B,G). To show

that f is a G-cocycle over (B, l), I conclude from (E.127),(E.129), (E.139),(E.140)

that, for k, k′ ∈ K, b ∈ B, g ∈ G,

(l(k′k; b), f(k′k; b)g) = (ϕ̄(k′k; b), ϕ̂(k′k; b)g) = ϕ(k′k; b, g) = ϕ(k′;ϕ(k; b, g))

= ϕ(k′; ϕ̄(k; b), ϕ̂(k; b)g) = (ϕ̄(k′; ϕ̄(k; b)), ϕ̂(k′; ϕ̄(k; b))ϕ̂(k; b)g)

= (l(k′; l(k; b)), f(k′; l(k; b))f(k; b)g) ,

whence f(k′k; b) = f(k′; l(k; b))f(k; b), which completes the proof that f is a G-

cocycle over (B, l). Thus ρB,K,G(l, f) is well defined and I obtain from (E.126),(E.127),

(E.128),(E.129),(E.140) that ρB,K,G(l, f) = Φ which completes the proof that ρB,K,G
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is onto HOMK(λ). Since ρB,K,G is one-one, this completes the proof that ρB,K,G is a

bijection onto HOMK(λ), if K is discrete.

Due to (E.12), (E.82), the gauge group of λ has the simple form:

GauBun(G)(λ) = {ϕ ∈ C(E,E) : [(∀ b ∈ B, g ∈ G)ϕ(b, g) = (b, f(b)g)], f ∈ C(B,G)} .

(E.141)

Let ϕ′ ∈ GauBun(G)(λ), i.e., by (E.12), Φ′ := (ϕ′, idB) is in AutBun(G)(λ) whence, by

(E.141), we have, for b ∈ B, g ∈ G,

ϕ′(b, g) = (b, f ′(b)g) , (E.142)

where f ′ ∈ C(B,G). Note by (E.142) that, for b ∈ B, g ∈ G, the inverse of ϕ′ in

GauBun(G)(λ) satisfies, for b ∈ B, g ∈ G,

ϕ′−1(b, g) = (b, (f ′(b))−1g) . (E.143)

Let Φ ∈ HOMK(λ) and let me define Φ′′ ∈ HOMK(λ) for k ∈ K by

Φ′′(k) := Φ′−1Φ(k)Φ′ = (ϕ′, idB)−1Φ(k)(ϕ′, idB)

= (ϕ′−1 ◦ ϕ(k; ·) ◦ ϕ′, ϕ̄(k; ·)) . (E.144)

where I also used the notation of (E.126). I conclude from (E.127),(E.142),(E.143)

that for b ∈ B, g ∈ G, k ∈ K

(ϕ′−1 ◦ ϕ(k; ·) ◦ ϕ′)(b, g) = (ϕ′−1 ◦ ϕ(k; ·))(b, f ′(b)g) = ϕ′−1(ϕ(k; b, f ′(b)g))

= ϕ′−1(ϕ̄(k; b), f(k, b)f ′(b)g) = (ϕ̄(k; b), (f ′(ϕ̄(k; b)))−1f(k, b)f ′(b)g) , (E.145)

whence by (E.144)

(Φ′′(k))(b, g) =

(
ϕ̄(k; b), (f ′(ϕ̄(k; b)))−1f(k, b)f ′(b)g, ϕ̄(k; b)

)
. (E.146)
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E.6.6 Reducing the structure group G

Since the motto of Section E.6 is to reconsider Sections E.1-E.5 in the case when λ

is the product principal G-bundle, defined by (E.67),(E.68),(E.69), I now reconsider

Section E.5, i.e., I study the H-reductions of λ. As in Section E.5, H is assumed to

be a closed subgroup of G. In addition I here assume that G is compact since it will

allow me to prove, rather easily, Theorem E.3 which completely characterizes the H-

reductions of λ in terms of the cross sections of the associated bundle λ[G/H,LG/H ].

I now outline how I proceed in this section. To be able to state Theorem E.3 I will

construct, after stating and proving Lemma E.2, the functions M̃AINλ,H ,MAINλ,H ,

M̂AINλ,H into REDH(λ). The theorem is followed by Corollary E.4 which states a

special case of Zimmer’s reduction theorem [Fe].

I first need:

Lemma E.2 Let G be a compact topological group and let (X,R) be a topological

right G-space. Let also Y ⊂ X and A be a closed subset of X. Abbreviating GY :=

{R(g; x) : g ∈ G, x ∈ Y } and O := (G×X) \R−1(A), the following hold.

a) Y ∩GA = ∅ ⇔ G× Y ∩ R−1(A) = ∅.

b) O is open in G×X and, if x ∈ X \GA, then G× {x} ⊂ O.

c) For every g ∈ G and x ∈ X \ GA there exists an open neighborhood Ux(g) of g

and an open neighborhood Vg(x) of x such that Ux(g)× Vg(x) ⊂ O.

d) Let, for every g ∈ G and x ∈ X \ GA, the open sets Ux(g) and Vg(x) as in

Lemma E.2c. Then, for every x ∈ X \ GA, there exists a positive integer n(x) and

g(1, x), ..., g(n(x), x) ∈ G such that

G =

n(x)⋃
i=1

Ux(g(i, x)) . (E.147)
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Moreover if x ∈ X \GA and g(1, x), ..., g(n(x), x) ∈ G satisfy (E.147) then V (x) :=⋂n(x)
i=1 Vg(i,x)(x) is an open neighborhood of x with G×V (x) ⊂ O and V (x) ⊂ X \GA.

e) GA is a closed subset of X and pR is a closed function.

Remark: The idea of the proof of Lemma E.2 is taken from Sections 1.4 and 1.6 in

[Ka].

Proof of Lemma E.2a: If Y ∩GA 
= ∅ then a ∈ A, g ∈ G, y ∈ Y exist such that y =

R(g; a). Thus a = R(g−1; y) whence (g−1, y) ∈ R−1(A) so that G× Y ∩R−1(A) 
= ∅.
If G × Y ∩ R−1(A) 
= ∅ then a ∈ A, g ∈ G, y ∈ Y exist such that a = R(g; y)

whence y = R(g−1; a) so that Y ∩ GA 
= ∅. I thus have shown that Y ∩ GA 
= ∅ ⇔
G× Y ∩R−1(A) 
= ∅. This implies the claim. �

Proof of Lemma E.2b: Since A is closed in X and R is continuous, R−1(A) is closed

in G×X whence O is open in G×X.

Let x ∈ X \GA. Then setting Y = {x} we have Y ∩GA = ∅ whence, by Lemma

E.2a, G× Y ∩R−1(A) = ∅. Thus G× {x} ∩ R−1(A) = ∅ whence G× {x} ⊂ O. �

Proof of Lemma E.2c: Let g ∈ G and x ∈ X\GA. Thus, by Lemma E.2b, (g, x) ∈ O.

Since, by Lemma E.2b, O is open w.r.t. the product topology on G × X, O is the

union of sets U × V where U is open in G and V is open in X. Since (g, x) ∈ O, I

conclude that there exists an open set Ux(g) in G and an open set Vg(x) in X such

that (g, x) ∈ Ux(g) × Vg(x) ⊂ O. Clearly Ux(g) is an open neighborhood of g and

Vg(x) is an open neighborhood of x. �

Proof of Lemma E.2d: Let x ∈ X \ GA. It follows from Lemma E.2c that G =⋃
g∈G Ux(g) whence, since the Ux(g) are open and G is compact, a positive integer

n(x) and g(1, x), ..., g(n(x), x) ∈ G exist such that (E.147) holds. Since the Vg(x)

are open neighborhoods of x one obtains that V (x) :=
⋂n(x)

i=1 Vg(i,x)(x) is an open

neighborhood of x. Thus if (g, x′) ∈ G×V (x) then, by (E.147), a positive integer 1 ≤
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k(g, x′) ≤ n(x) exists such that g ∈ Ux(g(k(g, x
′), x)) whence, since V (x) contains

x′, we have (g, x′) ∈ Ux(g(k(g, x
′), x)) × V (x) ⊂ Ux(g(k(g, x

′), x)) × Vg(k(g,x′),x)(x).

However, by Lemma E.2c, Ux(g(k(g, x
′), x))× Vg(k(g,x′),x)(x) ⊂ O whence (g, x′) ∈ O

which proves that G×V (x) ⊂ O. Since G×V (x) ⊂ O and (G×X)\O = R−1(A), it

follows that G×V (x)∩R−1(A) = ∅. Setting Y = V (x) in Lemma E.2a, one obtains

V (x) ∩GA = ∅ whence V (x) ⊂ X \GA. �

Proof of Lemma E.2e: It follows from Lemma E.2d that X \ GA =
⋃

x∈X\GA V (x).

Since, by Lemma E.2d, V (x) is open, one obtains that X \ GA is open whence GA

is closed. On the other hand one concludes from (B.13) that

p−1
R (pR(A)) =

⋃
g∈G

⋃
x∈A

{R(g; x)} = GA . (E.148)

Also we have p−1
R (X \pR(A)) = X \ (p−1

R (pR(A))) whence p−1
R (pR(A)) = X \ (p−1

R (X \
pR(A))) so that, by (E.148),

GA = X \ (p−1
R (X \ pR(A))) . (E.149)

Since GA is closed, it follows from (E.149) that p−1
R (X \ pR(A)) is open. Since

p−1
R (X \ pR(A)) is open and pR is identifying I obtain that X \ pR(A) is open whence

pR(A) is closed. This proves that pR is a closed function. �

I now begin my constructions and I first take a look at the pseudo cross sections

associated with λ via (G/H,LG/H) (recall that in this section G is compact!). In

fact, due to (E.121), the set Γ̃λ,G/H,LG/H
consists of those functions ψ : B×G→ G/H

which read for g ∈ G, b ∈ B as

ψ(b, g) = LG/H(g−1;ψ(b, eG)) , (E.150)

where ψ(·, eG) is an arbitrary function in C(B,G/H). Of course each ψ in Γ̃λ,G/H,LG/H

is continuous. Furthermore, since LG/H is transitive, each ψ in Γ̃λ,G/H,LG/H
is onto

G/H . To construct the function M̃AINλ,H : Γ̃λ,G/H,LG/H
→ REDH(λ) let ψ ∈

297



Appendix E. Principal bundles and their associated bundles

Γ̃λ,G/H,LG/H
. I define the subspace Êψ of B ×G by

Êψ := ψ−1(eGH) , (E.151)

whence by (E.62),(E.150)

Êψ = {(b, g) ∈ B ×G : ψ(b, g) = eGH}

= {(b, g) ∈ B ×G : LG/H(g−1;ψ(b, eG)) = eGH}

= {(b, g) ∈ B ×G : ψ(b, eG) = gH} . (E.152)

Note that since H is closed in G I know from the remarks after (E.64) that the

singleton eGH is closed in G/H whence, by (E.151), Êψ is closed in B×G. The aim

now is to construct a H-reduction of λ whose total space is Êψ. It is clear by Section

E.5 that, if such a H-reduction of λ exists at all, then it reads as

λ̂ψ = (Êψ, p̂ψ, B, R̂ψ) , (E.153)

where

p̂ψ := p
∣∣∣Êψ , R̂ψ := R

∣∣∣(H × Êψ) . (E.154)

Since Êψ is closed in B × G, it is clear by Section E.5 and (E.153),(E.154) that, if

λ̂ψ is a principal H-bundle, then λ̂ψ ∈ REDH(λ). Thus my aim is to show that

λ̂ψ is a principal H-bundle and I first show that it is a H-prebundle. Clearly p̂ψ is

continuous. To show that R̂ψ is a right H-action on Êψ, let (b, g) ∈ Êψ whence,

by (E.152), ψ(b, eG) = gH . Picking a h ∈ H and defining g′ := gh ∈ G I observe

that g′H = (gh)H = gH = ψ(b, eG) whence, by (E.152), (b, g′) ∈ Êψ. On the other

hand I obtain from (E.69),(E.154) that R̂ψ(h; b, g) = R(h; b, g) = (b, gh) = (b, g′)

whence R̂ψ(h; b, g) ∈ Êψ. I thus have shown that the image of R̂ψ is a subset of

Êψ whence R̂ψ is a right H-action on Êψ (and Êψ is the image of R̂ψ). Clearly

(Êψ, R̂ψ) is topological right H-space. Since λ is a principal H-bundle, p is a G-map

from the right G-space (B × G,R) to the trivial right G-space over B, whence one
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concludes from (E.154) that p̂ψ is a H-map from the right H-space (Êψ, R̂ψ) to the

trivial right H-space over B which entails that λ̂ψ is a H-prebundle. I will now use

Proposition E.1 to show that λ̂ψ is a H-bundle. If b ∈ B then, choosing g ∈ G such

that ψ(b, eG) = gH , I obtain from (E.152) that (b, g) ∈ Êψ and by (E.68),(E.154)

that p̂ψ(b, g) = p(b, g) = b whence p̂ψ is onto B. To show that R̂ψ is transitive on

the fibres of p̂ψ let (b, g) ∈ Êψ and let (b′, g′) ∈ p̂−1
ψ (p̂ψ(b, g)). Thus (b′, g′) ∈ Êψ

and p̂ψ(b′, g′) = p̂ψ(b, g) whence, by (E.152), ψ(b, eG) = gH, ψ(b′, eG) = g′H and, by

(E.68),(E.154), b′ = p(b′, g′) = p̂ψ(b′, g′) = p̂ψ(b, g) = p(b, g) = b so that gH = g′H

which entails that a h ∈ H exists such that g′ = gh. Thus (E.69),(E.154) give me

(b′, g′) = (b, gh) = R(h; b, g) = R̂ψ(h; b, g) . (E.155)

It follows from (E.155) that (b′, g′) ∈ pR̂ψ
(b, g) whence I have shown that

p̂−1
ψ (p̂ψ(b, g)) ⊂ pR̂ψ

(b, g) so that, by Proposition E.1b, R̂ψ is transitive on the fibres of

p̂ψ where I also use the fact that λ̂ψ is a H-prebundle. To show that p̂ψ is identifying

I first note by Lemma E.2 that the function pR is closed. On the other hand, since λ

is a G-bundle, its prebundle function, πλ, is a homeomorphism onto B whence πλ is

closed. Thus, by (E.11), p is the composition of closed functions which entails that

p is closed. Since Êψ is closed in B ×G and p is closed it follows from (E.154) that

p̂ψ is closed whence (see [Hu, Section II.6]) p̂ψ is identifying. I thus have completed

the proof that p̂ψ is onto B and identifying and that R̂ψ is transitive on the fibres

of p̂ψ. Thus, by Proposition E.1c, λ̂ψ is a H-bundle. To finish the proof that λ̂ψ

is a principal H-bundle it remains to be shown that the topological right H-space

(Êψ, R̂ψ) is principal. Since R is free, it follows from (E.154) that R̂ψ is free. To find

the translation function of R̂ψ I define, as suggested by Section E.6.1, the topological

space Ê∗
ψ by

Ê∗
ψ := {(b, g, R̂ψ(h; b, g)) : (b, g) ∈ Êψ, h ∈ H}

= {(b, g, R(h; b, g)) : (b, g) ∈ Êψ, h ∈ H}

= {(b, g, b, gh) : (b, g) ∈ Êψ, h ∈ H} ⊂ E∗ , (E.156)
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where I also used (E.69),(E.72), (E.154). I recall from Section E.6.1 that the contin-

uous function τR : E∗ → G, defined by (E.73), is the translation function of R, i.e.,

it satisfies for (b, g, b, g′) ∈ E∗

R(τR(b, g, b, g′); b, g) = (b, g′) . (E.157)

I define the function τ̂ψ : Ê∗
ψ → H by

τ̂ψ := τR

∣∣∣Ê∗
ψ , (E.158)

i.e., for (b, g, b, g′) ∈ Ê∗
ψ we have, by (E.73),

τ̂ψ(b, g, b, g′) = τR(b, g, b, g′) = g−1g′ . (E.159)

Note that the image of τ̂ψ is a subset of H since, if (b, g, b, g′) ∈ Ê∗
ψ, then by (E.156) a

h ∈ H exists such that g′ = gh whence, by (E.159), τ̂ψ(b, g, b, g′) = g−1g′ = g−1gh =

h ∈ H . Thus τ̂ψ is indeed a function: Ê∗
ψ → H . Of course we have by (E.69),

(E.154),(E.158) for (b, g, b, g′) ∈ Ê∗
ψ

R̂ψ(τ̂ψ(b, g, b, g′); b, g) = R̂ψ(g−1g′; b, g) = R(g−1g′; b, g) = (b, g′) , (E.160)

whence τ̂ψ is the translation function of R̂ψ. Since λ is a principal bundle, the function

τR is continuous so it follows from (E.158) that τ̂ψ is continuous which completes the

proof that the right H-space (Êψ, R̂ψ) is principal. This completes the proof that λ̂ψ

is a principal H-bundle.

Before I proceed it is worthwile to mention that the above argument, which

proved that p is a closed function, can be immediately generalized to the following

statement: If X is a topological space then the function p̃ ∈ C(X × G,X), defined

for x ∈ X, g ∈ G by p̃(x, g) := x, is a closed function.

From the remarks after (E.154) it is thus clear that λ̂ψ ∈ REDH(λ) whence I can

define the function M̃AINλ,H : Γ̃λ,G/H,LG/H
→ REDH(λ) for ψ ∈ Γ̃λ,G/H,LG/H

by

M̃AINλ,H(ψ) := λ̂ψ = (Êψ, p̂ψ, B, R̂ψ) , (E.161)
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where in the second equality I used (E.153). I also define the function MAINλ,H :

Γ(λ[G/H,LG/H ])→ REDH(λ) by

MAINλ,H := M̃AINλ,H ◦ γ−1
λ,G/H,LG/H

. (E.162)

As was shown in Section E.6.4, the function γλ,G/H,LG/H
: Γ̃λ,G/H,LG/H

→ Γ(λ[G/H,LG/H ])

is a bijection onto Γ(λ[G/H,LG/H ]) whence MAINλ,H is indeed a function:

Γ(λ[G/H,LG/H ])→ REDH(λ). Recalling Section E.6.4 I define the function M̂AINλ,H :

C(B,G/H)→ REDH(λ) by

M̂AINλ,H := M̃AINλ,H ◦ γ̂λ,G/H,LG/H
. (E.163)

Note that by (E.123) and writing γ̂λ,G/H,LG/H
= γ̂ we have, for b ∈ B and f ∈

C(B,G/H) that (γ̂(f))(b, eG) = f(b) whence, by (E.152), I obtain the convenient

expression

Êγ̂(f) = {(b, g) ∈ B ×G : f(b) = gH} . (E.164)

I can now formulate the theorem.

Theorem E.3 Let G be a compact topological group and let H be a closed subgroup

of G. Let λ be a product principal G-bundle in the notation of (E.67),(E.68),(E.69).

Then the following hold:

a) The function M̃AINλ,H , defined by (E.161), is a bijection onto REDH(λ).

b) The function MAINλ,H , defined by (E.162), is a bijection onto REDH(λ).

c) The function M̂AINλ,H , defined by (E.163), is a bijection onto REDH(λ).

Proof of Theorem E.3a: To show that M̃AINλ,H is one-one, let ψ, ψ′ ∈ Γ̃λ,G/H,LG/H

such that M̃AINλ,H(ψ) = M̃AINλ,H(ψ′). Thus, by (E.161), Êψ = Êψ′ so that, by

(E.152),

{(b, g) ∈ B ×G : ψ(b, eG) = gH} = Êψ = Êψ′

= {(b, g) ∈ B ×G : ψ′(b, eG) = gH} . (E.165)
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If b ∈ B then I pick a g ∈ G such that ψ(b, eG) = gH whence, by (E.165), (b, g) ∈
Êψ = Êψ′ and ψ′(b, eG) = gH . I conclude that ψ(·, eG) = ψ′(·, eG) whence, by

(E.150), for b ∈ B, g ∈ G,

ψ(b, g) = LG/H(g−1;ψ(b, eG)) = LG/H(g−1;ψ′(b, eG)) = ψ′(b, g) , (E.166)

so that ψ = ψ′ which completes the proof that M̃AINλ,H is one-one.

To show that M̃AINλ,H is onto REDH(λ), let λ̂ be a H-reduction of λ, i.e., let

λ̂ ∈ REDH(λ) so I am looking for a ψ ∈ Γ̃λ,G/H,LG/H
such that M̃AINλ,H(ψ) = λ̂.

Using the notation of (E.53) I write λ̂ = (Ê, p̂, B, R̂) and I define

Ê ′ := {(b, g, b′, g′) ∈ B ×G× Ê : p(b, g) = p̂(b′, g′)}

= {(b, g, b′, g′) ∈ B ×G× Ê : b = b′} = {(b, g, b, g′) : g ∈ G, (b, g′) ∈ Ê}

= {(b, g, b, g′) ∈ E∗ : (b, g′) ∈ Ê} ⊂ E∗ , (E.167)

where I also used (E.56), (E.68),(E.72). To construct ψ I first have to define the

auxiliary functions f1 and f2. I define the function f1 : Ê ′ → G by f1 := τR

∣∣∣Ê ′, i.e.,

for (b, g, b, g′) ∈ Ê ′ we have by (E.73)

f1(b, g, b, g
′) = g−1g′ . (E.168)

Since τR is continuous, so is f1. I define the function f2 ∈ C(Ê ′, B×G) for (b, g, b, g′) ∈
Ê ′ by

f2(b, g, b, g
′) := (b, g) . (E.169)

Since λ̂ is a principal H-bundle one observes by Proposition E.1c that p̂ is onto B

whence, since Ê ⊂ B ×G and due to (E.56),(E.68), we have the fact that for every

b ∈ B a g′ ∈ G exists such that (b, g′) ∈ Ê. It thus follows from (E.167),(E.169) that

f2 is onto B×G. I now define the function ψ : B×G→ G/H for (b, g, b, g′) ∈ Ê ′ by

ψ(f2(b, g, b, g
′)) := pRG/H

(f1(b, g, b, g
′)) = f1(b, g, b, g

′)H = g−1g′H , (E.170)
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where in the second equality I used (E.61) and in the third equality I used (E.168).

Note that ψ is defined by (E.170) on the whole set B×G since f2 is onto B×G. To

show that ψ is single valued one observes that if (b, g, b, g′), (b′′, g′′, b′′, g′′′) ∈ Ê ′ with

f2(b, g, b, g
′) = f2(b

′′, g′′, b′′, g′′′) then, by (E.169), b = b′′, g′′ = g whence by (E.170)

ψ(f2(b
′′, g′′, b′′, g′′′)) = g′′−1g′′′H = g−1g′′′H . (E.171)

Since λ̂ is a H-bundle, Proposition E.1c gives me the transitivity of R̂ on the fibres

of p̂. Moreover since, by (E.167), (b, g′), (b′′, g′′′) ∈ Ê and b = b′′ one observes by

(E.56),(E.68) that (b, g′), (b′′, g′′′) belong to the same fibre of p̂. Thus a h ∈ H exists

such that (b′′, g′′′) = R̂(h; b, g′) which entails by (E.57),(E.69)

(b′′, g′′′) = R̂(h; b, g′) = R(h; b, g′) = (b, g′h) . (E.172)

It follows from (E.170),(E.171),(E.172) that

ψ(f2(b
′′, g′′, b′′, g′′′)) = g−1g′hH = g−1g′H = ψ(f2(b, g, b, g

′)) , (E.173)

whence indeed ψ is single valued.

Having got the function ψ my aim is to show that M̃AINλ,H(ψ) = λ̂ so I first

have to show that ψ belongs to the domain, Γ̃λ,G/H,LG/H
, of M̃AINλ,H . Let (b, g) ∈

B × G. I already showed earlier in this proof that I can pick a g′ ∈ G such that

(b, g′) ∈ Ê whence, by (E.167), (b, eG, b, g
′), (b, g, b, g′) ∈ Ê ′. Thus one concludes

from (E.169),(E.170) that

ψ(b, eG) = ψ(f2(b, eG, b, g
′)) = g′H , ψ(b, g) = ψ(f2(b, g, b, g

′)) = g−1g′H ,

whence, by (E.62),

ψ(b, g) = g−1g′H = LG/H(g−1; g′H) = LG/H(g−1;ψ(b, eG)) , (E.174)

so that (E.150) is satisfied. Thus, due to the remarks on (E.150), I will have estab-

lished that ψ ∈ Γ̃λ,G/H,LG/H
if I can show that ψ ∈ C(B×G,G/H). One observes by
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(E.170) that

ψ ◦ f2 = pRG/H
◦ f1 . (E.175)

I will show below that f2 is identifying whence, since f2 is onto B×G and pRG/H
◦f1 is

continuous, it follows from [Hu, Section II.6] and (E.175) that ψ ∈ C(B×G,G/H). To

show that f2 is identifying I define the function f3 ∈ C(Ê ′, E∗) as the natural injection

into E∗ and the function f4 ∈ C(E∗, B × G) for (b, g, b, g′) ∈ E∗ by f4(b, g, b, g
′) :=

(b, g). Note that, by (E.169), f2 = f4 ◦ f3. I will show below that f3, f4 are closed

whence f2 is closed which entails that f2 is identifying [Hu, Section II.6]. To show

that f3 is closed I note by (E.167) that Ê ′ = E∗ ∩ (B × G × Ê). Since λ̂ is a H-

reduction of λ, Ê is closed in B×G whence B×G× Ê is closed in B×G×B×G so

that Ê ′ is closed in E∗. Thus the natural injection f3 is a closed function. To show

that f4 is closed I define Ẽ := {(b, g, b) : b ∈ B, g ∈ G} and I define the function

f5 ∈ C(E∗, Ẽ) for b ∈ B, g, g′ ∈ G by f5(b, g, b, g
′) := (b, g, b). I also define the

function f6 ∈ C(Ẽ, B×G) for b ∈ B, g ∈ G by f6(b, g, b) := (b, g). Clearly f4 = f6◦f5.

I will show below that f5, f6 are closed whence f4 is closed. In fact, by (E.72), we

have E∗ = Ẽ×G whence f5 ∈ C(Ẽ×G, Ẽ) so that, by a remark after (E.160), f5 is a

closed function. To show that f6 is closed I define the function f7 ∈ C(B×G, Ẽ) for

b ∈ B, g ∈ G by f7(b, g) := (b, g, b). Clearly idẼ = f7 ◦f6 and idB×G = f6 ◦f7 whence

f7 is the inverse of f6 so that f6 ∈ HOMEO(Ẽ, B × G). Thus f6 is closed which

completes the proof that f4 is closed. This completes the proof that f2 is identifying

which, in turn, completes the proof that ψ is continuous. This completes the proof

that ψ ∈ Γ̃λ,G/H,LG/H
. Thus M̃AINλ,H(ψ) is a well defined element of REDH(λ) so

my remaining task is to show that M̃AINλ,H(ψ) = λ̂. It follows from (E.161) that

Êψ is the total space of M̃AINλ,H(ψ) whence one concludes from Section E.5 that

if Êψ is equal to the total space, Ê, of λ̂ then M̃AINλ,H(ψ) = λ̂. To show that
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Êψ = Ê one concludes from (E.151),(E.167),(E.169), (E.170) that

Êψ = ψ−1(eGH) = {(b, g) ∈ B ×G : ψ(b, g) = eGH}

= {f2(b, g, b, g
′) : (b, g, b, g′) ∈ Ê ′, ψ(f2(b, g, b, g

′)) = eGH}

= {(b, g) ∈ B ×G : (b, g, b, g′) ∈ Ê ′, g−1g′H = eGH}

= {(b, g) ∈ B ×G : (b, g, b, g′) ∈ Ê ′, g′H = gH}

= {(b, g) ∈ B ×G : (b, g, b, g′) ∈ B ×G× Ê, g′H = gH}

= {(b, g) ∈ B ×G : (∃g′ ∈ G)(b, g′) ∈ Ê, g′H = gH} , (E.176)

where I also used the fact that f2 is onto B × G. If (b, g) ∈ Ê then, trivially,

gH = gH whence, by (E.176), (b, g) ∈ Êψ so that Ê ⊂ Êψ. To show that Ê ⊃ Êψ,

let (b, g) ∈ Êψ so that, by (E.176), a g′ ∈ G exists such that (b, g′) ∈ Ê and

g′H = gH . Thus a h ∈ H exists such that g = g′h whence, by (E.57),(E.69),

R̂(h; b, g′) = R(h; b, g′) = (b, g′h) = (b, g) so that (b, g) ∈ Ê which completes the

proof that Ê = Êψ. This completes the proof that M̃AINλ,H(ψ) = λ̂ which in turn

completes the proof that M̃AINλ,H is onto REDH(λ). This completes the proof

that M̃AINλ,H is a bijection onto REDH(λ). �

Proof of Theorem E.3b: As mentioned after (E.162), the function γλ,G/H,LG/H
is a

bijection from Γ̃λ,G/H,LG/H
onto Γ(λ[G/H,LG/H ]). It thus follows from Theorem E.3a

and (E.162) that MAINλ,H is a bijection from Γ(λ[G/H,LG/H ]) onto REDH(λ). �

Proof of Theorem E.3c: As mentioned after (E.123), the function γ̂λ,G/H,LG/H
is a

bijection from C(B,G/H) onto Γ̃λ,G/H,LG/H
. It thus follows from Theorem E.3a and

(E.163) that M̂AINλ,H is a bijection from C(B,G/H) onto REDH(λ). �

Note that the idea of the proof of Theorem E.3a is taken from the proof of

Proposition 6.2.2 in [Fe].

I recall from Section E.5 that if (ϕ, ϕ̄) ∈ AutBun(G)(λ) then a H-reduction, λ̂, of

λ is called ‘invariant under (ϕ, ϕ̄)’ if, in the notation of (E.53), Ê is invariant under
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ϕ, i.e., ϕ(Ê) = Ê. I thus obtain the following immediate and important consequence

of Theorem E.3.

Corollary E.4 Let the conditions underlying Theorem E.3 be fulfilled, i.e., let G be

a compact topological group, let H be a closed subgroup of G, and let λ be a product

principal G-bundle in the notation of (E.67),(E.68),(E.69). Let λ̂ be a H-reduction

of λ and let ψ ∈ Γ̃λ,G/H,LG/H
be defined by ψ := M̃AIN

−1

λ,H(λ̂) and let me write, as

in (E.161),

λ̂ = M̃AINλ,H(ψ) = (Êψ, p̂ψ, B, R̂ψ) , (E.177)

where Êψ, p̂ψ, R̂ψ are given by (E.151),(E.154). Let (ϕ, ϕ̄) ∈ AutBun(G)(λ) and let

me write ϕ as in (E.82), i.e., for b ∈ B, g ∈ G I write

ϕ(b, g) = (ϕ̄(b), f(b)g) , (E.178)

where f ∈ C(B,G) is uniquely determined by ϕ via ϕ(·, eG) = (ϕ̄(·), f(·)). Then the

following hold.

a) λ̂ is invariant under (ϕ, ϕ̄) iff for every b ∈ B

ψ(ϕ̄(b), eG) = LG/H(f(b);ψ(b, eG)) . (E.179)

b) Defining f̂ ∈ C(B,G/H) by

f̂ := M̂AIN
−1

λ,H(λ̂) = γ̂−1
λ,G/H,LG/H

(ψ) , (E.180)

we have that λ̂ is invariant under (ϕ, ϕ̄) iff for every b ∈ B

f̂(ϕ̄(b)) = LG/H(f(b); f̂(b)) . (E.181)

Proof of Corollary E.4a: I first consider the case where λ̂ is invariant under (ϕ, ϕ̄),

i.e., ϕ(Êψ) = Êψ. Let b ∈ B. I pick a g ∈ G such that ψ(b, eG) = gH whence, by

(E.152), (b, g) ∈ Êψ. I define (b′, g′) ∈ B ×G by

(b′, g′) := ϕ(b, g) = (ϕ̄(b), f(b)g) , (E.182)
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where in the second equality I used (E.178). Since ϕ(Êψ) = Êψ we have (b′, g′) ∈ Êψ

whence, by (E.152), ψ(b′, eG) = g′H so that, by (E.62),(E.182),

ψ(ϕ̄(b), eG) = ψ(b′, eG) = g′H = (f(b)g)H = LG/H(f(b); gH) . (E.183)

Since ψ(b, eG) = gH I conclude from (E.183) that (E.179) holds.

Conversely, let (E.179) hold for every b ∈ B and let (b, g) ∈ Êψ. Thus, by (E.152),

ψ(b, eG) = gH . My aim is to show that ϕ(b, g) ∈ Êψ. With the notation of (E.182)

I compute, by using (E.62),(E.179),

ψ(b′, eG) = ψ(ϕ̄(b), eG) = LG/H(f(b);ψ(b, eG)) = LG/H(f(b); gH) = (f(b)g)H = g′H ,

whence (b′, g′) ∈ Êψ. I thus have shown that ϕ(Êψ) ⊂ Êψ whence, since ϕ is a

bijection onto B ×G, ϕ(Êψ) = Êψ so that λ̂ is invariant under (ϕ, ϕ̄). �

Proof of Corollary E.4b: It follows from (E.180) that γ̂λ,G/H,LG/H
(f̂) = ψ whence, for

b ∈ B, by (E.123), ψ(b, eG) = f̂(b) so that (E.179) is equivalent to (E.181). �
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Proofs

F.1 Proof of Proposition 6.4

Proof of Proposition 6.4: Let (ω,A) ∈ SOT (d, ω) and let n be an integer.

I first consider the case n = 0. Since Ψω,A(0;φ) = I3×3 we have, by Defini-

tion C.14, that Ind3,d(Ψω,A(0; ·)) = (1, ..., 1)T whence (Ind3,d(A))0 = (1, ..., 1)T =

Ind3,d(Ψω,A(0; ·)) which proves the claim in the present case.

I now consider the case where n is positive. By (6.4) we have, Ψω,A(n; ·) =

A(·+ 2π(n− 1)ω) · · ·A(·), whence, by Theorem C.15a,

Ind3,d(Ψω,A(n; ·)) = Ind3,d(A(·+ 2π(n− 1)ω) · · ·A(·))

= Ind3,d(A(·+ 2π(n− 1)ω)) · · · Ind3,d(A(·)) ,

so that, by Proposition C.18f,

Ind3,d(Ψω,A(n; ·)) = Ind3,d(A(·)) · · · Ind3,d(A(·)) = (Ind3,d(A(·)))n ,

which proves the claim in the present case.
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I now consider the case where n is negative. By (6.7) we have ΨT
ω,A(n; ·) =

Ψω,A(−n; ·+ 2πnω) whence, by Theorem C.15a and Proposition C.18f,

Ind3,d(Ψω,A(n; ·)) = Ind3,d(Ψ
T
ω,A(n; ·)) = Ind3,d(Ψω,A(−n; · + 2πnω))

= Ind3,d(Ψω,A(−n; ·)) . (F.1)

Since I already proved the claim for positive n I have Ind3,d(Ψω,A(−n; ·))
= (Ind3,d(A(·)))−n whence, by (F.1),

Ind3,d(Ψω,A(n; ·)) = (Ind3,d(A(·)))−n . (F.2)

Since, due to the special structure of the group {1,−1}d, (Ind3,d(A(·)))−n

= (Ind3,d(A(·)))n, eq. (F.2) gives me (6.25) which proves the claim in the present

case. �

F.2 Proof of Proposition 7.1

Proof of Proposition 7.1a: Let T ∈ Cper(R
d, SO(3)). Clearly LT T ◦LT = LT ◦LT T =

idRd+3 whence LT T is the inverse of LT . Since LT and LT T are continuous, it follows

that LT is a homeomorphism onto Rd+3. �

Proof of Proposition 7.1b: Let (ω,A) ∈ SOT (d, ω) and T ∈ Cper(R
d, SO(3)).

I use (6.9) and Proposition 7.1a to get, for n ∈ Z, φ ∈ Rd, S ∈ R3,

(
LT ◦ Lω,A(n; ·) ◦ L−1

T

)⎛⎝ φ

S

⎞
⎠ =

(
LT ◦ Lω,A(n; ·) ◦ LT T

)⎛⎝ φ

S

⎞
⎠

=

(
LT ◦ Lω,A(n; ·)

)⎛⎝ φ

T (φ)S

⎞
⎠ = LT

⎛
⎝ φ+ 2πnω

Ψω,A(n;φ)T (φ)S

⎞
⎠

=

⎛
⎝ φ+ 2πnω

T T (φ+ 2πnω)Ψω,A(n;φ)T (φ)S

⎞
⎠ , (F.3)
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which proves (7.3). It is also clear by (7.4) that A′ ∈ Cper(R
d, SO(3)) whence,

by Definition 6.1, (ω,A′) ∈ SOT (d, ω). To prove (7.5) I define the function Ψ′ :

Z × Rd → SO(3) for n ∈ Z, φ ∈ Rd by Ψ′(n;φ) := T T (φ + 2πnω)Ψω,A(n;φ)T (φ)

whence my aim is to show that Ψ′ = Ψω,A′. By (6.4) I have Ψ′(0;φ) = I3×3 and, by

(7.4) and the remarks on (6.5), I have, for n ∈ Z, φ ∈ Rd,

Ψ′(n+ 1;φ) = T T (φ+ 2π(n+ 1)ω)Ψω,A(n+ 1;φ)T (φ)

= T T (φ+ 2π(n+ 1)ω)A(φ+ 2πnω)Ψω,A(n;φ)T (φ)

= T T (φ+ 2π(n+ 1)ω)A(φ+ 2πnω)T (φ+ 2πnω)T T (φ+ 2πnω)Ψω,A(n;φ)T (φ)

= A′(φ+ 2πnω)T T (φ+ 2πnω)Ψω,A(n;φ)T (φ) = A′(φ+ 2πnω)Ψ′(n;φ) .

Thus Ψ′ satisfies the initial value problem

Ψ′(n+ 1;φ) = A′(φ+ 2πnω)Ψ′(n;φ) , Ψ′(0;φ) = I3×3 ,

which, by the remarks on (6.5), implies that Ψ′ = Ψω,A′ whence (7.5) holds. To prove

(7.6) I conclude from (7.3), (7.5) that, for n ∈ Z, φ ∈ Rd, S ∈ R3,

(
LT ◦ Lω,A(n; ·) ◦ L−1

T

)⎛⎝ φ

S

⎞
⎠ =

⎛
⎝ φ+ 2πnω

Ψω,A′(n;φ)S

⎞
⎠ . (F.4)

It follows from (6.9),(F.4) that (7.6) holds. Recalling Appendix B, I conclude that LT

is a continuous Z-map from the topological Z-space (Rd+3, Lω,A) to the topological

Z-space (Rd+3, Lω,A′) and that both topological Z-spaces are conjugate. �

Proof of Proposition 7.1c: Let (ω,A) ∈ SOT (d, ω) and T ∈ Cper(R
d, SO(3)). Let⎛

⎝ φ(·)
S(·)

⎞
⎠ be a spin-orbit trajectory of (ω,A) and let S ′(·) be defined by S ′(n) :=
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T T (φ(n))S(n). It follows from (6.2),(6.3),(7.4) that

S ′(n+ 1) = T T (φ(n+ 1))S(n+ 1) = T T (φ(0) + 2π(n+ 1)ω)S(n+ 1)

= T T (φ(0) + 2π(n+ 1)ω)A(φ(0) + 2πnω)S(n)

= T T (φ(0) + 2π(n+ 1)ω)A(φ(0) + 2πnω)T (φ(n))S ′(n)

= T T (φ(0) + 2π(n+ 1)ω)A(φ(0) + 2πnω)T (φ(0) + 2πnω)S ′(n)

= A′(φ(0) + 2πnω)S ′(n) = A′(φ(n))S ′(n) .

Thus, by (6.2), S ′(·) is a spin trajectory, over φ(0), of the spin-orbit torus (ω,A′)

and

⎛
⎝ φ(·)

S ′(·)

⎞
⎠ is a spin-orbit trajectory of (ω,A′). �

Proof of Proposition 7.1d: Let (ω,A) ∈ SOT (d, ω) and T ∈ Cper(R
d, SO(3)). Let also

φ0 ∈ Rd and let t : Z→ SO(3) be defined by t(n) := T (φ0 +2πnω). Let furthermore

S(·) be a spin trajectory, over φ0, of (ω,A) and let me define the function S ′ : Z→ R3

by S ′(n) := tT (n)S(n). Defining the orbital trajectory φ(·) by φ(n) := φ0 + 2πnω,

one observes that

⎛
⎝ φ(·)

S(·)

⎞
⎠ is a spin-orbit trajectory of (ω,A) and that (7.7) holds.

It follows from Proposition 7.1c that

⎛
⎝ φ(·)

S ′(·)

⎞
⎠ is a spin-orbit trajectory of (ω,A′).

Thus S ′(·) is a spin trajectory of (ω,A′). Clearly S ′(·) is over φ0. �

F.3 Proof of Theorem 7.3

Proof of Theorem 7.3a: The claim follows from Definition 7.2 and Proposition 7.1b.

�

Proof of Theorem 7.3b: Eq. (7.8) follows from Definition 7.2 and Proposition 7.1b.

To prove the second claim I first note that, if f, g ∈ Cper(R
d, SO(3)), then
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the product is defined by (fg)(φ) := f(φ)g(φ). Clearly the constant function in

Cper(R
d, SO(3)) whose constant value is I3×3, is the unit element of the group. If

there is no danger of confusion, I denote the unit element by I3×3. Furthermore the

inverse of f ∈ Cper(R
d, SO(3)) is the transpose fT since (fTf)(φ) = fTf(φ) = I3×3.

Thus Cper(R
d, SO(3)) is a group under pointwise multiplication of SO(3)-valued func-

tions which proves the second claim.

To prove the third claim I first note that, by Definition 7.2, Rd,ω is a function

from Cper(R
d, SO(3))×SOT (d, ω) into SOT (d, ω). Thus I only have to show the two

group action properties of Rd,ω (see also Appendix B). First of all, it follows from

Definition 7.2 that Rd,ω(I3×3;ω,A) = (ω,A). Secondly, it follows from Definition 7.2

that if (ω,A) ∈ SOT (d, ω) and T1, T2 ∈ Cper(R
d, SO(3)), then, by defining

(ω,A1) := Rd,ω(T1;ω,A) , (F.5)

I get

A1(φ) = T T
1 (φ+ 2πω)A(φ)T1(φ) . (F.6)

Defining

(ω,A′) := Rd,ω(T1T2;ω,A) , (ω,A′′) := Rd,ω(T2;Rd;ω(T1;ω,A)) , (F.7)

I conclude from Definition 7.2 and (F.5) that

A′(φ) = (T1T2)
T (φ+ 2πω)A(φ)(T1T2)(φ) ,

A′′(φ) = T T
2 (φ+ 2πω)A1(φ)T2(φ) .

(F.8)

Using (F.6),(F.8) I get A′ = A′′ whence by (F.7)

Rd,ω(T1T2;ω,A) = Rd,ω(T2;Rd,ω(T1;ω,A)) ,

which completes the proof that Rd,ω is a right Cper(R
d, SO(3))-action on SOT (d, ω).

�
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Proof of Theorem 7.3c: The claim follows from Proposition 7.1c and Definition 7.2.

�

Proof of Theorem 7.3d: Let (ω,A) ∈ SOT (d, ω) and T ∈ Cper(R
d, SO(3)). Let also

SG be a polarization field of (ω,A). I abbreviate

(ω,A′) := Rd,ω(T ;ω,A) . (F.9)

Since G ∈ Cper(R
d,R3) I have H := T TG ∈ Cper(R

d,R3) and, by (6.16), (7.5),(7.9),

Ψω,A′(n;φ− 2πnω)H(φ− 2πnω) = Ψω,A′(n;φ− 2πnω)T T (φ− 2πnω)G(φ− 2πnω)

= T T (φ)Ψω,A(n;φ− 2πnω)T (φ− 2πnω)T T (φ− 2πnω)G(φ− 2πnω)

= T T (φ)Ψω,A(n;φ− 2πnω)G(φ− 2πnω) = T T (φ)SG(n, φ) = S ′(n, φ) .

Thus, by Definition 6.2, S ′ is a polarization field of the spin-orbit torus (ω,A′) with

generator H . By (6.20),(7.9) I have for n ∈ Z, G ∈ Cper(R
d,R3)

L
(PF )
ω,A′ (n;T TG) = L

(PF )
ω,A′ (n;H) = S ′(n, ·) = T TSG(n, ·) = T TL

(PF )
ω,A (n;G) ,

whence (7.10) follows. Clearly the polarization field S ′ is invariant if SG is and S ′ is

a spin field if SG is. �

Proof of Theorem 7.3e: The claim is an immediate consequence of Definition 6.2 and

parts b) and d) of Theorem 7.3. �

Proof of Theorem 7.3f: Let (ω,A), (ω,A′) ∈ SOT (d, ω) belong to the same Rd,ω-

orbit. Then, by Definition 7.2, a T ∈ Cper(R
d, SO(3)) exists such that Rd,ω(T ;ω,A) =

(ω,A′) whence (7.5) holds for arbitrary n ∈ Z, φ ∈ Rd. It follows from (7.5) and

Theorem C.15a that, for n ∈ Z,

Ind3,d(Ψω,A′(n; ·)) = Ind3,d

(
T T (·+ 2πnω)Ψω,A(n; ·)T (·)

)
= Ind3,d(T

T (·+ 2πnω))Ind3,d(Ψω,A(n; ·))Ind3,d(T )

= Ind3,d(T (·+ 2πnω))Ind3,d(Ψω,A(n; ·))Ind3,d(T )

= Ind3,d(Ψω,A(n; ·))Ind3,d(T (·+ 2πnω))Ind3,d(T ) .
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Thus, by Proposition C.18f, for n ∈ Z,

Ind3,d(Ψω,A′(n; ·)) = Ind3,d(Ψω,A(n; ·))Ind3,d(T (·+ 2πnω))Ind3,d(T )

= Ind3,d(Ψω,A(n; ·))Ind3,d(T )Ind3,d(T ) = Ind3,d(Ψω,A(n; ·)) ,

which proves the first claim. The second claim follows from the first claim and

Theorem C.22c. �

F.4 Proof of Proposition 7.5

Proof of Proposition 7.5a: Let (ω,A) ∈ WT (d, ω) and N := Ind2(A), g := PHF (A).

Thus by Definition C.12, for φ ∈ Rd,

A(φ) = exp

(
J [NTφ+ 2πg(φ)]

)
,

whence, by (6.4), for φ ∈ Rd and positive integer n,

Ψω,A(n;φ) = A(φ+ 2π(n− 1)ω)A(φ+ 2π(n− 2)ω) · · ·A(φ+ 2πω)A(φ)

= exp

(
J [NT (φ+ 2π(n− 1)ω) + 2πg(φ+ 2π(n− 1)ω)]

)
· · ·

· · · exp

(
J [NT (φ+ 2πω) + 2πg(φ+ 2πω)]

)
exp

(
J [NTφ+ 2πg(φ)]

)

= exp

(
J [NT (φ+ 2πω(n− 1)) + · · ·+NTφ

+2πg(φ+ 2π(n− 1)ω) + · · ·+ 2πg(φ)]

)

= exp

(
J [nNTφ+ 2π

n−1∑
j=0

(
jNTω + g(φ+ 2πjω)

)
]

)
,

which implies (7.13). Using Definition C.12, it follows from (7.13) that, for positive

integer n,

Ind2(Ψω,A(n; ·)) = nN = nInd2(A) . (F.10)
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Using (6.7),(7.13),(C.1) I get, for negative integer n and φ ∈ Rd,

Ψω,A(n;φ) = ΨT
ω,A(−n;φ+ 2πnω)

=

(
exp

(
J [−nNT (φ+ 2πnω) + πn(n+ 1)NTω + 2π

−n−1∑
j=0

g(φ+ 2π(n+ j)ω)]

))T

= exp

(
−J [−nNT (φ+ 2πnω) + πn(n + 1)NTω + 2π

−n−1∑
j=0

g(φ+ 2π(n+ j)ω)]

)
,

whence, by Definition C.12, for negative integer n, eq. (F.10) holds. Moreover, since

Ψω,A(0;φ) = I3×3, it follows from Definition C.12 that Ind2(Ψω,A(0; ·)) = 0 whence

(F.10) holds. I thus have shown that (F.10) (whence (7.14)) holds for all integers n.

That Ψω,A(n; ·) is 2π-nullhomotopic w.r.t. SO(3) iff Ind3,d(Ψω,A(n; ·)) = (1, ..., 1)T

follows from Theorem C.22g. Using (F.10) and Theorem C.15b I conclude that

((−1)nN1, ..., (−1)nNd) is the SO(3)-index of Ψω,A(n; ·) which proves the last claim.

�

Proof of Proposition 7.5b: Let (ω,A) ∈ AT (d, ω). Thus, by (C.2), I have A =

exp(J 2πν) where ν := PH(A). Applying (6.4),(C.2) I obtain (7.16). It follows

from (7.16) and Definition C.12 that, for all integers n, Ind2(Ψω,A(n; ·)) = 0 and

PHF (Ψω,A(n; ·)) is the constant function in Cper(R
d,R) whose value is �nν�. It also

follows from (7.16) that (ω,A) is trivial iff ν = 0. �

Proof of Proposition 7.5c: Let (ω,A) ∈ SOT (d, ω). If (ω,A) ∈ WT (d, ω) then,

by the definition of WT (d, ω), A is SO3(2)-valued. If A is SO3(2)-valued then, by

(6.4),(C.2), Ψω,A(n; ·) is SO3(2)-valued for all integers n whence (ω,A) ∈ WT (d, ω).

If (ω,A) ∈ AT (d, ω) then, by the definition of AT (d, ω), A is SO3(2)-valued

and constant. If A is SO3(2)-valued and constant then, by (6.4),(C.2), Ψω,A(n; ·) is

SO3(2)-valued and constant for all integers n whence (ω,A) ∈ AT (d, ω). �

Proof of Proposition 7.5d: Let (ω,A), (ω,A′) ∈ WT (d, ω).
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To prove the first claim let n be an even integer. Then, by Proposition 7.5a,

Ind3,d(Ψω,A(n; ·)) = (1, ..., 1)T = Ind3,d(Ψω,A′(n; ·)) whence, by Theorem C.22g,

Ψω,A(n; ·) �2π
SO(3) Ψω,A′(n; ·).

To prove the second claim let n be an odd integer. Then, by Proposition 7.5a,

Ind3,d(Ψω,A(n; ·)) = Ind3,d(A) and Ind3,d(Ψω,A′(n; ·)) = Ind3,d(A
′). On the other

hand, by Theorem C.22g, I have that Ψω,A(n; ·) �2π
SO(3) Ψω,A′(n; ·) iff

Ind3,d(Ψω,A(n; ·)) = Ind3,d(Ψω,A′(n; ·)). I conclude that Ψω,A(n; ·) �2π
SO(3) Ψω,A′(n; ·)

iff Ind3,d(A) = Ind3,d(A
′).

To prove the third claim let (ω,A) ∼d,ω (ω,A′) and m be an arbitrary integer.

By Theorem 7.3f I have Ind3,d(A) = Ind3,d(A
′). If m is even then, by the first claim,

Ψω,A(m; ·) �2π
SO(3) Ψω,A′(m; ·). If m is odd then, since Ind3,d(A) = Ind3,d(A

′), the

second claim gives me Ψω,A(m; ·) �2π
SO(3) Ψω,A′(m; ·). �

F.5 Proof of Proposition 7.7

Proof of Proposition 7.7a: Let (ω,A), (ω,A′) ∈ SOT (d, ω) and T ∈ Cper(R
d, SO(3))

with Rd,ω(T ;ω,A) = (ω,A′) ∈ WT (d, ω). I abbreviate N := Ind2,d(A
′). By Proposi-

tion 7.5a, we have Ind3,d(Ψω,A′(n; ·)) = ((−1)nN1, ..., (−1)nNd)T . Applying Theorem

7.3f, the claim follows. �

Proof of Proposition 7.7b: Let (ω,A) ∈ ACB(d, ω). Then, by Definition 7.6, a

T ∈ Cper(R
d, SO(3)) exists such that (ω,A′) := Rd,ω(T ;ω,A) ∈ AT (d, ω) whence, by

Theorem 7.3a, for n ∈ Z,

Ψω,A′(n; ·) = T T (·+ 2πnω)Ψω,A(n; ·)T (·) . (F.11)

Applying Proposition 7.5b, a ν ∈ [0, 1) exists such that, for n ∈ Z, φ ∈ Rd,

Ψω,A′(n;φ) = exp(J 2πnν) . (F.12)
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Since �2π
SO(3) is an equivalence relation on Cper(R

d, SO(3)), (F.11) gives me, for n ∈ Z,

Ψω,A′(n; ·) �2π
SO(3) T

T (·+ 2πnω)Ψω,A(n; ·)T (·) . (F.13)

Because, by (F.12), Ψω,A′(n; ·) is a constant function, we have, by Proposition C.18c,

that Ψω,A′(n; ·) �2π
SO(3) I3×3 whence, by (F.13), for n ∈ Z,

I3×3 �2π
SO(3) T

T (·+ 2πnω)Ψω,A(n; ·)T (·) , (F.14)

where, for brevity, I3×3 denotes the constant function in Cper(R
d, SO(3)) whose only

value is I3×3. Applying Proposition C.20b to (F.14) I get, for n ∈ Z,

T (·+ 2πnω) �2π
SO(3) Ψω,A(n; ·)T (·) . (F.15)

Applying Proposition C.18f to (F.15) I get, for n ∈ Z, T (·) �2π
SO(3) Ψω,A(n; ·)T (·),

whence, by Proposition C.20b, for n ∈ Z,

I3×3 �2π
SO(3) Ψω,A(n; ·)T (·)T T (·) = Ψω,A(n; ·) . (F.16)

I conclude from (F.16) and Proposition C.18b that, for every n ∈ Z, Ψω,A(n; ·) is 2π-

nullhomotopic w.r.t. SO(3). Applying Proposition C.18e, gives me Ind3,d(Ψω,A(n; ·)) =

(1, ..., 1)T . �

F.6 Proof of Lemma 7.8

Proof of Lemma 7.8a: Let R be in SO(3) and Re3 = e3. Thus the third column of

R is e3 and RT e3 = e3 whence the third row of R is (e3)T . I conclude that

R =

⎛
⎜⎜⎜⎝

a b 0

c d 0

0 0 1

⎞
⎟⎟⎟⎠ , (F.17)

where a, b, c, d are real numbers. Using again that R is in SO(3), it follows from

(C.1),(C.2),(F.17) that R ∈ SO3(2). �

Proof of Lemma 7.8b: The claim follows from Proposition 7.5c and Lemma 7.8a. �
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F.7 Proof of Theorem 7.9

Proof of Theorem 7.9: Let (ω,A) ∈ SOT (d, ω), (ω,A′) ∈ WT (d, ω), T ∈ Cper(R
d, SO(3))

and Rd,ω(T ;ω,A) = (ω,A′). By Theorem 7.3a, Ψω,A′ satisfies (7.5). I define G ∈
Cper(R

d,R3) by G := Te3. Of course, G is the generator of a spin field SG of (ω,A)

and by Definitions 6.2,7.2 and Lemma 7.8b I obtain

SG(1, φ) = A(φ− 2πω)G(φ− 2πω) = A(φ− 2πω)T (φ− 2πω)e3

= T (φ)T T (φ)A(φ− 2πω)T (φ− 2πω)e3 = T (φ)A′(φ− 2πω)e3 = T (φ)e3

= G(φ) = SG(0, φ) . (F.18)

With (F.18) and Proposition 6.3 I have shown that the spin field SG is invariant.

To demonstrate the converse direction, let (ω,A) ∈ SOT (d, ω), T ∈ Cper(R
d, SO(3))

and let G := Te3 be the generator of an ISF of (ω,A). I write Rd,ω(T ;ω,A) =:

(ω,A′) ∈ SOT (d, ω) whence A′ satisfies (7.4). I obtain by (7.5) and Definition 6.2

that

A′(φ)e3 = T T (φ+ 2πω)A(φ)T (φ)e3 = T T (φ+ 2πω)A(φ)G(φ)

= T T (φ+ 2πω)SG(1, φ+ 2πω) = T T (φ+ 2πω)G(φ+ 2πω) = e3 .

Thus, by Lemma 7.8b, the spin-orbit torus (ω,A′) is weakly trivial, i.e., Rd,ω(T ;ω,A) ∈
WT (d, ω).

To prove the second claim, let first of all (ω,A) ∈ WCB(d, ω). Thus a T ∈
Cper(R

d, SO(3)) exists such that Rd,ω(T ;ω,A) ∈ WT (d, ω) whence, by the first claim,

Te3 is the generator of an ISF. Conversely let there be a T ∈ Cper(R
d, SO(3)) such

that Te3 is the generator of an ISF. Thus by the first claim, Rd,ω(T ;ω,A) ∈ WT (d, ω)

whence (ω,A) ∈ WCB(d, ω). �
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F.8 Proof of Theorem 7.10

Proof of Theorem 7.10a: Let G be the generator of an ISF and let G be 2π-

nullhomotopic w.r.t. S2. Then by Theorem C.24a a T ∈ Cper(R
d, SO(3)) exists such

that G = Te3. It thus follows from Theorem 7.9 that Rd,ω(T ;ω,A) ∈ WT (d, ω).

Clearly, (ω,A) ∈ WCB(d, ω). �

Proof of Theorem 7.10b: Let G be the generator of an ISF and let d = 1. Then by

Theorem C.24b a T ∈ Cper(R
d, SO(3)) exists such that G = Te3. Thus by Theorem

7.9 Rd,ω(T ;ω,A) ∈ WT (d, ω). Clearly, (ω,A) ∈ WCB(d, ω). �

Proof of Theorem 7.10c: Let G be the generator of an ISF and let d = 2. Then by

Theorem C.24b G is 2π-nullhomotopic w.r.t. S2 iff a T ∈ Cper(R
d, SO(3)) exists such

that G = Te3. The claim now follows from Theorem 7.9. �

F.9 Proof of Proposition 7.12

Proof of Proposition 7.12a: Let (ω,A), (ω,A′) ∈ SOT (d, ω). If (ω,A) ∼d,ω (ω,A′)

then, since ∼d,ω is an equivalence relation on SOT (d, ω), we have

{(ω,A′′) ∈ AT (d, ω) : (ω,A′′) ∼d,ω (ω,A)}

= {(ω,A′′) ∈ AT (d, ω) : (ω,A′′) ∼d,ω (ω,A′)} ,

whence, by Definition 7.11, Ξ1(ω,A) = Ξ1(ω,A
′).

To prove the second claim let (ω,A′′) ∈ ACB(d, ω) and Ξ1(ω,A) = Ξ1(ω,A
′′).

Because of the first claim, the second claim is proven if I show that (ω,A) ∼d,ω

(ω,A′′). In fact, picking a ν ∈ Ξ1(ω,A) = Ξ1(ω,A
′′), Definition 7.11 gives me a

(ω,A′′′) ∈ AT (d, ω) with (ω,A) ∼d,ω (ω,A′′′), (ω,A′′) ∼d,ω (ω,A′′′) and PH(A′′′) =

ν. By the transitivity of ∼d,ω I get (ω,A) ∼d,ω (ω,A′′). �
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Proof of Proposition 7.12b: Let (ω,A) ∈ SOT (d, ω).

To prove the first claim, let (ω,A) be on spin-orbit resonance of first kind. Thus,

by Definition 7.11, a (ω,A′) ∈ AT (d, ω) exists such that (ω,A′) ∼d,ω (ω,A) and

PH(A′) = 0. Therefore, by Proposition 7.5b, (ω,A′) is trivial whence, by Definition

7.6, (ω,A) ∈ CB(d, ω). Conversely, let (ω,A) ∈ CB(d, ω) so that a trivial spin-

orbit torus (ω,A′) exists such that (ω,A′) ∼d,ω (ω,A). Thus, by Proposition 7.5b,

PH(A′) = 0 whence, by Definition 7.11, 0 ∈ Ξ1(ω,A) so that (ω,A) is on spin-orbit

resonance of first kind.

The second claim follows from the first claim and Definition 7.11. �

Proof of Proposition 7.12c: Let (ω,A), (ω,A′) ∈ SOT (d, ω) with (ω,A) ∼d,ω (ω,A′).

If (ω,A) ∈ CB(d, ω) then, by Proposition 7.12b and Definition 7.11, 0 ∈ Ξ1(ω,A)

whence, by Proposition 7.12a, 0 ∈ Ξ1(ω,A
′) so that, by Proposition 7.12b and Def-

inition 7.11, (ω,A′) ∈ CB(d, ω). Reversing the roles of A,A′ it follows that either

both spin-orbit tori are coboundaries or neither of them.

The two remaining claims follow from the fact that ∼d,ω is an equivalence relation

on SOT (d, ω). �

Proof of Proposition 7.12d: Let (ω,A) ∈ ACB(d, ω). Then there exists (ω,A′) ∈
AT (d, ω) such that (ω,A) ∼d,ω (ω,A′). By Definition 7.4, A′(φ) is independent of φ.

To prove the converse direction let (ω,A) ∼d,ω (ω,A′) such that A′(φ) is inde-

pendent of φ. By some simple Linear Algebra, R ∈ SO(3), ν ∈ [0, 1) exist such

that RTA′R = exp(J 2πν) (see, e.g., [BEH04, Lemma 2.1]). Defining (ω,A′′) :=

Rd,ω(R;ω,A′), we have, by Definition 7.2, that A′′ = exp(J 2πν). It follows from

Proposition 7.5c that (ω,A′′) ∈ AT (d, ω). Since (ω,A) ∼d,ω (ω,A′) and (ω,A′) ∼d,ω

(ω,A′′), the transitivity of∼d,ω implies (ω,A) ∼d,ω (ω,A′′) whence (ω,A) ∈ ACB(d, ω).

�
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F.10 Proof of Theorem 7.13

Proof of Theorem 7.13: Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant. Let

(ω,A) have ISF’s SG1 ,SG2 such that SG2 is different from SG1 and −SG1 . Thus a

φ0 ∈ Rd exists such that

G1(φ0)×G2(φ0) 
= 0 .

I define the function f ∈ Cper(R
d,R) by f(φ) := |G1(φ)×G2(φ)|. Since SG1 ,SG2 are

invariant polarization fields we have by (6.23) that, for φ ∈ Rd,

f(φ) = |G1(φ)×G2(φ)|

= |
(
A(φ− 2πω)G1(φ− 2πω)

)
×
(
A(φ− 2πω)G2(φ− 2πω)

)
|

= |A(φ− 2πω)

(
G1(φ− 2πω)×G2(φ− 2πω)

)
|

= |G1(φ− 2πω)×G2(φ− 2πω)| = f(φ− 2πω) .

Thus, by Corollary D.3a, f is constant with constant value, say λ. Clearly f(φ0) 
= 0

whence λ 
= 0. Hence I can define a function G3 : Rd → S2 by G3(φ) := (G1(φ) ×
G2(φ))/λ. Of course, G3 ∈ Cper(R

d, S2) whence G3 generates a spin field SG3 . Since

SG1 ,SG2 are invariant polarization fields I compute by (6.23) for φ ∈ Rd

A(φ− 2πω)G3(φ− 2πω) =
1

λ
A(φ− 2πω)

(
G1(φ− 2πω)×G2(φ− 2πω)

)

=
1

λ

(
A(φ− 2πω)G1(φ− 2πω))× A(φ− 2πω)G2(φ− 2πω)

)

=
1

λ
(G1(φ)×G2(φ)) = G3(φ) .

Thus, by Proposition 6.3, the polarization field SG3 is invariant whence SG3 is an

ISF. I define the function T ∈ Cper(R
d,R3×3) by

T (φ)e1 := G3(φ)×G2(φ) , T (φ)e2 := G3(φ) , T (φ)e3 := G2(φ) .
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Clearly the columns of T (φ) are orthonormal and

det(T (φ)) = (G3(φ) × G2(φ))T (G3(φ) × G2(φ)) = 1 whence T ∈ Cper(R
d, SO(3)).

Since SG2 ,SG3 are invariant polarization fields I obtain from (6.23) for φ ∈ Rd

A(φ− 2πω)

(
G2(φ− 2πω)×G3(φ− 2πω)

)

=

(
A(φ− 2πω)G2(φ− 2πω))× A(φ− 2πω)G3(φ− 2πω)

)
= G2(φ)×G3(φ) ,

so that, by Proposition 6.3, the polarization field SG2×G3 is invariant whence SG2×G3

is an ISF. I can summarize that all three columns of T are generators of invariant spin

fields, whence, for i = 1, 2, 3, φ ∈ Rd, by (6.23), A(φ− 2πω)T (φ− 2πω)ei = T (φ)ei,

so that T T (φ+ 2πω)A(φ− 2πω)T (φ)ei = ei, i.e., for φ ∈ Rd,

T T (φ+ 2πω)A(φ)T (φ) = I3×3 .

This implies by Definition 7.2 thatRd,ω(T ;ω,A) = (ω, I3×3) whence (ω,A) ∈ CB(d, ω).

Applying Proposition 7.12b, I obtain that (ω,A) is on spin-orbit resonance of first

kind. �

F.11 Proof of Theorem 7.14

Proof of Theorem 7.14a: I first consider the case when a T ∈ Cper(R
d, SO3(2)) exists

such that Rd,ω(T ;ω,A1) = (ω,A2) and so I abbreviate N := Ind2(T ), g := PHF (T ).

Thus, by Definition 7.2 and (7.22), we have, for φ ∈ Rd,

exp

(
−J [NT (φ+ 2πω) + 2πg(φ+ 2πω)]

)
exp

(
J [MT

1 φ+ 2πf1(φ)]

)

· exp

(
J [NTφ+ 2πg(φ)]

)
= T T (φ+ 2πω)A1(φ)T (φ) = A2(φ)

= exp

(
J [MT

2 φ+ 2πf2(φ)]

)
,
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i.e.,

exp

(
J [2πg(φ)− 2πg(φ+ 2πω)− 2πNTω + 2πf1(φ)− 2πf2(φ) + (M1 −M2)

Tφ]

)
= I3×3 . (F.19)

It follows from (F.19) and Theorem C.11a that an integer n exists such that, for

φ ∈ Rd,

g(φ)− g(φ+ 2πω)−NTω + f1(φ)− f2(φ) =
(M2 −M1)

Tφ

2π
+ n . (F.20)

Since f1, f2 and g are 2π-periodic it follows from (F.20) that (7.23) holds and that,

for φ ∈ Rd,

g(φ)− g(φ+ 2πω)−NTω + f1(φ)− f2(φ) = n . (F.21)

Taking the zeroth Fourier coefficient on both sides of (F.21) I get −NTω+f1,0−f2,0 =

n, which implies (7.24) and, by (F.21), that (7.25) holds.

I finally consider the case when a T ∈ Cper(R
d, SO3(2)) exists such that

Rd,ω(TJ ′;ω,A1) = (ω,A2) and I again abbreviate N := Ind2(T ), g := PHF (T ). By

Definition 7.2 and (7.20),(7.21), (7.22) I get, for φ ∈ Rd,

exp

(
−J [−NT (φ+ 2πω)− 2πg(φ+ 2πω) +MT

1 φ+ 2πf1(φ) +NTφ+ 2πg(φ)]

)

= exp

(
J ′JJ ′[−NT (φ+ 2πω)− 2πg(φ+ 2πω) +MT

1 φ+ 2πf1(φ) +NTφ+ 2πg(φ)]

)

= J ′ exp

(
J [−NT (φ+ 2πω)− 2πg(φ+ 2πω) +MT

1 φ+ 2πf1(φ) +NTφ+ 2πg(φ)]

)
J ′

= J ′ exp

(
J [−NT (φ+ 2πω)− 2πg(φ+ 2πω)]

)
exp

(
J [MT

1 φ+ 2πf1(φ)]

)

· exp

(
J [NTφ+ 2πg(φ)]

)
J ′

= J ′T T (φ+ 2πω)A1(φ)T (φ)J ′ = (T (φ+ 2πω)J ′)TA1(φ)T (φ)J ′ = A2(φ)

= exp

(
J [MT

2 φ+ 2πf2(φ)]

)
,
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i.e.,

exp

(
J [−2πg(φ) + 2πg(φ+ 2πω) + 2πNTω − 2πf1(φ)− 2πf2(φ)− (M1 +M2)

Tφ]

)
= I3×3 . (F.22)

It follows from (F.22) and Theorem C.11a that an integer n exists such that, for

φ ∈ Rd,

−g(φ) + g(φ+ 2πω) +NTω − f1(φ)− f2(φ) =
(M1 +M2)

Tφ

2π
+ n . (F.23)

Since f1, f2 and g are 2π-periodic it follows from (F.23) that (7.26) holds and that,

for φ ∈ Rd,

−g(φ) + g(φ+ 2πω) +NTω − f1(φ)− f2(φ) = n . (F.24)

Taking the zeroth Fourier coefficient on both sides of (F.24) I get

f1,0 + f2,0 −NTω = −n ,

which implies (7.27) and, by (F.24), that (7.28) holds. �

Proof of Theorem 7.14b: Let (ω,A1) ∼d,ω (ω,A2), i.e., let a T ′ ∈ Cper(R
d, SO(3))

exist such that Rd,ω(T ′;ω,A1) = (ω,A2). Thus, by Definition 7.2 and for φ ∈ Rd,

A1(φ)T ′(φ) = T ′(φ+ 2πω)A2(φ) . (F.25)

Defining t := T ′e3 ∈ Cper(R
d, S2), I conclude from (F.25) and, for φ ∈ Rd,

A1(φ)t(φ) = t(φ+ 2πω) . (F.26)

Clearly the third component t3 of t is an element of Cper(R
d,R) which by (F.26)

satisfies

t3(φ) = t3(φ+ 2πω) . (F.27)
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Because (1, ω) is nonresonant I conclude from (F.27) and Corollary D.3a that t3 is

constant so that, since |t3| ≤ |t| = 1, only the following three cases can occur: Case

(i) where t3 = 1, Case (ii) where t3 = −1, Case (iii) where |t3| < 1.

I first consider Case (i). Since |t| = 1 we have in the present case that t = t3e
3 =

e3, i.e., T ′e3 = e3. Due to Lemma 7.8a, I thus obtain that T ′ is SO3(2)-valued whence

T ′ ∈ Cper(R
d, SO3(2)). Therefore, T := T ′ satisfies the claim.

I now consider Case (ii). Since |t| = 1 we have in the present case that t =

t3e
3 = −e3, i.e., T ′e3 = −e3. Due to Lemma 7.8a, I obtain that T ′J ′ is SO3(2)-

valued whence T := T ′J ′ ∈ Cper(R
d, SO3(2)). Thus Rd,ω(TJ ′;ω,A1) = (ω,A2)

which proves the claim.

I now consider Case (iii). Because the constant t0 :=
√

1− t23 is positive, we have

that g1 ∈ Cper(R
d, SO3(2)), defined by

g1(φ) :=

⎛
⎜⎜⎜⎝

t1(φ)
t0

− t2(φ)
t0

0

t2(φ)
t0

t1(φ)
t0

0

0 0 1

⎞
⎟⎟⎟⎠ , (F.28)

satisfies, for all φ ∈ Rd,

t(φ) = g1(φ)(t0e
1 + t3e

3) . (F.29)

Combining (F.26) with (F.29) results, for all φ ∈ Rd, in

A1(φ)g1(φ)[t0e
1 + t3e

3] = A1(φ)t(φ) = t(φ+ 2πω) = g1(φ+ 2πω)[t0e
1 + t3e

3] ,

i.e.,

A1(φ)g1(φ)gT
1 (φ+ 2πω)[t0e

1 + t3e
3] = t0e

1 + t3e
3 . (F.30)

Since A1(φ)g1(φ)gT
1 (φ+ 2πω) ∈ SO3(2), I conclude from (F.30) that

A1(φ)g1(φ)gT
1 (φ+ 2πω)e1 = e1 , (F.31)
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where I also used the fact that t0 is nonzero. Using again that A1(φ)g1(φ)gT
1 (φ+2πω)

is in SO3(2), eq. (F.31) implies that

A1(φ)g1(φ)gT
1 (φ+ 2πω) = I3×3 . (F.32)

By (F.32) and Definition 7.2 I obtain

Rd,ω(g1;ω,A1) = (ω, I3×3) . (F.33)

I conclude that (ω,A1) ∈ CB(d, ω) (and therefore (ω,A2) ∈ CB(d, ω)). Thus the

present case is highly exceptional. Since t0e
1 + t3e

3 is a constant unit vector, a

constant matrix t̃ exists in SO(3) such that t̃e3 = t0e
1 + t3e

3, whence (F.29) and the

definition of t imply T ′e3 = t = g1t̃e
3, i.e.,

T ′Tg1t̃e
3 = e3 . (F.34)

Thus and due to Lemma 7.8a I obtain that T ′Tg1t̃ is SO3(2)-valued whence

g2 := T ′Tg1t̃ ∈ Cper(R
d, SO3(2)). Therefore T ′ = g1t̃g

T
2 whence (F.25) yields, for

φ ∈ Rd,

A1(φ)g1(φ)t̃gT
2 (φ) = g1(φ+ 2πω)t̃gT

2 (φ+ 2πω)A2(φ) ,

i.e.,

A1(φ)g1(φ)gT
1 (φ+ 2πω)t̃gT

2 (φ) = t̃gT
2 (φ+ 2πω)A2(φ) ,

so that, due to (F.32),

t̃gT
2 (φ) = t̃gT

2 (φ+ 2πω)A2(φ) ,

which implies

A2(φ)g2(φ)gT
2 (φ+ 2πω) = I3×3 . (F.35)

It follows from (F.32),(F.35) that, for φ ∈ Rd,

A2(φ) = [g1(φ+ 2πω)gT
2 (φ+ 2πω)]TA1(φ)g1(φ)gT

2 (φ) . (F.36)
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Thus, by Definition 7.2, Rd,ω(T ;ω,A1) = (ω,A2), where T := g1g
T
2 ∈ Cper(R

d, SO3(2)),

which proves the claim. �

Proof of Theorem 7.14c: ⇒: Let (ω,A1) ∼d,ω (ω,A2). Then, by Theorem 7.14b, a

T ∈ Cper(R
d, SO3(2)) exists such that either

Rd,ω(T ;ω,A1) = (ω,A2) or Rd,ω(TJ ′;ω,A1) = (ω,A2). In the former case we have,

by Theorem 7.14a, that (7.23),(7.24), (7.25) hold where N := Ind2(T ) and g :=

PHF (T ). In the latter case we have, by Theorem 7.14a, that (7.26),(7.27), (7.28)

hold where N := Ind2(T ) and g := PHF (T ).

⇐: Let (7.23) hold and let g ∈ Cper(R
d,R), N ∈ Zd exist such that (7.24),

(7.25) hold. I define T ∈ Cper(R
d, SO3(2)) by (7.29). Clearly by (7.22),(7.23),

(7.24),(7.25),(7.29) we have, for φ ∈ Rd,

T T (φ+ 2πω)A1(φ)T (φ) = exp

(
J [−NT (φ+ 2πω)− 2πg(φ+ 2πω)]

)

· exp

(
J [MT

1 φ+ 2πf1(φ)]

)
exp

(
J [NTφ+ 2πg(φ)]

)

= exp

(
J [2πg(φ)− 2πg(φ+ 2πω)− 2πNTω + 2πf1(φ) +MT

1 φ]

)

= exp

(
J [2πg(φ)− 2πg(φ+ 2πω)− 2πNTω + 2πf̃1(φ) + 2πf1,0 +MT

1 φ]

)

= exp

(
J [−2πNTω + 2πf̃2(φ) + 2πf1,0 +MT

1 φ]

)

= exp

(
J [2πf̃2(φ) + 2πf2,0 +MT

1 φ]

)
= exp

(
J [2πf2(φ) +MT

1 φ]

)

= exp

(
J [MT

2 φ+ 2πf2(φ)]

)
= A2(φ) ,

whence, by Definition 7.2, Rd,ω(T ;ω,A1) = (ω,A2).

Let (7.26) hold and let g ∈ Cper(R
d,R), N ∈ Zd exist such that (7.27),(7.28)

hold. I define T ∈ Cper(R
d, SO3(2)) by (7.29). Clearly by (7.20),(7.21), (7.22),(7.26),
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(7.27),(7.28),(7.29) we have, for φ ∈ Rd,

(T (φ+ 2πω)J ′)TA1(φ)T (φ)J ′ = J ′T T (φ+ 2πω)A1(φ)T (φ)J ′

= J ′ exp

(
J [−NT (φ+ 2πω)− 2πg(φ+ 2πω)]

)
exp

(
J [MT

1 φ+ 2πf1(φ)]

)

· exp

(
J [NTφ+ 2πg(φ)]

)
J ′

= J ′ exp

(
J [−NT (φ+ 2πω)− 2πg(φ+ 2πω) +MT

1 φ+ 2πf1(φ) +NTφ+ 2πg(φ)]

)
J ′

= J ′ exp

(
J [2πg(φ)− 2πg(φ+ 2πω)− 2πNTω + 2πf̃1(φ) + 2πf1,0 +MT

1 φ]

)
J ′

= J ′ exp

(
J [−2πNTω − 2πf̃2(φ) + 2πf1,0 +MT

1 φ]

)
J ′

= J ′ exp

(
J [−2πf̃2(φ)− 2πf2,0 +MT

1 φ]

)
J ′

= J ′ exp

(
J [−2πf2(φ) +MT

1 φ]

)
J ′ = J ′ exp

(
J [−2πf2(φ)−MT

2 φ]

)
J ′

= exp

(
J ′JJ ′[−2πf2(φ)−MT

2 φ]

)
= exp

(
−J [−2πf2(φ)−MT

2 φ]

)

= exp

(
J [MT

2 φ+ 2πf2(φ)]

)
= A2(φ) ,

whence, by Definition 7.2, Rd,ω(TJ ′;ω,A1) = (ω,A2). �

F.12 Proof of Corollary 7.15

Proof of Corollary 7.15a: I first note that M2 := Ind2(A2) = 0 and that f2 :=

PHF (A2) is the constant function whose value is ν ∈ [0, 1). Thus the fractional part

of the zeroth Fourier coefficient f2,0 of f2 equals ν and I have f̃2 := f2 − f2,0 = 0.

I can now apply Theorem 7.14a. First let T ∈ Cper(R
d, SO3(2)) such that

Rd,ω(T ;ω,A1) = (ω,A2) and let me abbreviate N := Ind2(T ), g := PHF (T ).

Thus, by (7.23) I obtain M1 = M2 = 0 whence (7.32) holds. By (7.24) I obtain

f1,0 − ν − NTω = f1,0 − f2,0 − NTω ∈ Z whence (7.33) holds. Furthermore, for
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φ ∈ Rd, I get from (7.25) g(φ+ 2πω)− g(φ) = f̃1(φ)− f̃2(φ) = f̃1(φ) whence (7.34)

holds.

Now let T ∈ Cper(R
d, SO3(2)) such that Rd,ω(TJ ′;ω,A1) = (ω,A2) and let again

N := Ind2(T ), g := PHF (T ). Thus, by (7.26) I obtain M1 = −M2 = 0 whence

(7.32) holds. By (7.27) I obtain f1,0 + ν − NTω = f1,0 + f2,0 − NTω ∈ Z whence

(7.35) holds. Furthermore, for φ ∈ Rd, I get from (7.28) that g(φ + 2πω)− g(φ) =

f̃1(φ) + f̃2(φ) = f̃1(φ) whence (7.34) holds. �

Proof of Corollary 7.15b: As in the proof of Corollary 7.15a I first note that M2 :=

Ind2(A2) = 0 and that f2 := PHF (A2) is the constant function whose value is ν.

Thus the zeroth Fourier coefficient f2,0 of f2 equals ν and f̃2 := f2 − f2,0 = 0. The

claims now follows from Theorem 7.14c. �

F.13 Proof of Theorem 8.1

Proof of Theorem 8.1a: Let (ω,A) ∈ SOT (d, ω) have a polarization field SG.

Let φ0 ∈ Rd and the function S : Z → R3 be defined by S(n) := SG(n, φ0 +

2πnω). By Definition 6.2 we have S(n) = SG(n, φ0 + 2πnω) = Ψω,A(n;φ0)G(φ0) =

Ψω,A(n;φ0)SG(0, φ0) = Ψω,A(n;φ0)S(0). Then, by (6.3), S is a spin trajectory over

φ0.

If the polarization field SG is invariant, then by Definition 6.2 we have S(n) =

SG(n, φ0 + 2πnω) = SG(0, φ0 + 2πnω) = G(φ0 + 2πnω) so that, by Definition D.1,

u ∈ Cper(R
d,R3), defined by u(φ) := G(φ0 + φ), is an ω-generator of S whence S is

ω–quasiperiodic. �

Proof of Theorem 8.1b: Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant. Let

(ω,A) have, for some φ0 ∈ Rd, an ω–quasiperiodic spin trajectory S over φ0. By

Corollary D.3b, the ω–quasiperiodic function S has a unique ω-generator u and
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this ω-generator is R3-valued, i.e., u ∈ Cper(R
d,R3). Of course, for every integer n,

S(n) = u(2πnω). The function G ∈ Cper(R
d,R3), defined by G(φ) := u(φ − φ0),

generates a polarization field SG of (ω,A). I will first show that the polarization

field SG is invariant and satisfies (8.1).

Since S is a spin trajectory over φ0 we have by (6.8) that S(n) = A(φ0 + 2π(n−
1)ω)S(n− 1) whence, for n ∈ Z,

G(φ0 + 2πnω) = u(2πnω) = S(n) = A(φ0 + 2π(n− 1)ω)S(n− 1)

= A(φ0 + 2π(n− 1)ω)u(2π(n− 1)ω)

= A(φ0 + 2π(n− 1)ω)G(φ0 + 2π(n− 1)ω) . (F.37)

Since G and A are 2π-periodic we thus have for m ∈ Zd, n ∈ Z that G(φ0 + 2πnω +

2πm) = A(φ0 + 2π(n− 1)ω + 2πm)G(φ0 + 2π(n − 1)ω + 2πm). Thus, defining the

set Ã := {φ0 + 2πnω+ 2πm : m ∈ Zd, n ∈ Z}, we see that (6.23) holds for all φ ∈ Ã.

Since (1, ω) is nonresonant, I conclude from Theorem D.2 that the set Ã is dense in

Rd. Since Ã is dense in Rd and since G and A are continuous, it thus follows that

(6.23) holds for all φ ∈ Rd. By Proposition 6.3 I conclude that the polarization field

SG is invariant. Of course, (F.37) implies (8.1).

To show the uniqueness of SG let SH be an arbitrary invariant polarization field

such that, for all integers n, S(n) = H(φ0+2πnω). Thus v ∈ Cper(R
d,R3), defined by

v(φ) := H(φ0+φ), is an ω-generator of S. However, since u is the unique ω-generator

of S, I conclude that v = u whence H = G.

Let in addition S be normalized to 1, i.e., |S(n)| = 1. To show that SG is a spin

field, I note that if m ∈ Zd, n ∈ Z then G(φ0 + 2πnω + 2πm) = u(2πnω + 2πm) =

u(2πnω) = S(n) whence |G(φ0 + 2πnω + 2πm)| = |S(n)| = 1. Thus, for φ ∈ Ã,

we have |G(φ)| = 1. Since |G(φ)| = 1 on a dense set of points φ I conclude, by the

continuity of |G|, that |G(φ)| = 1 for all φ in Rd whence the polarization field SG is

a spin field. �
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F.14 Proof of Theorem 8.3

Proof of Theorem 8.3a: Let (ω,A) ∈ WCB(d, ω) and (ω,A′) := Rd,ω(T ;ω,A) ∈
WT (d, ω) with T ∈ Cper(R

d, SO(3)). Since (ω,A′) ∈ WT (d, ω) the SO3(2)-index

and phase function of Ψω,A′(n; ·) are well defined so that I can abbreviate Nn :=

Ind2(Ψω,A′(n; ·)), f(n, ·) := PHF (Ψω,A′(n; ·)). Let also φ0 ∈ Rd.

Defining the function t : Z → SO(3) by t(n) := T (φ0 + 2πnω), it follows from

the lines after Definition 8.2 that t is an SPF over φ0. Furthermore, T (φ0 + ·) is an

R3×3-valued ω-generator of t whence t is ω–quasiperiodic. I obtain from Definition

7.2 and (7.14), (7.15),(8.4) that the differential phase function λ of t satisfies, for

n ∈ Z,

exp(2πλ(n)J ) = tT (n+ 1)A(φ0 + 2πnω)t(n)

= T T (φ0 + 2π(n+ 1)ω)A(φ0 + 2πnω)T (φ0 + 2πnω) = A′(φ0 + 2πnω)

= exp(J [NT
1 (φ0 + 2πnω) + 2πf(1, φ0 + 2πnω)])

= exp(J [NT
1 φ0 + 2πNT

n ω + 2πf(1, φ0 + 2πnω)]) . (F.38)

Since λ(n) ∈ [0, 1), it follows from (C.2),(F.38) that (8.7) holds. Also I obtain from

Theorem 7.3a and (7.14), (7.15),(8.6) that the integral phase function μ of t satisfies,

for n ∈ Z,

exp(2πμ(n)J ) = tT (n)Ψω,A(n;φ0)t(0) = T T (φ0 + 2πnω)Ψω,A(n;φ0)T (φ0)

= Ψω,A′(n;φ0) = exp(J [nNT
1 φ0 + 2πf(n, φ0)]) = exp(J [NT

n φ0 + 2πf(n, φ0)]) .

(F.39)

Since μ(n) ∈ [0, 1), it follows from (C.2),(F.39) that (8.8) holds. �

Proof of Theorem 8.3b: Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant. Let

also (ω,A) have an ω–quasiperiodic SPF t over some φ0 ∈ Rd.
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By Corollary D.3b, the ω–quasiperiodic function t has a unique ω-generator t̃ and

this ω-generator is R3×3-valued, i.e., t̃ ∈ Cper(R
d,R3×3). Of course, for every integer

n, t(n) = t̃(2πnω). I define the function T ∈ Cper(R
d,R3×3) by T (φ) := t̃(φ − φ0).

Clearly, for every integer n, t(n) = t̃(2πnω) = T (φ0 + 2πnω).

To show the uniqueness of T , let T ′ be an arbitrary function in Cper(R
d,R3×3)

such that, for all integers n, t(n) = T ′(φ0 + 2πnω). Thus t̃′ ∈ Cper(R
d,R3×3), defined

by t̃′(φ) := T ′(φ0 +φ), satisfies, for every integer n, t̃′(2πnω) = T ′(φ0 +2πnω) = t(n)

whence t̃′ is an ω-generator of t. However, since t̃ is the unique ω-generator of t, I

conclude that t̃′ = t̃ whence T = T ′.

I now show that T ∈ Cper(R
d, SO(3)). If m ∈ Zd, n ∈ Z then T (φ0 + 2πnω +

2πm) = t̃(2πnω + 2πm) = t̃(2πnω) = t(n) whence T T (φ0 + 2πnω + 2πm)T (φ0 +

2πnω + 2πm) = tT (n)t(n) = I3×3 and det(T (φ0 + 2πnω + 2πm)) = det(t(n)) = 1.

Thus, defining the set Ã := {φ0 + 2πnω + 2πm : m ∈ Zd, n ∈ Z}, we have for φ ∈ Ã
that T T (φ)T (φ) = I3×3 and det(T (φ)) = 1. Since (1, ω) is nonresonant, I conclude

from Theorem D.2 that the set Ã is dense in Rd. Thus T T (φ)T (φ) = I3×3 and

det(T (φ)) = 1 on a dense set of points φ so that, by the continuity of T , I conclude

that T T (φ)T (φ) = I3×3 and det(T (φ)) = 1 for all φ ∈ Rd whence T is SO(3)-valued.

Since T ∈ Cper(R
d,R3×3) I conclude that T ∈ Cper(R

d, SO(3)).

I now show that Rd,ω(T ;ω,A) ∈ WT (d, ω). By Definition 8.2, the function

S : Z→ R3, defined by S(n) := t(n)e3, is an ω–quasiperiodic spin trajectory over φ0

such that |S(n)| = 1. Thus by Theorem 8.1b an ISF SG exists such that (8.1) holds

for all integers n. It follows, for every integer n, that T (φ0 + 2πnω)e3 = t(n)e3 =

S(n) = G(φ0 + 2πnω) whence, for m ∈ Zd, n ∈ Z, we have T (φ0 + 2πnω+ 2πm)e3 =

G(φ0 + 2πnω + 2πm), i.e., for φ ∈ Ã,

T (φ)e3 = G(φ) . (F.40)

Since the set Ã is dense in Rd and since T and G are continuous I conclude that
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(F.40) holds for all φ ∈ Rd. Thus the third column of T is the generator of an ISF

whence, by Theorem 7.9, Rd,ω(T ;ω,A) ∈ WT (d, ω). This implies that (ω,A) is a

weak coboundary which completes the proof. �

F.15 Proof of Theorem 8.5

Proof of Theorem 8.5a: Let (ω,A) ∈ SOT (d, ω) and let ν ∈ Ξ2(ω,A, φ0) for some

φ0 ∈ Rd. Then, by Definition 8.4, there exists an ω–quasiperiodic UPF t over φ0

with UPR ν. Furthermore, for every integer n, eq. (8.10) holds for λ = ν and t(n) =

u(2πnω) where u is an R3×3-valued ω-generator of t. Thus v ∈ Cper(R
d+1,R3×3),

defined by v(φ, ψ) := u(φ) exp(Jψ)uT (0), is an (ω, ν)-generator of Ψω,A(·;φ0) since

Ψω,A(n;φ0) = v(2πnω, 2πnν). Therefore every spin trajectory over φ0 is (ω, ν)–

quasiperiodic. �

Proof of Theorem 8.5b: Let (ω,A) ∈ ACB(d, ω) and (ω,A′) := Rd,ω(T ;ω,A) ∈
AT (d, ω) with T ∈ Cper(R

d, SO(3)). Let φ0 ∈ Rd and let the function t : Z→ SO(3)

be defined by t(n) := T (φ0 + 2πnω).

Due to the inclusions (7.12) we have (ω,A′) ∈ WT (d, ω) so that I can apply

Theorem 8.3a leading me to the result that t is an ω–quasiperiodic SPF over φ0.

Thus to show that t is a UPF I have to compute its differential phase function. In fact

using Proposition 7.5b and Theorem 8.3a I obtain, for n ∈ Z, that λ(n) = �ν� = ν

where ν := PH(A′). �

Proof of Theorem 8.5c: Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant. Let

(ω,A) have an ω–quasiperiodic UPF t over some φ0 ∈ Rd with UPR ν.

Since t is an ω–quasiperiodic SPF I can apply Theorem 8.3b by which a unique

T ∈ Cper(R
d,R3×3) exists such that, for all integers n, t(n) = T (φ0+2πnω). Moreover

T ∈ Cper(R
d, SO(3)).
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To prove the remaining claims I compute, by using (8.9),

exp(2πνJ ) = tT (n + 1)A(φ0 + 2πnω)t(n)

= T T (φ0 + 2π(n+ 1)ω)A(φ0 + 2πnω)T (φ0 + 2πnω)

= T T (φ0 + 2πω + 2πnω + 2πm)A(φ0 + 2πnω + 2πm)T (φ0 + 2πnω + 2πm) ,

where n ∈ Z, m ∈ Zd and where in the third equality I used the 2π-periodicity of A

and T . I conclude that for φ ∈ Ã := {φ0 + 2πnω + 2πm : m ∈ Zd, n ∈ Z}, we have

exp(2πνJ ) = T T (φ+ 2πω)A(φ)T (φ) . (F.41)

Since, by Theorem D.2, Ã is dense in Rd and since A and T are continuous func-

tions I conclude that (F.41) holds for all φ in Rd. Defining (ω,A′) ∈ AT (d, ω) by

Ψω,A′(n;φ) := exp(2πνJ ) I get PH(A′) = ν and, by (F.41), for φ ∈ Rd,

A′(φ) = T T (φ+ 2πω)A(φ)T (φ) . (F.42)

Applying Definition 7.2 to (F.42), yields that (ω,A′) = Rd,ω(T ;ω,A) which completes

the proof. Clearly, since PH(A′) = ν we also have ν ∈ Ξ1(ω,A). �

F.16 Proof of Theorem 8.6

Proof of Theorem 8.6: Let (ω,A) ∈ SOT (d, ω) and let φ0 ∈ Rd. Let also ν ∈
Ξ2(ω,A, φ0). In the lines before Theorem 8.6, I already showed that [ν]ω ⊂ Ξ2(ω,A, φ0)

so my task is to prove the converse inclusion [ν]ω ⊃ Ξ2(ω,A, φ0).

Let ν̃ ∈ Ξ2(ω,A, φ0) so I am done when I show that ν̃ ∼ω ν. Let t, t̃ be ω–

quasiperiodic UPF’s over φ0 and let ν be the UPR of t and ν̃ be the UPR of t̃. I

define the two functions g± : Z→ C by

g±(n) :=

(
t(n)(e1 ± ie2)

)T(
t̃(n)(e1 + ie2)

)
. (F.43)
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Because t and t̃ are ω-quasiperiodic, g± is ω-quasiperiodic. By (8.9) we have, for

n ∈ Z,

t(n+ 1)(e1 ± ie2) = A(φ0 + 2πnω)t(n) exp(−2πνJ )(e1 ± ie2) ,

t̃(n+ 1)(e1 + ie2) = A(φ0 + 2πnω)t̃(n) exp(−2πν̃J )(e1 + ie2) ,

(F.44)

and by (C.2)

exp(−2πνJ )(e1 ± ie2) = exp(±i2πν)(e1 ± ie2) ,

exp(−2πν̃J )(e1 + ie2) = exp(i2πν̃)(e1 + ie2) .

(F.45)

It follows from (F.44),(F.45) that, for n ∈ Z,

t(n + 1)(e1 ± ie2) = exp(±i2πν)A(φ0 + 2πnω)t(n)(e1 ± ie2) ,

t̃(n+ 1)(e1 + ie2) = exp(i2πν̃)A(φ0 + 2πnω)t̃(n)(e1 + ie2) ,

whence (F.43) yields

g±(n+ 1) =

(
t(n + 1)(e1 ± ie2)

)T(
t̃(n+ 1)(e1 + ie2)

)
= exp(i2π(±ν + ν̃))

·
(
A(φ0 + 2πnω)t(n)(e1 ± ie2)

)T(
A(φ0 + 2πnω)t̃(n)(e1 + ie2)

)

= exp(i2π(±ν + ν̃))

(
t(n)(e1 ± ie2)

)T(
t̃(n)(e1 + ie2)

)
= exp(i2π(±ν + ν̃))g±(n) . (F.46)

By induction in n I obtain from (F.46) that

g±(n) = exp(i2πn(±ν + ν̃))g±(0) . (F.47)

To exploit (F.47), I show that either g+(0) 
= 0 or g−(0) 
= 0. In fact, if g+(0) =

g−(0) = 0 then by (F.43) the 11, 12, 21, 22 matrix elements of tT (0)t̃(0) vanish whence
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tT (0)t̃(0) has zero determinant which is a contradiction to the fact that tT (0)t̃(0) ∈
SO(3). I thus have shown that either g+(0) 
= 0 or g−(0) 
= 0.

I first consider the case when g+(0) 
= 0. Then by (F.47)

g+(n)/g+(0) = exp(i2πn(ν+ ν̃)) is an ω-quasiperiodic function of n. Since this func-

tion is exponential I can apply Theorem D.5 giving me that ν+ν̃ ∈ Yω whence ν̃ ∼ω ν.

In the case when g−(0) 
= 0 I obtain by (F.47) that g−(n)/g−(0) = exp(i2πn(−ν+ ν̃))

is a ω-quasiperiodic function of n. Applying again Theorem D.5, gives me that

−ν + ν̃ ∈ Yω whence ν̃ ∼ω ν. Thus I have shown that in any case ν̃ ∼ω ν, which

completes the proof. �

F.17 Proof of Theorem 8.7

Proof of Theorem 8.7a: Let (ω,A) ∈ SOT (d, ω).

Let ν ∈ Ξ1(ω,A). To prove the first claim, I have to show that [ν]ω ⊂ Ξ1(ω,A).

By Definition 7.11, a T ∈ Cper(R
d, SO(3)) exists such that (ω, Ã) := Rd,ω(T ;ω,A) ∈

AT (d, ω) and PH(Ã) = ν. For j ∈ Zd I define T±,j ∈ Cper(R
d, SO(3)) by

T+,j(φ) := T (φ) exp(−J jTφ) , T−,j(φ) := T (φ) exp(J jTφ)J ′ ,

and abbreviate (ω,A±,j) := Rd,ω(T±,j;ω,A). I obtain by Definition 7.2 that, for

φ ∈ Rd,

A+,j(1;φ) = T T
+,j(φ+ 2πω)A(φ)T+,j(φ)

= exp(J jT (φ+ 2πω))T T (φ+ 2πω)A(φ)T (φ) exp(−J jTφ)

= exp(J jT (φ+ 2πω))Ã(φ) exp(−J jTφ)

= exp(J jT (φ+ 2πω)) exp(J 2πν) exp(−J jTφ) = exp(J 2π(ν + jTω)) . (F.48)

It follows from (F.48) and Proposition 7.5c that (ω,A+,j) ∈ AT (d, ω) and PH(A+,j) =
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�ν + jTω� whence, by Definition 7.11, �ν + jTω� ∈ Ξ1(ω,A). I also obtain by Defi-

nition 7.2 and (7.20),(7.21) that, for φ ∈ Rd,

A−,j(φ) = T T
−,j(φ+ 2πω)A(φ)T−,j(φ)

= J ′ exp(−J jT (φ+ 2πω))T T (φ+ 2πω)A(φ)T (φ) exp(J jTφ)J ′

= J ′ exp(−J jT (φ+ 2πω))Ã(φ) exp(J jTφ)J ′

= J ′ exp(−J jT (φ+ 2πω)) exp(J 2πν) exp(J jTφ)J ′

= J ′ exp(J 2π(ν − jTω))J ′ = exp(J ′JJ ′2π(ν − jTω)) = exp(−J 2π(ν − jTω))

= exp(J 2π(−ν + jTω)) . (F.49)

It follows from (F.49) and Proposition 7.5c that (ω,A−,j) ∈ AT (d, ω) and PH(A−,j) =

�−ν + jTω� whence, by Definition 7.11, �−ν + jTω� ∈ Ξ1(ω,A).

I thus can summarize that for ε ∈ {1,−1}, j ∈ Zd I have �εν + jTω� ∈ Ξ1(ω,A).

Therefore, using (8.11), I conclude, for ν ′ ∈ [ν]ω, that ν ′ ∈ Ξ1(ω,A) which proves

the first claim.

To prove the second claim, let y ∈ ([0, 1) ∩ Yω). If y′ ∼ω y then y′ = εy + y′′

with ε ∈ {1,−1}, y′′ ∈ Yω. Clearly y′ ∈ ([0, 1) ∩ Yω) whence [y]ω ⊂ ([0, 1) ∩ Yω). If

conversely y′ ∈ ([0, 1)∩Yω) then y′ = y+(y′−y). Since (y′−y) ∈ Yω I conclude that

y′ ∈ [y]ω whence [y]ω ⊃ ([0, 1) ∩ Yω). This completes the proof of the second claim.

Let μ ∈ Ξ1(ω,A) ∩ Yω. Thus μ ∈ ([0, 1) ∩ Yω) whence, by the second claim,

[μ]ω = ([0, 1) ∩ Yω). Since μ ∈ Ξ1(ω,A) we thus get by the first claim that ([0, 1) ∩
Yω) = [μ]ω ⊂ Ξ1(ω,A). Thus if Ξ1(ω,A)∩Yω 
= ∅ then ([0, 1)∩Yω) ⊂ Ξ1(ω,A) which

proves the third claim. �

Proof of Theorem 8.7b: Let (ω,A) ∈ SOT (d, ω), let φ0 ∈ Rd and ν ∈ Ξ1(ω,A).

By Definition 7.11, a T ∈ Cper(R
d, SO(3)) exists such that

(ω,A′) := Rd,ω(T ;ω,A) ∈ AT (d, ω) and PH(A′) = ν. Thus by Theorem 8.5b an ω–

quasiperiodic UPF t exists over φ0 and which has the UPR ν whence ν ∈ Ξ2(ω,A, φ0).
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I conclude that the inclusion (8.14) holds.

Since ν ∈ Ξ2(ω,A, φ0) we have by Theorem 8.6 that [ν]ω = Ξ2(ω,A, φ0). I thus

conclude from Theorem 8.7a that

Ξ2(ω,A, φ0) = [ν]ω ⊂ Ξ1(ω,A) ⊂ Ξ2(ω,A, φ0) ,

whence Ξ1(ω,A) = Ξ2(ω,A, φ0). I thus have shown that if Ξ1(ω,A) is nonempty,

then Ξ1(ω,A) = Ξ2(ω,A, φ0). �

Proof of Theorem 8.7c: Let (ω,A) ∈ SOT (d, ω), φ0 ∈ Rd and let (1, ω) be nonres-

onant. By the inclusion (8.14) I only have to show that Ξ1(ω,A) ⊃ Ξ2(ω,A, φ0) so

let ν ∈ Ξ2(ω,A, φ0). Thus an ω–quasiperiodic UPF exists over φ0 whose UPR is ν.

Applying Theorem 8.5c now gives ν ∈ Ξ1(ω,A). �

Proof of Theorem 8.7d: Let (ω,A) ∈ SOT (d, ω) and let Rd,ω(T ;ω,A) = (ω,A′)

where T ∈ Cper(R
d, SO(3)). Let also φ0 ∈ Rd and ν ∈ Ξ2(ω,A, φ0), i.e., let there

be an ω-quasiperiodic UPF t of (ω,A) over φ0 with UPR ν. I define the function

t′ : Z→ SO(3) by t′(n) := T T (φ0 + 2πnω)t(n). Clearly t′ is ω-quasiperiodic. Using

Definitions 7.2 and 8.4 I obtain for all integers n

t′T (n+ 1)A′(φ0 + 2πnω)t′(n) =

tT (n+ 1)T (φ0 + 2π(n+ 1)ω)A′(φ0 + 2πnω)T T (φ0 + 2πnω)t(n)

= tT (n + 1)A(φ0 + 2πnω)t(n) = exp(2πνJ ) . (F.50)

Using again Definition 8.4, I obtain from (F.50) that t′ is a UPF of (ω,A′) over φ0

with UPR ν. Since t′ is ω-quasiperiodic I conclude that Ξ2(ω,A, φ0) ⊂ Ξ2(ω,A
′, φ0).

Reversing the roles of A and A′ I also obtain that Ξ2(ω,A, φ0) ⊃ Ξ2(ω,A
′, φ0) whence

Ξ2(ω,A, φ0) = Ξ2(ω,A
′, φ0). �
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F.18 Proof of Proposition 8.9

Proof of Proposition 8.9a: Let (ω,A) ∈ SOT (d, ω).

If (ω,A) ∈ ACB(d, ω) then Ξ1(ω,A) is nonempty whence, by Theorem 8.7b,

Ξ1(ω,A) = Ξ2(ω,A, φ0) for all φ0 in Rd so that (ω,A) is well–tuned and the spin

tunes of first and second kind are the same.

If ν ∈ Ξ1(ω,A) then, by Theorem 8.7b, ν ∈ Ξ2(ω,A, φ0) for arbitrary φ0 ∈ Rd

whence, by Theorem 8.6, Ξ2(ω,A, φ0) = [ν]ω. Also, if ν ∈ Ξ1(ω,A) then Ξ1(ω,A) is

nonempty whence, by Theorem 8.7b, Ξ1(ω,A) = Ξ2(ω,A, φ0). Thus if ν ∈ Ξ1(ω,A)

then Ξ1(ω,A) = [ν]ω. The third claim follows from Theorem 8.6. �

Proof of Proposition 8.9b: Let (ω,A), (ω,A′) ∈ SOT (d, ω) and (ω,A) ∈ ACB(d, ω).

If ν ∈ Ξ1(ω,A)∩Ξ1(ω,A
′) then, by Proposition 8.9a, Ξ1(ω,A) = [ν]ω = Ξ1(ω,A

′).

Thus either Ξ1(ω,A)∩ Ξ1(ω,A
′) = ∅ or Ξ1(ω,A) = Ξ1(ω,A

′). Clearly, in the former

case, we have (ω,A) 
∼d,ω (ω,A′) since otherwise, by Proposition 7.12a, I would have

Ξ1(ω,A) = Ξ1(ω,A
′). In the latter case we have, by Proposition 7.12a, (ω,A) ∼d,ω

(ω,A′) whence (ω,A′) ∈ ACB(d, ω). �

Proof of Proposition 8.9c: Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant.

If (ω,A) is well–tuned then, by Theorem 8.7c, Ξ1(ω,A) is nonempty whence

(ω,A) ∈ ACB(d, ω). If (ω,A) ∈ ACB(d, ω) then, by Proposition 8.9a, (ω,A) is

well–tuned. I thus have shown that (ω,A) is well–tuned iff (ω,A) ∈ ACB(d, ω).

If (ω,A) is well–tuned then, by the first claim, Ξ1(ω,A) is nonempty whence, by

Theorem 8.7b, all Ξ2(ω,A, φ0) are equal to Ξ1(ω,A) where φ0 varies over Rd. Thus

Ξ1(ω,A) = Ξ2(ω,A). �

Proof of Proposition 8.9d: Let (ω,A) ∈ SOT (d, ω) and φ0 ∈ Rd. If ν is a spin tune

of second kind then ν ∈ Ξ2(ω,A, φ0) whence by Theorem 8.5a every spin trajectory
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over φ0 is (ω, ν)–quasiperiodic. The second claim follows from the first claim and

(8.14). �

Proof of Proposition 8.9e: Clearly if (ω,A) is well–tuned then the Ξ2(ω,A, φ0) have

a common element. I now consider the case that the Ξ2(ω,A, φ0) have a com-

mon element ν. Then by Theorem 8.6 for every φ0, Ξ2(ω,A, φ0) = [ν]ω whence

all Ξ2(ω,A, φ0) are nonempty an equal, i.e., (ω,A) is well–tuned. �

Proof of Proposition 8.9f: By Theorem 8.6 either Ξ2(ω,A, φ0) is empty or

Ξ2(ω,A, φ0) = [ν]ω for some ν whence Ξ2(ω,A, φ0) has countably many elements. It

follows by Theorem 8.7b that Ξ1(ω,A) has countably many elements.

Since each Ξ2(ω,A, φ0) has countably many elements, it follows for a well-tuned

(ω,A) that Ξ2(ω,A) has countably many elements. Thus if Ξ2(ω,A) has uncountably

many elements, then (ω,A) is ill–tuned. �

Proof of Proposition 8.9g: Let (ω,A), (ω,A′) ∈ SOT (d, ω) with (ω,A) ∼d,ω (ω,A′).

If (ω,A) is well-tuned then all Ξ2(ω,A, φ0) are nonempty and equal whence, by

Theorem 8.7d, all Ξ2(ω,A
′, φ0) are nonempty and equal. Reversing the roles of A

and A′ I conclude that either both spin-orbit tori (ω,A), (ω,A′) are well-tuned or

both of them are ill-tuned.

To prove the last claim let (ω,A), (ω,A′) be well-tuned. Then, by Theorem 8.7d,

Ξ2(ω,A) = Ξ2(ω,A, φ0) = Ξ2(ω,A
′, φ0) = Ξ2(ω,A

′) where φ0 is any element of Rd.

�

F.19 Proof of Proposition 8.10

Proof of Proposition 8.10a: Let (ω,A) be on spin-orbit resonance of first kind. Then

0 ∈ Ξ1(ω,A) and, by Proposition 8.9a, (ω,A) is well-tuned and 0 is a spin tune of
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second kind. Thus (ω,A) is on spin-orbit resonance of second kind.

Let (ω,A) be off spin-orbit resonance of first kind. Then 0 
∈ Ξ1(ω,A) and, by

Proposition 8.9a, (ω,A) is well-tuned and 0 is not a spin tune of second kind. Thus

(ω,A) is off spin-orbit resonance of second kind. �

Proof of Proposition 8.10b: Let (ω,A) ∈ SOT (d, ω).

If (ω,A) is on spin-orbit resonance of second kind, then 0 is a spin tune of second

kind so that, by Proposition 8.9d, every spin trajectory is (ω, 0)–quasiperiodic whence

ω–quasiperiodic.

I now consider the case that every spin trajectory is ω–quasiperiodic. Let φ0 ∈
Rd. Since Ψω,A(·;φ0) is ω–quasiperiodic, we have by Remark 2 of Section 8.3 that

Ψω,A(·;φ0) is an ω–quasiperiodic UPF over φ0 with zero UPR. Thus 0 ∈ Ξ2(ω,A, φ0)

whence, by Proposition 8.9e, (ω,A) is well-tuned and 0 is a spin tune of second kind.

Therefore (ω,A) is on spin-orbit resonance of second kind. �

Proof of Proposition 8.10c: Let (ω,A) ∈ SOT (d, ω). I first consider the case when

(ω,A) is on spin-orbit resonance of first kind. Thus 0 ∈ Ξ1(ω,A) whence, by Theorem

8.7a and Proposition 8.9a, Ξ1(ω,A) = [0]ω = [0, 1) ∩ Yω. On the other hand if

Ξ1(ω,A) = [0, 1) ∩ Yω then 0 ∈ Ξ1(ω,A) so that (ω,A) is on spin-orbit resonance of

first kind. I thus have shown that (ω,A) is on spin-orbit resonance of first kind iff

Ξ1(ω,A) = [0, 1) ∩ Yω.

To prove the second claim let first of all (ω,A) be on spin-orbit resonance of first

kind. Then 0 ∈ Ξ1(ω,A) whence m ∈ Zd, n ∈ Z exist such that (8.15) holds for

ν = 0. If conversely ν ∈ Ξ1(ω,A) and m ∈ Zd, n ∈ Z exist such that (8.15) holds

then ν ∈ ([0, 1)∩ Yω) and, by Theorem 8.7a and Proposition 8.9a, Ξ1(ω,A) = [ν]ω =

[0, 1) ∩ Yω whence, by the first claim, (ω,A) is on spin-orbit resonance of first kind.

�
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Proof of Proposition 8.10d: Let (ω,A) ∈ SOT (d, ω). I first consider the case that

(ω,A) is on spin-orbit resonance of second kind. Thus 0 is a spin tune of second

kind whence, by Theorem 8.7a and Proposition 8.9a, Ξ2(ω,A, φ0) = [0]ω = [0, 1)∩Yω

for all φ0 ∈ Rd. I now consider the case that Ξ2(ω,A, φ0) = [0, 1) ∩ Yω for all

φ0 ∈ Rd. Clearly, (ω,A) is well-tuned and 0 ∈ Ξ2(ω,A) whence (ω,A) is on spin-

orbit resonance of second kind.

To prove the second claim let first of all (ω,A) be on spin-orbit resonance of

second kind. Then 0 is a spin tune of second kind whence m ∈ Zd, n ∈ Z exist

such that (8.15) holds for ν = 0. If conversely ν is a spin tune of second kind and

m ∈ Zd, n ∈ Z exist such that (8.15) holds then ν ∈ ([0, 1)∩Yω) whence, by Theorem

8.7a and Proposition 8.9a, Ξ2(ω,A) = [ν]ω = [0, 1) ∩ Yω so that 0 is a spin tune of

second kind which implies that (ω,A) is on spin-orbit resonance of second kind. �

Proof of Proposition 8.10e: Let (ω,A), (ω,A′) ∈ SOT (d, ω) be on spin-orbit res-

onance of first kind. Thus, by Definition 7.11, 0 ∈ Ξ1(ω,A),Ξ1(ω,A
′) whence,

by Proposition 8.9a, Ξ1(ω,A) = [0]ω = Ξ1(ω,A
′) so that, by Proposition 7.12a,

(ω,A) ∼d,ω (ω,A′). �

Proof of Proposition 8.10f: Let (ω,A), (ω,A′) ∈ SOT (d, ω) with (ω,A) ∼d,ω (ω,A′).

If (ω,A) is on spin-orbit resonance of second kind then 0 is a spin tune of second

kind of (ω,A) whence, by Proposition 8.9g, (ω,A′) is well-tuned and 0 is a spin tune

of second kind of (ω,A′) so that (ω,A′) is on spin-orbit resonance of second kind.

Reversing the roles of A and A′ one sees that either both of (ω,A), (ω,A′) are on

spin-orbit resonance of second kind or neither of them.

If (ω,A) is off spin-orbit resonance of second kind then (ω,A) is well-tuned and

0 is not a spin tune of second kind of (ω,A). Thus, by Proposition 8.9g, (ω,A′) is

well-tuned and 0 is not a spin tune of second kind of (ω,A′) so that (ω,A′) is off

spin-orbit resonance of second kind. Reversing the roles of A and A′ we see that
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either both of (ω,A), (ω,A′) are off spin-orbit resonance of second kind or neither of

them. �

Proof of Proposition 8.10g: Let (ω,A) ∈ SOT (d, ω) and let (1, ω) be nonresonant.

Let (ω,A) have an ISF SG and an ISF which is different from SG and −SG. Then,

by Theorem 7.13, (ω,A) is on spin-orbit resonance of first kind. Applying now

Proposition 8.10a, one concludes that (ω,A) is on spin-orbit resonance of second

kind. �

F.20 Proof of Theorem 8.11

Proof of Theorem 8.11a: ⇒: Let (ω,A1) ∈ ACB(d, ω). Thus, by Definition 7.6, a

T ′ ∈ Cper(R
d, SO(3)) exists such that (ω,A2) := Rd,ω(T ′;ω,A1) ∈ AT (d, ω). Then,

by Theorem 7.14b, a T ∈ Cper(R
d, SO3(2)) exists such that either Rd,ω(T ;ω,A1) =

(ω,A2) or Rd,ω(TJ ′;ω,A1) = (ω,A2). In both cases we have, by Corollary 7.15a,

that (7.32),(7.34) hold where g := PHF (T ) ∈ Cper(R
d,R).

⇐: Let M1 = 0 and let g ∈ Cper(R
d,R) such that (7.34) holds. Defining T ∈

Cper(R
d, SO3(2)) by

T (φ) := exp(J 2πg(φ)) ,

I get from (7.30),(7.32), (7.34), for φ ∈ Rd,

T T (φ+ 2πω)A1(φ)T (φ) = exp

(
J [−2πg(φ+ 2πω)]

)

· exp

(
J [2πf1(φ)]

)
exp

(
J [2πg(φ)]

)

= exp

(
J [2πg(φ)− 2πg(φ+ 2πω) + 2πf1(φ)]

)

= exp

(
J [2πg(φ)− 2πg(φ+ 2πω) + 2πf̃1(φ) + 2πf1,0]

)
= exp(J [2πf1,0]) . (F.51)
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Thus Definition 7.2 and Proposition 7.5c give Rd,ω(T ;ω,A1) ∈ AT (d, ω) whence

(ω,A1) is an almost coboundary. �

Proof of Theorem 8.11b: Let M1 = 0 and let g ∈ Cper(R
d,R) exist such that (7.34)

holds. I pick aN ∈ Zd and define T ∈ Cper(R
d, SO3(2)) by (7.29). Defining (ω,A2) :=

Rd,ω(T ;ω,A1), I obtain from Definition 7.2 and (7.29),(7.30),(7.32), (7.34) that, for

φ ∈ Rd,

A2(φ) = T T (φ+ 2πω)A1(φ)T (φ) = exp

(
J [−NT (φ+ 2πω)− 2πg(φ+ 2πω)]

)

· exp

(
J [2πf1(φ)]

)
exp

(
J [NTφ+ 2πg(φ)]

)

= exp

(
J [2πg(φ)− 2πg(φ+ 2πω)− 2πNTω + 2πf1(φ)]

)

= exp

(
J [2πg(φ)− 2πg(φ+ 2πω)− 2πNTω + 2πf̃1(φ) + 2πf1,0]

)

= exp

(
J [−2πNTω + 2πf1,0]

)
,

whence (8.16) holds and Proposition 7.5c, Definition 7.11 give (ω,A2) ∈ AT (d, ω)

and �−NTω+ f1,0� ∈ Ξ1(ω,A1). Defining (ω,A3) := Rd,ω(TJ ′;ω,A1), I obtain from
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Definition 7.2 and (7.20),(7.21), (7.29),(7.30),(7.32), (7.34) that, for φ ∈ Rd,

A3(φ) = (T (φ+ 2πω)J ′)TA1(φ)T (φ)J ′ = J ′T T (φ+ 2πω)A1(φ)T (φ)J ′

= J ′ exp

(
J [−NT (φ+ 2πω)− 2πg(φ+ 2πω)]

)
exp

(
J [2πf1(φ)]

)

· exp

(
J [NTφ+ 2πg(φ)]

)
J ′

= J ′ exp

(
J [−NT (φ+ 2πω)− 2πg(φ+ 2πω) + 2πf1(φ) +NTφ+ 2πg(φ)]

)
J ′

= J ′ exp

(
J [2πg(φ)− 2πg(φ+ 2πω)− 2πNTω + 2πf̃1(φ) + 2πf1,0]

)
J ′

= J ′ exp

(
J [−2πNTω + 2πf1,0]

)
J ′

= exp

(
J ′JJ ′[−2πNTω + 2πf1,0]

)
= exp

(
−J [−2πNTω + 2πf1,0]

)

= exp

(
J [2πNTω − 2πf1,0]

)
,

whence (8.17) holds and Proposition 7.5c, Definition 7.11 give (ω,A3) ∈ AT (d, ω)

and �NTω − f1,0� ∈ Ξ1(ω,A1). �

Proof of Theorem 8.11c: Let (ω,A1) ∈ ACB(d, ω). Thus, by Proposition 8.9a, (ω,A1)

is well-tuned. Moreover, by Theorem 8.11a, M1 = 0 and a g ∈ Cper(R
d,R) exists

such that (7.34) is true for all φ ∈ Rd. Thus I can apply Theorem 8.11b so that, by

choosing N := 0 ∈ Zd, I find �f1,0� ∈ Ξ1(ω,A1). This implies, by Proposition 8.9a,

that (8.18) holds. �

F.21 Proof of Corollary 8.12

Proof of Corollary 8.12a: By the transitivity of ∼d,ω we have (ω,A), (ω,A1) ∈
ACB(d, ω) whence, by Proposition 8.9a, (ω,A) and (ω,A1) are well-tuned. Since

(ω,A1) ∈ ACB(d, ω) I obtain from Theorem 8.11c that (8.18) holds. On the other

hand, since (ω,A) ∼d,ω (ω,A1), I obtain from Proposition 7.12a and Theorem 8.7d
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that

Ξ1(ω,A) = Ξ1(ω,A1) , Ξ2(ω,A) = Ξ2(ω,A1) ,

whence, by (8.18), I conclude that (8.19) holds. �

Proof of Corollary 8.12b: Recalling from the proof of Corollary 8.12a that (ω,A1) ∈
ACB(d, ω) I obtain from Theorem 8.11a that M1 = 0 whence Proposition 7.5a gives

(8.20). Defining the function F : Z → R by F (n) := f1(2πnω) I note that f1 is

an ω-generator of the ω-quasiperiodic function F . We recall from the definition of

ak(F, 0) (with k = 0, 1, ...) in Section D.3 that, for n = 1, 2, ...,

an−1(F, 0) =
1

n

n−1∑
j=0

F (j) =
1

n

n−1∑
j=0

f1(2πjω) . (F.52)

Since (1, ω) is nonresonant, Lemma D.4c gives

f1,0 = lim
n→∞

an(F, 0) =: a(F, 0) , (F.53)

where in the second equality I used the definition of a(F, 0) from Section D.3. Col-

lecting (F.52), (F.53), I obtain (8.21). �

Proof of Corollary 8.12c: I define the function t : Z → SO(3) by t(n) := T (2πnω).

Since Rd,ω(T ;ω,A) ∈ WT (d, ω) I can apply Theorem 8.3a by which t is an ω–

quasiperiodic SPF of (ω,A) over 0 ∈ Rd. Since t is an SPF of (ω,A) over 0 ∈ Rd I

can apply (8.6) so that, for n ∈ Z,

Ψω,A(n; 0) = t(n) exp(J 2πμ(n))tT (0) , (F.54)

where μ is the integral phase function of t. Using again Theorem 8.3a and noting

that, by Corollary 8.12b, Ind2(A1) = M1 = 0, I obtain, for n ∈ Z,

μ(n) = �f(n, 0)� , (F.55)

346



Appendix F. Proofs

where f(n, ·) := PHF (Ψω,A1(n; ·)). Since, by Corollary 8.12b, we have, for φ ∈
Rd, n = 1, 2, ..., that

�f(n, φ)� = �
n−1∑
j=0

f1(φ+ 2πjω)� ,

I get from (F.55) that, for n = 1, 2, ...,

μ(n) = �
n−1∑
j=0

f1(2πjω)� . (F.56)

I conclude from (F.54),(F.56) that, for n = 1, 2, ...,

Ψω,A(n; 0) = t(n) exp

(
J 2π�

n−1∑
j=0

f1(2πjω)�
)
tT (0) ,

whence (8.22) holds for n = 1, 2, ... which proves the first claim. Note incidentally

that by the definition of PHF I have �f(n, 0)� = f(n, 0), but this fact is not needed

here since it does not simplify the above argumentation.

To prove the second claim, I define the function S : Z → S2, by S(n) :=

Ψω,A(n; 0)t(0)e1. It is clear by (6.3) that S is a spin trajectory of (ω,A) over 0 ∈ Rd.

It follows from (F.54),(C.2) that, for n ∈ Z,

tT (n)S(n) = tT (n)Ψω,A(n; 0)t(0)e1 = exp(J 2πμ(n))e1 =

⎛
⎜⎜⎜⎝

cos(2πμ(n))

sin(2πμ(n))

0

⎞
⎟⎟⎟⎠ ,

whence, for n ∈ Z,

(e1 + ie2)T tT (n)S(n) = (e1 + ie2)T

⎛
⎜⎜⎜⎝

cos(2πμ(n))

sin(2πμ(n))

0

⎞
⎟⎟⎟⎠

= cos(2πμ(n)) + i sin(2πμ(n)) = exp(i2πμ(n)) ,

so that, by (F.56), we have, for n = 1, 2, ...,

(e1 + ie2)T tT (n)S(n) = exp

(
i2π�

n−1∑
j=0

f1(2πjω)�
)
,
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which implies (8.23). �

F.22 Proof of Proposition 8.14

Proof of Proposition 8.14: Let (ω,A) ∈ WCB(d, ω) and let me pick a T ′ ∈ Cper(R
d, SO(3))

such that Rd,ω(T ′;ω,A) =: (ω,A′) ∈ WT (d, ω). I pick any s′ ∈ {1,−1}d and define

T ∈ Cper(R
d, SO(3)) by

T := T ′g(s′)
d . (F.57)

Defining (ω,A′′) := Rd,ω(T ;ω,A) I get, by Definition C.14, Theorem 7.3a and (F.57),

that, for n ∈ Z, φ ∈ Rd,

Ψω,A′′(n;φ) = T T (φ+ 2πnω)Ψω,A(n;φ)T (φ)

= (g
(s′)
d )T (φ+ 2πnω)(T ′)T (φ+ 2πnω)Ψω,A(n;φ)T ′(φ)g

(s′)
d (φ)

= (g
(s′)
d )T (φ+ 2πnω)Ψω,A′(n;φ)g

(s′)
d (φ) . (F.58)

Since Ψω,A′(n; ·) is SO3(2)-valued I conclude from (F.58) that Ψω,A′′(n; ·) is SO3(2)-

valued whence (ω,A′′) ∈ WT (d, ω). Eq. (F.57) and Theorem C.15a give me

Ind3,d(T ) = Ind3,d(T
′g(s′)

d ) = Ind3,d(T
′)Ind3,d(g

(s′)
d ) whence, by Theorem C.15c,

Ind3,d(T ) = Ind3,d(T
′)s′. Thus choosing s′ appropriately, Ind3,d(T ) can assume

any value s in {1,−1}d which proves the first claim.

To prove the second claim let (ω,A) ∈ ACB(d, ω) and let me pick a T ′ ∈
Cper(R

d, SO(3)) such that Rd,ω(T ′;ω,A) =: (ω,A′) ∈ AT (d, ω). I pick any s′ ∈
{1,−1}d and define T ∈ Cper(R

d, SO(3)) by (F.57). Defining (ω,A′′) := Rd,ω(T ;ω,A)

I get, by Definition C.14 and (F.58), that, for n ∈ Z, φ ∈ Rd,

Ψω,A′′(n;φ) = (g
(s′)
d )T (φ+ 2πnω)Ψω,A′(n;φ)g

(s′)
d (φ)

= (g
(s′)
d )T (φ+ 2πnω)g

(s′)
d (φ)Ψω,A′(n;φ)

= exp(−J πn
d∑

i=1

(1− s′i)ωi)Ψω,A′(n;φ) . (F.59)
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Since Ψω,A′(n;φ) is in SO3(2) and independent of φ I conclude from (F.59) that

Ψω,A′′(n;φ) is in SO3(2) and independent of φ whence (ω,A′′) ∈ AT (d, ω). From

the proof of the first claim I know that Ind3,d(T ) = Ind3,d(T
′)s′. Therefore choosing

s′ appropriately, Ind3,d(T ) can assume any value t in {1,−1}d. Thus, by Definition

8.13, every Ξt
1(ω,A) is nonempty which proves the second claim. �

F.23 Proof of Theorem 8.15

Proof of Theorem 8.15a: Let (ω,A) ∈ ACB(d, ω) and let (1, ω) be nonresonant.

Let Ti ∈ Cper(R
d, SO(3)) such that (ω,Ai) := Rd,ω(Ti;ω,A) ∈ AT (d, ω) and νi :=

PH(Ai) where i = 1, 2. I also abbreviate s := Ind3,d(T ) where T := T T
1 T2 ∈

Cper(R
d, SO(3)). The proof goes along the lines of the proof of Theorem 7.14b. By

Definition 7.2 and Proposition 7.5b, I have, for φ ∈ Rd,

T1(φ+ 2πω) exp(J 2πν1)T
T
1 (φ) = A(φ) = T2(φ+ 2πω) exp(J 2πν2)T

T
2 (φ) ,

whence, for φ ∈ Rd,

exp(J 2πν1)T (φ) = T (φ+ 2πω) exp(J 2πν2) . (F.60)

Abbreviating t := Te3 ∈ Cper(R
d, S2), I conclude from (F.60) that, for φ ∈ Rd,

exp(J 2πν1)t(φ) = t(φ+ 2πω) . (F.61)

Defining, for j = 1, 2, 3, tj := tT ej ∈ Cper(R
d,R) I have, by (F.61), for φ ∈ Rd,

t3(φ) = t3(φ+ 2πω) . (F.62)

Because (1, ω) is nonresonant I conclude from (F.62) and Corollary D.3a that t3 is

constant so that only the following three cases can occur: Case (i) where |t3| < 1,

Case (ii) where t3 = 1, Case (iii) where t3 = −1.
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I first consider Case (i). Because the constant t0 :=
√

1− t23 is nonzero, the

function g1 : Rd → R3×3, defined by

g1(φ) :=

⎛
⎜⎜⎜⎝

t1(φ)
t0

− t2(φ)
t0

0

t2(φ)
t0

t1(φ)
t0

0

0 0 1

⎞
⎟⎟⎟⎠ , (F.63)

belongs to Cper(R
d, SO3(2)) and satisfies, for φ ∈ Rd,

t(φ) = t1(φ)e1 + t2(φ)e2 + t3e
3 = g1(φ)(t0e

1 + t3e
3) . (F.64)

Combining (F.61) with (F.64) results, for φ ∈ Rd, in

exp(J 2πν1)g1(φ)(t0e
1 + t3e

3) = exp(J 2πν1)t(φ) = t(φ+ 2πω)

= g1(φ+ 2πω)(t0e
1 + t3e

3) ,

whence, for φ ∈ Rd,

exp(J 2πν1)g1(φ)gT
1 (φ+ 2πω)(t0e

1 + t3e
3)

= gT
1 (φ+ 2πω) exp(J 2πν1)g1(φ)(t0e

1 + t3e
3) = (t0e

1 + t3e
3) . (F.65)

Since exp(J 2πν1)g1(φ)gT
1 (φ + 2πω) is in SO3(2), I conclude from (F.65) that, for

φ ∈ Rd,

exp(J 2πν1)g1(φ)gT
1 (φ+ 2πω)t0e

1 = t0e
1 . (F.66)

Using again the fact that exp(J 2πν1)g1(φ)gT
1 (φ + 2πω) is in SO3(2) and since t0 is

nonzero, (F.66) implies that, for φ ∈ Rd,

exp(J 2πν1)g1(φ)gT
1 (φ+ 2πω) = I3×3 . (F.67)

Since t0e
1 + t3e

3 is a constant unit vector, a constant matrix t̃ exists in SO(3) such

that t̃e3 = t0e
1 + t3e

3, whence (F.64) and the definition of t imply

g1t̃e
3 = Te3 . (F.68)
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Thus and due to Lemma 7.8a I obtain that T Tg1t̃ is SO3(2)-valued. I thus can define

g2 ∈ Cper(R
d, SO3(2)) by

g2 := T Tg1t̃ . (F.69)

Since T = g1t̃g
T
2 , (F.60) gives me, for φ ∈ Rd,

exp(J 2πν1)g1(φ)t̃gT
2 (φ) = exp(J 2πν1)T (φ) = T (φ+ 2πω) exp(J 2πν2)

= g1(φ+ 2πω)t̃gT
2 (φ+ 2πω) exp(J 2πν2) ,

whence, for φ ∈ Rd,(
exp(J 2πν1)g1(φ)gT

1 (φ+ 2πω)

)
t̃

(
exp(−J 2πν2)g

T
2 (φ)g2(φ+ 2πω)

)
= t̃ ,

so that, due to (F.67), for φ ∈ Rd,

exp(−J 2πν2)g
T
2 (φ)g2(φ+ 2πω) = I3×3 . (F.70)

Since g1 ∈ Cper(R
d, SO3(2)), Definition C.12 gives me, for φ ∈ Rd, g1(φ) = exp(J [NTφ+

2πf(φ)]) where N := Ind2,d(g1), f := PHF (g1). Thus (F.67) gives me, for φ ∈ Rd,

exp(J 2π[ν1 + f(φ)− f(φ+ 2πω)−NTω]) = I3×3 ,

whence, by Theorem C.11a,

ν1 + f(φ)− f(φ+ ω)−NTω = M , (F.71)

where M is a constant integer. Using the 2π-periodicity of f and taking the integral∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφd of (F.71) it follows that

ν1 = NTω +M . (F.72)

Since (F.67) implies (F.72), analogously (F.70) implies

ν2 = N ′Tω +M ′ , (F.73)
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where M ′ is a constant integer and N ′ := Ind2,d(g2). Eq. (F.72),(F.73) give me, for

φ ∈ Rd,

ν1 − ν2 = (N −N ′)Tω +M −M ′ , (F.74)

whence, by Definition D.1, (ν1 − ν2) ∈ Yω. To show that (ν1 − ν2) ∈ Y s
ω I abbreviate

si := Ind3,d(gi) where i = 1, 2. Then, by (F.69) and Theorem C.15a, we have

s = Ind3,d(T ) = Ind3,d(g1t̃g
T
2 ) = Ind3,d(g1)Ind3,d(t̃)Ind3,d(g

T
2 )

= Ind3,d(g1)Ind3,d(t̃)Ind3,d(g2) = s1Ind3,d(t̃)s
2 ,

whence, by Definition C.14,

s = s1Ind3,d(t̃)s
2 = s1(1, ..., 1)Ts2 = s1s2 . (F.75)

Since N = Ind2,d(g1) and N ′ = Ind2,d(g2), Theorem C.15b gives me

s1 = ((−1)N1 , ..., (−1)Nd)T and s2 = ((−1)N ′
1 , ..., (−1)N ′

d)T whence, by (F.75),

s =

(
(−1)N1+N ′

1 , ..., (−1)Nd+N ′
d

)T

=

(
(−1)N1−N ′

1, ..., (−1)Nd−N ′
d

)T

. (F.76)

I conclude from (F.74),(F.76) and Definition 8.13 that (ν1 − ν2) ∈ Y s
ω .

I now consider Case (ii). Because Te3 = e3 I obtain, due to Lemma 7.8a, that T

is SO3(2)-valued. Since T ∈ Cper(R
d, SO3(2)), we have, by Definition C.12, that, for

φ ∈ Rd, T (φ) = exp(J [N̂Tφ+ 2πf̂(φ)]) where N̂ := Ind2,d(T ), f̂ := PHF (T ). Thus

(F.60) gives me, for φ ∈ Rd,

exp(J 2π[ν1 − ν2 + f̂(φ)− f̂(φ+ 2πω)− N̂Tω]) = I3×3 ,

whence, by Theorem C.11a,

ν1 − ν2 + f̂(φ)− f̂(φ+ 2πω)− N̂Tω = M̂ , (F.77)

where M̂ is a constant integer. Using the 2π-periodicity of f̂ and taking the integral∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφd of (F.77) it follows that

ν1 − ν2 = N̂Tω + M̂ . (F.78)
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Thus, by Definition D.1, (ν1 − ν2) ∈ Yω. To show that (ν1 − ν2) ∈ Y s
ω I recall that

N̂ = Ind2,d(T ) whence, by Theorem C.15b, s = Ind3,d(T ) = ((−1)N̂1 , ..., (−1)N̂d). I

thus conclude, by (F.78) and Definition 8.13, that (ν1 − ν2) ∈ Y s
ω .

I now consider Case (iii). Because Te3 = −e3, due to Lemma 7.8a, I obtain that

TJ ′ is SO3(2)-valued, where J ′ is given by (7.20). Since TJ ′ ∈ Cper(R
d, SO3(2)),

we have, by Definition C.12, that, for φ ∈ Rd, T (φ)J ′ = exp(J [ŇTφ + 2πf̌(φ)])

where Ň := Ind2,d(TJ ′), f̌ := PHF (TJ ′). Thus (7.21),(F.60) give me, for φ ∈ Rd,

exp(J [2πν1 + 2πf̌(φ) + ŇTφ])J ′ = exp(J 2πν1)T (φ)J ′J ′ = exp(J 2πν1)T (φ)

= T (φ+ 2πω) exp(J 2πν2) = T (φ+ 2πω)J ′J ′ exp(J 2πν2)

= exp(J [2πf̌(φ+ 2πω) + ŇTφ+ 2πŇTω])J ′ exp(J 2πν2)

= exp(J [2πf̌(φ+ 2πω) + ŇTφ+ 2πŇTω])J ′ exp(J 2πν2)J ′J ′

= exp(J [2πf̌(φ+ 2πω) + ŇTφ+ 2πŇTω]) exp(J ′JJ ′2πν2)J ′

= exp(J [2πf̌(φ+ 2πω) + ŇTφ+ 2πŇTω]) exp(−J 2πν2)J ′ ,

whence, for φ ∈ Rd,

exp(J 2π[ν1 + ν2 + f̌(φ)− f̌(φ+ 2πω)− ŇTω]) = I3×3 ,

so that, by Theorem C.11a, for φ ∈ Rd,

ν1 + ν2 + f̌(φ)− f̌(φ+ 2πω)− ŇTω = M̌ , (F.79)

where M̌ is a constant integer. Using the 2π-periodicity of f̌ and taking the integral∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφd of (F.79) it follows that

ν1 + ν2 = ŇTω + M̌ . (F.80)

Thus, by Definition D.1, (ν1 + ν2) ∈ Yω. To show that (ν1 + ν2) ∈ Y s
ω we recall that

Ň = Ind2,d(TJ ′) whence, by Theorem C.15b,

Ind3,d(TJ ′) = ((−1)Ň1 , ..., (−1)Ňd)T . (F.81)

353



Appendix F. Proofs

By Theorem C.15a I have Ind3,d(TJ ′) = Ind3,d(T )Ind3,d(J ′) = sInd3,d(J ′), whence,

by Definition C.14, Ind3,d(TJ ′) = sInd3,d(J ′) = s(1, ..., 1)T = s, so that, by (F.81),

s = ((−1)Ň1 , ..., (−1)Ňd)T . I thus conclude by (F.80) and Definition 8.13 that (ν1 +

ν2) ∈ Y s
ω . �

Proof of Theorem 8.15b: Let (ω,A) ∈ ACB(d, ω) and let ν ∈ Ξ
(1,...,1)
1 (ω,A) (such a ν

exists by Proposition 8.14). Thus a T2 ∈ Cper(R
d, SO(3)) exists such that (ω,A2) :=

Rd,ω(T2;ω,A) ∈ AT (d, ω) with ν = PH(A2) and Ind3,d(T2) = (1, ..., 1)T . Let s ∈
{1,−1}d and ν ′ ∈ Ξs

1(ω,A). Thus a T1 ∈ Cper(R
d, SO(3)) exists such that (ω,A1) :=

Rd,ω(T1;ω,A) ∈ AT (d, ω) with ν ′ = PH(A1) and Ind3,d(T1) = s. By Theorem C.15a

I have

Ind3,d(T
T
1 T2) = Ind3,d(T

T
1 )Ind3,d(T2) = Ind3,d(T1)Ind3,d(T2) = s(1, ..., 1)T = s ,

whence, by Theorem 8.15a, I conclude that either (ν ′ − ν) ∈ Y s
ω or (ν ′ + ν) ∈ Y s

ω .

Thus a y ∈ Y s
ω exists such that either ν ′ = ν + y or ν ′ = −ν + y which proves the

claim. �

Proof of Theorem 8.15c: Let Ξ1(ω,A) ∩ Y half
ω = ∅ and s, s′ ∈ {1,−1}d with s 
= s′.

If Ξ1(ω,A) = ∅ then the claim is trivial so let me assume that (ω,A) ∈ ACB(d, ω).

Thus, by Proposition 8.14, I can pick a ν in Ξ
(1,...,1)
1 (ω,A). It follows from Theorem

8.15b that if the set Y , defined by

Y := {εν + y : y ∈ Y s
ω , ε ∈ {1,−1}} ∩ {ε′ν + y′ : y′ ∈ Y s′

ω , ε
′ ∈ {1,−1}} , (F.82)

is empty, then Ξs
1(ω,A) ∩ Ξs′

1 (ω,A) = ∅ which proves the claim.

Thus I am done if I show that Y is empty. I show this by contraposition, so let’s

assume that Y 
= ∅. Then, due to (F.82), ε, ε′ ∈ {1,−1} and x ∈ Y s
ω , x

′ ∈ Y s′

ω exist

such that εν + x = ε′ν + x′ whence, by Definition 8.13, j, j′ ∈ Z, m,m′ ∈ Zd exist

such that

εν + j +mTω = ε′ν + j′ +m′Tω , (F.83)

s = ((−1)m1 , ..., (−1)md)T , s′ = ((−1)m′
1 , ..., (−1)m′

d)T . (F.84)
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Note that, due to (F.84), (1, ..., 1)T 
= s′/s = ((−1)m′
1−m1 , ..., (−1)m′

d−md)T whence,

by Definition 8.13, we have, for every integer n,

(m′ −m)Tω + n

2
,−(m′ −m)Tω + n

2
∈ Y half

ω . (F.85)

In the case ε = ε′, (F.83) gives me (m′ −m)Tω + j′ − j = 0 so that, since (1, ω) is

nonresonant, m = m′, j = j′ which, by (F.84), leads me to the contradiction that

s = s′. In the case ε = −ε′, eq. (F.83) gives me 2εν = (m′ −m)Tω + j′ − j whence

2ν = ε[(m′ −m)Tω + j′ − j], so that, by (F.85), ν ∈ Y half
ω which contradicts that

ν ∈ Ξ1(ω,A) and Ξ1(ω,A)∩Y half
ω = ∅. This completes the proof that the assumption

Y 
= ∅ is wrong. �

Proof of Theorem 8.15d: Let (ω,A) have an ISF SG and let it also have an ISF

which is different from SG and −SG. It follows from Theorem 7.13 that (ω,A) is

on spin-orbit resonance of first kind. Thus Ξ1(ω,A) 
= ∅ and, by Proposition 8.10c,

Ξ1(ω,A) ⊂ Yω. Since (1, ω) is nonresonant, Definition 8.13 gives me Y half
ω ∩ Yω = ∅,

whence Ξ1(ω,A)∩Y half
ω = ∅. Theorem 8.15c now implies that Ξs

1(ω,A)∩Ξt
1(ω,A) = ∅

if s 
= t. �

Proof of Theorem 8.15e: The claim is trivial if Ξ1(ω,A)∩Y half
ω = ∅ so let Ξ1(ω,A)∩

Y half
ω 
= ∅ and let me pick a ν1 ∈ Ξ1(ω,A)∩Y half

ω . Let ν2 ∈ Ξ1(ω,A). Thus I am done

if the show that ν2 ∈ Y half
ω . Since ν1 ∈ Y half

ω , Definition 8.13 gives me 2ν1 = j+mTω,

where j ∈ Z, m ∈ Zd and ((−1)m1 , ..., (−1)md) 
= (1, ..., 1). Because, by Theorem

8.15a, either ν1 − ν2 or ν1 + ν2 is in Yω, it follows that k ∈ Z, n ∈ Zd, ε ∈ {1,−1}
exist such that ν2 = εν1 + k + nTω whence

ν2 = ε
j +mTω

2
+ k + nTω =

εj + 2k + (εm+ 2n)Tω

2
. (F.86)

Clearly ((−1)εm1+2n1, ..., (−1)εmd+2nd) = ((−1)m1 , ..., (−1)md) 
= (1, ..., 1) whence, by

(F.86) and Definition 8.13, ν2 ∈ Y half
ω . �

355



Appendix F. Proofs

F.24 Proof of Lemma 8.16

Proof of Lemma 8.16: Let G ∈ Cper(R
d, S2) be of class C1 and let ω ∈ Rd. The

following proof is a simple suspension argument of the subgroup Z of R. Defining

the function Ω ∈ C(Rd+1,R3), for θ ∈ R, φ ∈ Rd, by

Ω(θ, φ) := G(φ+ θω)× (ωT∇)G(φ+ θω) , (F.87)

where ∇ is the gradient on Rd, I consider the following family of initial value prob-

lems:

Ṡ(θ) = Ω(θ, φ)× S(θ) , (F.88)

S(0) ∈ R3, φ ∈ Rd . (F.89)

Since the ODE (F.88) is linear in S and since Ω is continuous and Ω(θ, ·) is 2π-

periodic, there exists [Am] a function Φ ∈ C(Rd+1,R3×3) such that Φ(θ; ·) is 2π-

periodic and such that (F.88),(F.89) are solved by

S(θ) = Φ(θ;φ)S(0) . (F.90)

Defining, for φ ∈ Rd,

A(φ) := Φ(2π;φ) , (F.91)

one sees that (ω,A) ∈ SOT (d, ω) if Ψω,A(n;φ) is defined in terms of A(φ) by (6.4).

Clearly G is the generator of a spin field SG of (ω,A).

I am thus done if I show that this spin field is invariant. I now consider for φ ∈ Rd

the function Sφ : R→ R3 by Sφ(θ) := G(φ+ θω). Clearly Sφ is of class C1 and from

(F.87) I obtain, for θ ∈ R,

Ṡφ(θ) = (ωT∇)G(φ+ θω) =

(
G(φ+ θω)× (ωT∇)G(φ+ θω)

)
×G(φ+ θω)

= Ω(θ, φ)×G(φ+ θω) = Ω(θ, φ)× Sφ(θ) , (F.92)
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where in the second equality I used the fact that

GT (ωT∇)G = 0 . (F.93)

Note that (F.93) holds because G is of class C1 and S2 valued. It follows from (F.92)

that Sφ solves the initial value problem (F.88),(F.89) for S(0) = Sφ(0) = G(φ). It

thus follows from (F.90) that, for θ ∈ R, φ ∈ Rd,

G(φ+ θω) = Sφ(θ) = Φ(θ;φ)Sφ(0) = Φ(θ;φ)G(φ) , (F.94)

whence, by (F.91), for φ ∈ Rd,

G(φ+ 2πω) = Φ(2π;φ)G(φ) = A(φ)G(φ) . (F.95)

I conclude from (F.95) and Proposition 6.3 that the spin field SG is invariant. �

F.25 Proof of Theorem 8.17

Proof of Theorem 8.17: Let ω be in Rd such that (1, ω) is nonresonant and d ≥ 2.

Then, by Theorem C.24c, a function G ∈ Cper(R
d, S2) exists which is of class C∞ but

which has no 2π-periodic lifting w.r.t. (SO(3), p3, S
2), i.e., no T ′ ∈ Cper(R

d, SO(3))

exists whose third column is G. On the other hand it follows from Lemma 8.16 that

a (ω,A) ∈ SOT (d, ω) exists for which G is the generator of an ISF SG.

I now prove, by contraposition, that (ω,A) 
∈ WCB(d, ω). Thus let’s assume

that there is a T ∈ Cper(R
d, SO(3)) such that Rd,ω(T ;ω,A) ∈ WT (d, ω). Clearly

Rd,ω(TJ ′;ω,A) ∈ WT (d, ω), too, where J ′ is defined by (7.20). Note that the third

column of TJ ′ is −g where g denotes the third column of T . By Theorem 7.9, g

and −g are generators of ISF’s of (ω,A). Clearly G 
= g,G 
= −g since otherwise

G would be the third column of T or TJ ′. Since (1, ω) is nonresonant, it follows

from the proof of Theorem 7.13 that a T ′′ ∈ Cper(R
d, SO(3)) exists such that G is

the third column of T ′′. This is a contradiction whence (ω,A) 
∈ WCB(d, ω).
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I now prove, by contraposition, that SG and −SG are the only ISF’s of (ω,A).

Thus let’s assume that (ω,A) has an ISF SH such that H 
= G,H 
= −G. Then, by

Theorem 7.13, (ω,A) is on spin-orbit resonance of first kind whence I arrive at the

contradiction that (ω,A) ∈ ACB(d, ω) ⊂ WCB(d, ω). �

F.26 Proof of Proposition 9.1

Proof of Proposition 9.1: Let (ω,A) be a d-dimensional spin-orbit torus. By (6.9),(6.14),

I have, for n ∈ Z, φ ∈ Rd, S ∈ R3,

Lω,A(n;φ, S) =

⎛
⎝ Lω(n;φ)

Ψω,A(n;φ)S

⎞
⎠ . (F.96)

It follows from (6.14),(F.96) and by the definition of h that

h(Lω,A(n;φ, S)) = Lω(n;φ) = Lω(n; h(φ1, ..., φd, S)) , (F.97)

where n ∈ Z, φ ∈ Rd, S ∈ R3. Since h is continuous and recalling from Section

6.2 that (Rd+3, Lω,A) is a topological Z-space, I conclude from (F.97) that h is a Z-

map from the topological Z-space (Rd+3, Lω,A) to the topological Z-space (Rd, Lω).

Since h is also a projection onto the first d-components of Rd+3 I thus conclude that

the topological Z-space (Rd+3, Lω,A) is a skew product of the topological Z-space

(Rd, Lω). �

F.27 Proof of Proposition 9.2

Proof of Proposition 9.2a: It follows from (9.7) that, for z ∈ Td,

L(T )
ω (0; z) = z , (F.98)
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and, for m,n ∈ Z, z ∈ Td,

L(T )
ω (n;L(T )

ω (m; z)) = L(T )
ω (n; exp(i2πmω1)z1, ..., exp(i2πmωd)zd)

=

(
exp(i2π(m+ n)ω1)z1, ..., exp(i2π(m+ n)ωd)zd

)T

= L(T )
ω (m+ n; z) .

(F.99)

It follows from (F.98),(F.99) that L
(T )
ω is a Z-action on Td. Since L

(T )
ω (n; ·) is contin-

uous, (Td, L
(T )
ω ) is a topological Z-space. I also recall that (Rd, Lω) is a topological

Z-space. Using (6.14),(9.7) and the definition of p4,d I get

p4,d(Lω(n;φ)) = p4,d(φ+ 2πnω)

=

(
exp(i[φ1 + 2πnω1]), ..., exp(i[φd + 2πnωd])

)T

=

(
exp(i2πnω1) exp(iφ1), ..., exp(i2πnωd) exp(iφd)

)
= L(T )

ω (n; exp(iφ1), ..., exp(iφd)) = L(T )
ω (n; p4,d(φ)) , (F.100)

where n ∈ Z, φ ∈ Rd. It follows from (F.100) that p4,d is a Z-map from the topological

Z-space (Rd, Lω) to the topological Z-space (Td, L
(T )
ω ). Clearly p4,d is continuous.

Since p4,d is also onto Td I thus conclude that the topological Z-space (Rd, Lω) is an

extension of the topological Z-space (Td, L
(T )
ω ). �

Proof of Proposition 9.2b: By (6.11),(9.6) we have, for z ∈ Td,

Ψ′
ω,A(0; z) = I3×3 . (F.101)

By (9.8),(F.98),(F.101) we have, for z ∈ Td, S ∈ R3,

L
(T )
ω,A(0; z, S) =

⎛
⎝ z

S

⎞
⎠ . (F.102)
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By (6.6),(6.14),(9.6), (F.100) we have, for m,n ∈ Z, φ ∈ Rd,

Ψ′
ω,A(n+m; p4,d(φ)) = Ψω,A(n+m;φ) = Ψω,A(n;φ+ 2πmω)Ψω,A(m;φ)

= Ψ′
ω,A(n; p4,d(φ+ 2πmω))Ψ′

ω,A(m; p4,d(φ))

= Ψ′
ω,A(n; p4,d(Lω(m;φ)))Ψ′

ω,A(m; p4,d(φ))

= Ψ′
ω,A(n;L(T )

ω (m; p4,d(φ)))Ψ′
ω,A(m; p4,d(φ)) . (F.103)

Since p4,d is onto Td we have by (F.103), and for m,n ∈ Z, z ∈ Td,

Ψ′
ω,A(n+m; z) = Ψ′

ω,A(n;L(T )
ω (m; z))Ψ′

ω,A(m; z) . (F.104)

By (9.8),(F.99),(F.104) we have, for z ∈ Td, S ∈ R3, m, n ∈ Z

L
(T )
ω,A

(
n;L

(T )
ω,A(m; z, S)

)
= L

(T )
ω,A

(
n;L(T )

ω (m; z),Ψ′
ω,A(m; z)S

)

=

⎛
⎝ L

(T )
ω (n;L

(T )
ω (m; z))

Ψ′
ω,A(n;L

(T )
ω (m; z))Ψ′

ω,A(m; z)S

⎞
⎠ =

⎛
⎝ L

(T )
ω (n+m; z)

Ψ′
ω,A(n+m; z)S

⎞
⎠

= L
(T )
ω,A(m+ n; z, S) . (F.105)

It follows from (F.102),(F.105) that L
(T )
ω,A is a Z-action on Td × R3. Choosing the

product topology on Td×R3 and using the fact that Ψ′
ω,A(n; ·), L(T )

ω (n; ·) are contin-

uous functions I find by (9.8) that L
(T )
ω,A(n; ·) is continuous whence (Td ×R3, L

(T )
ω,A) is

a topological Z-space. It follows from (F.96),(9.6),(9.8), (F.100) that for φ ∈ Rd, S ∈
R3, n ∈ Z

p5,d(Lω,A(n;φ, S)) = p5,d

(
Lω(n;φ),Ψω,A(n;φ)S

)
=

⎛
⎝ p4,d(Lω(n;φ))

Ψω,A(n;φ)S

⎞
⎠

=

⎛
⎝ L

(T )
ω (n; p4,d(φ))

Ψω,A(n;φ)S

⎞
⎠ =

⎛
⎝ L

(T )
ω (n; p4,d(φ))

Ψ′
ω,A(n; p4,d(φ))S

⎞
⎠ = L

(T )
ω,A(n; p4,d(φ), S)

= L
(T )
ω,A(n; p5,d(φ, S)) . (F.106)

It follows from (F.106) that p5,d is a Z-map from the topological Z-space (Rd+3, Lω,A)

to the topological Z-space (Td × R3, L
(T )
ω,A). Clearly p5,d is continuous. Since p5,d is
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is also onto Td × R3 I thus conclude that the topological Z-space (Rd+3, Lω,A) is an

extension of the topological Z-space (Td ×R3, L
(T )
ω,A). �

Proof of Proposition 9.2c: Let (ω,A) be a d-dimensional spin-orbit torus and let

(Td × R3, L) be a topological Z-space. Let also the function p5,d be a Z-map from

the topological Z-space (Rd+3, Lω,A) to the topological Z-space (Td × R3, L). Thus

by (9.5),(F.106) we have, for φ ∈ Rd, S ∈ R3, n ∈ Z,

L
(T )
ω,A(n; p4,d(φ), S) = L

(T )
ω,A(n; p5,d(φ, S))) = p5,d(Lω,A(n;φ, S)) = L(n; p5,d(φ, S)))

= L(n; p4,d(φ), S) . (F.107)

Since p4,d is onto Td we have, by (F.107), that L = L
(T )
ω,A. �

Proof of Proposition 9.2d: Let (Rd+3, L) be a topological Z-space, let (ω,A) be

a d-dimensional spin-orbit torus, and let the function p5,d be a Z-map from the

topological Z-space (Rd+3, L) to the topological Z-space (Td × R3, L
(T )
ω,A). Thus, for

φ ∈ Rd, S ∈ R3, n ∈ Z, we have, by (9.5),

p5,d(L(n;φ, S)) = L
(T )
ω,A(n; p5,d(φ, S)) = L

(T )
ω,A(n; p4,d(φ), S) . (F.108)

Abbreviating, for φ ∈ Rd, S ∈ R3, n ∈ Z,

L(n;φ, S) =:

⎛
⎝ Lorb(n;φ, S)

Lspin(n;φ, S)

⎞
⎠ , (F.109)

I get from (9.5),(F.106),(F.108), for φ ∈ Rd, S ∈ R3, n ∈ Z,⎛
⎝ p4,d(Lorb(n;φ, S))

Lspin(n;φ, S)

⎞
⎠ = p5,d(L(n;φ, S)) = L

(T )
ω,A(n; p4,d(φ), S)

=

⎛
⎝ L

(T )
ω (n; p4,d(φ))

Ψω,A(n;φ)S

⎞
⎠

whence, for φ ∈ Rd, S ∈ R3, n ∈ Z,

p4,d(Lorb(n;φ, S)) = L(T )
ω (n; p4,d(φ)) , (F.110)

Lspin(n;φ, S) = Ψω,A(n;φ)S . (F.111)
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Note that (F.111) determines Lspin. To investigate Lorb I use (F.100),(F.110) to get,

for φ ∈ Rd, S ∈ R3, n ∈ Z,

p4,d(Lorb(n;φ, S)) = L(T )
ω (n; p4,d(φ)) = p4,d(Lω(n;φ)) . (F.112)

Since, for every n ∈ Z, the functions Lorb(n; ·) and Lω(n; ·) are continuous I conclude

from (6.14), (F.112) and Theorem C.11d that a function Ñ : Z → Zd exists such

that, for φ ∈ Rd, S ∈ R3, n ∈ Z,

Lorb(n;φ, S) = Lω(n;φ) + 2πÑ(n) = φ+ 2πnω + 2πÑ(n) . (F.113)

Note that, by (F.113), Lorb(n;φ, S) is independent of S, i.e., for φ ∈ Rd, S ∈ R3, n ∈
Z,

Lorb(n;φ, S) = Lorb(n;φ) . (F.114)

Since L is a Z-action on Rd+3 we have, by (F.109),(F.114), that, for φ ∈ Rd, m, n ∈ Z,⎛
⎝ Lorb(0;φ)

Lspin(0;φ, S)

⎞
⎠ = L(0;φ, S) =

⎛
⎝ φ

S

⎞
⎠ ,

⎛
⎝ Lorb(n +m;φ)

Lspin(n+m;φ, S)

⎞
⎠ = L(n+m;φ, S) = L(n;L(m;φ, S))

= L(n;

⎛
⎝ Lorb(m;φ)

Lspin(m;φ, S)

⎞
⎠) =

⎛
⎝ Lorb(n;Lorb(m;φ))

Lspin(n;Lorb(m;φ), Lspin(m;φ, S))

⎞
⎠ ,

whence, for φ ∈ Rd, m, n ∈ Z,

Lorb(0;φ) = φ , Lorb(n+m;φ) = Lorb(n;Lorb(m;φ)) . (F.115)

It follows from (6.14),(F.113),(F.115), that, for φ ∈ Rd, m, n ∈ Z,

φ+ 2πÑ(0) = Lω(0;φ) + 2πÑ(0) = Lorb(0;φ) = φ ,

φ+ 2π(n+m)ω + 2πÑ(n+m) = Lω(n+m;φ) + 2πÑ(n+m)

= Lorb(n+m;φ, S) = Lorb(n;Lorb(m;φ)) = Lorb(n;φ+ 2πmω + 2πÑ(m))

= φ+ 2π(n+m)ω + 2πÑ(m) + 2πÑ(n) ,
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whence, for m,n ∈ Z,

Ñ(0) = 0 , Ñ(n+m) = Ñ(m) + Ñ(n) . (F.116)

It follows from (F.116) that, for n ∈ Z,

Ñ(n) = nÑ(1) . (F.117)

I conclude from (F.109),(F.111),(F.113), (F.117) that, for n ∈ Z, φ ∈ Rd, S ∈ R3,

L(n;φ, S) =

⎛
⎝ Lorb(n;φ, S)

Lspin(n;φ, S)

⎞
⎠ =

⎛
⎝ Lorb(n;φ, S)

Ψω,A(n;φ)S

⎞
⎠

=

⎛
⎝ φ+ 2πnω + 2πÑ(n)

Ψω,A(n;φ)S

⎞
⎠ =

⎛
⎝ φ+ 2πnω + 2πnÑ(1)

Ψω,A(n;φ)S

⎞
⎠ . (F.118)

Since Ñ(1) ∈ Zd, eq. (9.9) follows from (F.118).

To prove the remaining claim let (ω,A) be a d-dimensional spin-orbit torus and

let L : Z× Rd+3 → Rd+3 be the function defined by (9.9) where n ∈ Z, N ∈ Zd, φ ∈
Rd, S ∈ R3. Due to (6.11),(9.9) we have, for φ ∈ Rd, S ∈ R3,

L(0;φ, S) =

⎛
⎝ φ

S

⎞
⎠ . (F.119)

Furthermore we have, by (6.6),(9.9), that, for φ ∈ Rd, S ∈ R3, m, n ∈ Z,

L(m+ n;φ, S) =

⎛
⎝ φ+ 2π(n+m)ω + 2π(n+m)N

Ψω,A(n+m;φ)S

⎞
⎠

=

⎛
⎝ φ+ 2π(n+m)ω + 2π(n+m)N

Ψω,A(n;φ+ 2πmω)Ψω,A(m;φ)S

⎞
⎠

=

⎛
⎝ φ+ 2π(n+m)ω + 2π(n+m)N

Ψω,A(n;φ+ 2πmω + 2πmN)Ψω,A(m;φ)S

⎞
⎠

= L(n;φ+ 2πmω + 2πmN,Ψω,A(m;φ)S) = L(n;L(m;φ, S)) , (F.120)
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where in the third equality I used the fact that Ψω,A(n; ·) is 2π-periodic. It follows

from (F.119),(F.120) that L is a Z-action on Rd+3. Since L(n; ·) is continuous it thus

follows that (Rd+3, L) is a topological Z-space.

Finally, by using (6.14),(9.5),(9.9), (F.106), I compute, for φ ∈ Rd, S ∈ R3, n ∈ Z,

p5,d(L(n;φ, S)) = p5,d

(
φ+ 2πnω + 2πnN,Ψω,A(n;φ)S

)

=

⎛
⎝ p4,d(φ+ 2πnω + 2πnN)

Ψω,A(n;φ)S

⎞
⎠ =

⎛
⎝ p4,d(φ+ 2πnω)

Ψω,A(n;φ)S

⎞
⎠ =

⎛
⎝ p4,d(Lω(n;φ))

Ψω,A(n;φ)S

⎞
⎠

= L
(T )
ω,A(n; p5,d(φ, S)) , (F.121)

where in the third equality I used the fact that the function p4,d is 2π-periodic. With

(F.121) I have shown that p5,d is a Z-map from the topological Z-space (Rd+3, L)

to the topological Z-space (Td × R3, L
(T )
ω,A). Since p5,d is also onto Td × R3 I thus

conclude that the topological Z-space (Rd+3, L) is an extension of the topological

Z-space (Td × R3, L
(T )
ω,A). �

F.28 Proof of Proposition 9.3

Proof of Proposition 9.3: Let f ∈ C(Rd, SO(3)/H). Clearly SO(3) is compact whence

I can apply the results of Section E.6.6. It follows from (9.62),(E.164) that

Ěf,H = Êγ̂(f) , (F.122)

where γ̂ is defined by (E.123) and Êγ̂(f) is defined by (E.151). I conclude from

(F.122),(E.161),(E.163) that M̂AINλSOT (d),H(f), defined by (9.63), is identical with

M̂AINλSOT (d),H(f), defined by (E.163). Thus, by Theorem E.3c in Section E.6.6,

M̂AINλSOT (d),H is a bijection onto REDH(λSOT (d)). In particular the rhs of (9.63)

is a H-reduction of λSOT (d). �

364



Appendix F. Proofs

F.29 Proof of Proposition 9.4

Proof of Proposition 9.4a: By (E.61) I have for R ∈ SO(3)

RSO3(2) = pRSO(3)/SO3(2)
(R) , (F.123)

whence, since pRSO(3)/SO3(2)
is onto SO(3)/SO3(2), F is defined by (9.64) on the whole

set SO(3)/SO3(2). To show that F is single valued let R,R′ ∈ SO(3) such that

R′SO3(2) = RSO3(2), i.e., pRSO(3)/SO3(2)
(R′) = pRSO(3)/SO3(2)

(R) whence, by (E.58), a

R′′ ∈ SO3(2) exists such that R′ = RSO(3)/SO3(2)(R
′′;R) = RR′′ so that I conclude

from (9.64)

F (R′SO3(2)) = R′e3 = RR′′e3 = Re3 = F (RSO3(2)) , (F.124)

where in the third equality I used Definition C.2. Thus indeed F is a function:

SO(3)/SO3(2) → S2. To show that F is continuous I observe by (9.64), (F.123)

that, for R ∈ SO(3),

F (pRSO(3)/SO3(2)
(R)) = Re3 . (F.125)

Thus F ◦pSO(3)/SO3(2) is continuous whence, since pSO(3)/SO3(2) is onto SO(3)/SO3(2)

and identifying, I conclude from [Hu, Section II.6] that F is continuous. It is clear

by (F.125) that the continuous function F ◦ pSO(3)/SO3(2) is onto S2 whence, since

its domain SO(3) is compact and S2 is Hausdorff, I conclude from [Bro, Section

4.2] that F ◦ pSO(3)/SO3(2) is identifying. Since F ◦ pSO(3)/SO3(2) and pSO(3)/SO3(2)

are identifying and pSO(3)/SO3(2) is onto SO(3)/SO3(2) it follows from [Du, Section

VI.3] that F is identifying. Of course since F ◦ pSO(3)/SO3(2) is onto S2 so is F .

Furthermore if R,R′ ∈ SO(3) and F (RSO3(2)) = F (R′SO3(2)) then, by (9.64),

R′e3 = Re3 so that, by Lemma 7.8a, a R′′ ∈ SO3(2) exists such that R′ = RR′′

whence R′SO3(2) = RSO3(2) so that F is one-one. Since F is one-one, onto S2 and

identifying I conclude that F ∈ HOMEO(SO(3)/SO3(2), S2). I also conclude from
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(9.64),(E.62) and the fact that L(3D) is a left SO(3)-action that for R,R′ ∈ SO(3)

F (LSO(3)/SO3(2)(R
′;RSO3(2))) = F ((R′R)SO3(2)) = L(3D)(R′R; e3)

= L(3D)(R′;L(3D)(R; e3)) = L(3D)(R′;F (RSO3(2))) ,

whence (9.65) holds. Let S ∈ S2, R′ ∈ SO(3). Since F is onto S2 I can pick

a R ∈ SO(3) such that S = F (RSO3(2)) whence by (9.65) and the fact F is a

bijection onto S2, I obtain

F−1(L(3D)(R′;S)) = F−1(L(3D)(R′;F (RSO3(2))))

= F−1(F (LSO(3)/SO3(2)(R
′;RSO3(2)))) = LSO(3)/SO3(2)(R

′;RSO3(2))

= LSO(3)/SO3(2)(R
′;F−1(S)) ,

whence (9.66) holds. �

Proof of Proposition 9.4b: Let f ∈ C(Rd, SO(3)/SO3(2)). Since F is a bijec-

tion onto S2 and due to (9.64), the relation: f(φ) = RSO3(2) is equivalent to:

(F◦f)(φ) = Re3. Thus {(φ,R) ∈ Rd×SO(3) : f(φ) = RH} = {(φ,R) ∈ Rd×SO(3) :

(F ◦ f)(φ) = Re3}, whence (9.62) implies (9.67). To prove the second claim, let

G ∈ C(Rd, S2). Since, by Proposition 9.4a, F ∈ HOMEO(SO(3)/SO3(2), S2) it fol-

lows that F−1 ◦ G ∈ C(Rd, SO(3)/SO3(2). Moreover we know from Proposition 9.3

that M̂AINλSOT (d),SO3(2) is a function: C(Rd, SO(3)/SO3(2))→ REDSO3(2)(λSOT (d))

which is defined by (9.63). Thus MAINλSOT (d),SO3(2), as defined by (9.68), is a func-

tion: C(Rd, S2)→ REDSO3(2)(λSOT (d)). To show that MAINλSOT (d),SO3(2) is one-one

let G,G′ ∈ C(Rd, S2) such that MAINλSOT (d),SO3(2)(G) = MAINλSOT (d),SO3(2)(G
′),

i.e., M̂AINλSOT (d),SO3(2)(F
−1 ◦G) = M̂AINλSOT (d),SO3(2)(F

−1 ◦G′). Since, by Propo-

sition 9.3, M̂AINλSOT (d),SO3(2) is one-one, I conclude that F−1 ◦ G = F−1 ◦ G′

whence, because F is a bijection onto S2, I obtain that G = G′ which entails that

MAINλSOT (d),SO3(2) is one-one. To show that MAINλSOT (d),SO3(2) is onto

REDSO3(2)(λSOT (d)), let λ̂ be in REDSO3(2)(λSOT (d)). Thus by Proposition 9.3,

a f ∈ C(Rd, SO(3)/SO3(2)) exists such that λ̂ = M̂AINλSOT (d),SO3(2)(f). Since,
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by Proposition 9.4a, F ∈ HOMEO(SO(3)/SO3(2), S2) I have G′′ ∈ C(Rd, S2)

which I define by G′′ := F ◦ f . Of course, by (9.68), MAINλSOT (d),SO3(2)(G
′′) =

M̂AINλSOT (d),SO3(2)(F
−1 ◦G′′) = M̂AINλSOT (d),SO3(2)(F

−1 ◦ F ◦ f)

= M̂AINλSOT (d),SO3(2)(f) = λ̂ which proves that MAINλSOT (d),SO3(2) is onto

REDSO3(2)(λSOT (d)). This completes the proof thatMAINλSOT (d),SO3(2) is a bijection

onto REDSO3(2)(λSOT (d)). �

F.30 Proof of Theorem 9.5

Proof of Theorem 9.5a: Let f ∈ C(Rd, SO(3)/H). I first consider the case when the

H-reduction M̂AINλSOT (d),H(f) is invariant under Φω,A(Z). Then M̂AINλSOT (d),H(f)

is invariant under Φω,A(1). Since, by (9.21),(9.22), for φ ∈ Rd, R ∈ SO(3),

Φω,A(1) = (ϕω,A(1; ·), Lω(1; ·)) , ϕω,A(1;φ,R) =

⎛
⎝ Lω(1;φ)

A(φ)R

⎞
⎠ , (F.126)

I thus conclude from Corollary E.4b that (9.70) holds for every φ ∈ Rd. Let,

conversely, (9.70) hold for every φ ∈ Rd. Then, by Corollary E.4b and (F.126),

M̂AINλSOT (d),H(f) is invariant under Φω,A(1). By the remarks after (9.69) I con-

clude that M̂AINλSOT (d),H(f) is invariant under Φω,A(Z). �

Proof of Theorem 9.5b: Let G ∈ Cper(R
d, S2). I first consider the case where (ω,A)

has the ISF SG. Thus, by Proposition 6.3, for φ ∈ Rd,

G(Lω(1;φ)) = A(φ)G(φ) = L(3D)(A(φ);G(φ)) , (F.127)

where in the second equality I used (9.31). I define f ∈ Cper(R
d, SO(3)/SO3(2)) by

f := F−1 ◦G , (F.128)

where F is defined by (9.64). Note that f is continuous since G is continuous and

since, by Proposition 9.4a, F ∈ HOMEO(SO(3)/SO3(2), S2). Note also that f is
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2π-periodic since G is 2π-periodic. I conclude from (9.66),(F.127), (F.128) that, for

φ ∈ Rd,

LSO(3)/SO3(2)(A(φ); f(φ)) = LSO(3)/SO3(2)(A(φ);F−1(G(φ)))

= F−1(L(3D)(A(φ);G(φ))) = F−1(G(Lω(1;φ))) = f(Lω(1;φ)) . (F.129)

It follows from Theorem 9.5a and (F.129) that the SO3(2)-reduction

M̂AINλSOT (d),SO3(2)(f) of λSOT (d) is invariant under the group Φω,A(Z). Since f ∈
Cper(R

d, SO(3)/SO3(2)) I thus conclude from (9.69) that M̂AINλSOT (d),SO3(2)(f) is

in REDSO3(2),per(λSOT (d)).

To prove the converse direction let f ∈ Cper(R
d, SO(3)/SO3(2)) such that

M̂AINλSOT (d),SO3(2)(f) is invariant under the group Φω,A(Z). Thus, by Theorem

9.5a, I obtain (9.70) for every φ ∈ Rd. I now define G ∈ Cper(R
d, S2) by G := F ◦ f .

It follows from (9.31), (9.65),(9.70) that, for every φ ∈ Rd,

A(φ)G(φ) = L(3D)(A(φ);G(φ)) = L(3D)(A(φ);F (f(φ)))

= F (LSO(3)/SO3(2)(A(φ); f(φ))) = F (f(Lω(1;φ)) = G(Lω(1;φ)) . (F.130)

It follows from (F.130) and Proposition 6.3 that SG is an ISF of (ω,A). �
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Subject index for spin-orbit tori

Please note the following definitions and abbreviations used in this part of the thesis:

• RT (transpose of matrix R), iff (means: if and only if).

• Section 6.1: Z, 3 × 3 unit matrix I3×3, Euclidean norm | · |, (ω,A), Ψω,A

SOT (d, ω), SOT (d), SOT , 2π–periodic function on Rk, spin-orbit torus, or-

bital tune vector, orbital trajectory, spin trajectory, spin trajectory over φ0,

spin-orbit trajectory, n-turn spin transfer matrix.

• Section 6.2: Lω,A, Lω, ρSOT (d).

• Section 6.3: L
(PF )
ω,A , S2, polarization field, generator of polarization field, invari-

ant polarization field, spin field, invariant spin field (ISF).

• Section 7.1: LT , Rd,ω, ∼d,ω, transfer field.

• Section 7.2: T (d, ω), AT (d, ω),WT (d, ω), fractional part �x� of a real number

x, trivial spin-orbit torus, almost trivial spin-orbit torus, weakly trivial spin-

orbit torus.
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• Section 7.3: CB(d, ω), ACB(d, ω),WCB(d, ω), coboundary, almost coboundary,

weak coboundary.

• Section 7.4: Ξ1(ω,A), spin tune of first kind, on spin-orbit resonance of first

kind, off spin-orbit resonance of first kind.

• Section 7.6: ISF-conjecture.

• Section 7.7: J ′.

• Section 8.2: Simple precession frame (SPF) over φ0, differential phase function,

integral phase function.

• Section 8.3: Ξ2(ω,A), Ξ2(ω,A, φ0), ∼ω, [ν]ω, uniform precession frame (UPF)

over φ0, uniform precession precession rate (UPR).

• Section 8.4: Well-tuned, ill-tuned, spin tune of second kind, spin-orbit reso-

nance of second kind, on spin-orbit resonance of second kind, off spin-orbit

resonance of second kind.

• Section 8.6: Y s
χ , Y

half
χ , Ξs

1(ω,A).

• Section 9.2: L
(T )
ω , L

(T )
ω,A, p5,d, Ψ′

ω,A.

• Section 9.3: λSOT (d).

• Appendix B: eG, (X,L), COC(X,G,H), left G-action, G-action, right G-

action, free right G-action, translation function of a free right G-action, left

G-space, G-space, right G-space, topological group, topological left G-space,

topological G-space, topological right G-space, G-map, conjugate, extension

of left G-space, extension of G-space, extension of right G-space, extension of

topological left G-space, extension of topological G-space, extension of topo-

logical right G-space, skew product of left G-space, skew product of G-space,

skew product of right G-space, skew product of topological left G-space, skew
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product of topologicalG-space, skew product of topological rightG-space, orbit

space, H-cocycle over topological left G-space.

• Section C.1: idB, C(X, Y ), Cper(R
d, Y ), p1, p2, p3, p4,k, Sk, �Y , SO3(2), SO(3),

Tk, J , phase PH(·), [X, Y ], ei, bundle, fiber structure, lifting, factor, locally

trivial, homotopic, nullhomotopic, Hurewicz fibration, fibration, covering map.

• Section C.2: Phase function, PHF (·), SO3(2)-index Ind2,k, S3-index Ind1,k,

SO(3)-index Indk,3, SO(3)-index Indk,4, quaternion formalism.

• Section C.3: FACk, �2π
X , 2π-homotopic, 2π-nullhomotopic.

• Section D.1: Yχ, χ-generator, χ–quasiperiodic, nonresonant, off orbital reso-

nance, on orbital resonance.

• Section D.3: Ec, Z+, Λtot(F ), Λ(F ), aN(F, λ), a(F, λ), Ak
N,m, spectrum of a

function on Z, Fourier coefficient.

• Section E.1: Bun, Bun(G), AutBun(G)(λ), GauBun(G)(λ), G-prebundle, G-

bundle, principal G-bundle, automorphism group of principal G-bundle, cate-

gory of bundles, category of principal G-bundles.

• Section E.2: λ[F, L], associated bundle.

• Section E.4: HOMK(λ).

• Section E.5: REDH(λ), invariant H-reduction.

• Section E.6: M̂AINλ,H , product principal G-bundle.
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