The Possibility of Polarisation in the LHeC Ring-Ring Scenario

D.P. Barber^a, H.-U. Wienands^b, M. Fitterer^c, H. Burkhardt^c

^a Deutsches Elektronen-Synchrotron (DESY), Germany

University of Liverpool, UK

Cockcroft Institute, Daresbury, UK

^bSLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

^cCERN, CH-1211, Geneva 23, Switzerland

1 September 2010

See Kurt Aulenbacher's review of $e^{\pm} - p$ schemes: 27/09/2010

Linac/recirculator - ring schemes

Max Klein: at ICHEP Paris: Future Machines and Projects 24.7.2010

Based on SLC, ILC and LHC experience.

Workpackages for CDR

Baseline Parameters [Designs, Real photon option, ERL]	
Sources [Positrons, Polarisation]	
Rf Design	
Injection and Dump	
Beam-beam effects	
Lattice/Optics and Impedance	
Vacuum and Beam Pipe	
Integration and Layout	
Interaction Region	
Powering Issues	
Magnets	
Cryogenics	

BINP Novosibirsk BNL CERN Cockcroft Cornell DESY EPFL Lausanne KEK Liverpool U SLAC TAC Turkey

The ring - ring option.

Max Klein: at ICHEP Paris: Future Machines and Projects 24.7.2010

Workpackages for CDR

The ring - ring option.

Max Klein: at ICHEP Paris: Future Machines and Projects 24.7.2010

Based on HERA, LEP, LHC experience.

Baseline Parameters and Installation Scenarios Lattice Design [Optics, Magnets, Bypasses, IR for high L and 1°] Rf Design [Installation in bypasses, Crabs] Injector Complex [Sources, Injector] **BINP Novosibirsk** Injection and Dump BNL Beam-beam effects CFRN Impedance and Collective Effects Cockcroft Vacuum and Beam Pipe Cornell Integration and Machine Protection DESY Powering Issues EPFL Lausanne e Beam Polarization KEK Deuteron and Ion Beams Liverpool U SLAC TAC Turkey

Ring-ring design parameters

Max Klein: at ICHEP Paris: Future Machines and Projects 24.7.2010

electron beam	RR	LR	LR	proton beam	RR	LR	
e- energy at IP[GeV]	60	60	140	bunch pop. [10 ¹¹]	1.7	1.7	
luminosity [10 ³² cm ⁻² s ⁻¹]	17	10	0.44	tr.emit.γε _{x.v} [μm]	3.75	3.75	
polarization [%]	40	90	90	spot size σ _{x v} [μm]	30, 16	7	
bunch population [10 ⁹]	26	2.0	1.6	β* _{x,v} [m]	1.8,0.5	0.1	
e- bunch length [mm]	10	0.3	0.3	bunch spacing [ns]	25	25	
bunch interval [ns]	25	50	50				
transv. emit. γε _{x.v} [mm]	0.58, 0.29	0.05	0.1	"ultimate p beam" present record N _n =1.3 10 ¹¹			
rms IP beam size $\sigma_{x,y}$ [µm]	30, 16	7	7				
e- IP beta funct. $\beta_{x,y}^{*}$ [m]	0.18, 0.10	0.12	0.14	1.7 probably conservative			
full crossing angle [mrad]	0.93	0	0				
geometric reduction H _{bg}	0.77	0.91	0.94	Design also for deuterons			
repetition rate [Hz]	N/A	N/A	10	(new) and lead (e	exists)		
beam pulse length [ms]	N/A	N/A	5				
ER efficiency	N/A	94 %	N/A	RR = Ring – Ring			
average current [mA]	131	6.6	5.4	LR =Linac –Ring			
tot. wall plug power[MW]	100	100	100		Contativo, 9	7 2010	
					icilialive: o	.7.2010	

For this talk, the ring-ring option: a super HERA...

The ring-ring option would use conventional technology and would provide both polarised electrons **and** positrons.

LEP Polarisation from the Sokolov-Ternov effect at 46 GeV and above – the highest energy so far! Highest polarization achieved: 80 P [%] Optimization of polarization by harmonic spin matching 60 1 N 1 1 2 2 4 1 40 Calibration of polarization 20 scale Bunch 1 and 8 Bunch 2 and 3 0 1:00 5:00 9:00 13:00 17:00 21:00 1:00 Daytime R. Assmann 21

Vertical polarisation by the S-T effect, no rotators. "Deterministic" harmonic orbit correction. $46~{\rm GeV},~\tau_{st}\approx 5~{\rm hours}$

HERA

The first and only e^{\pm} ring to supply longitudinal polarisation at high energy — via the Sokolov-Ternov effect – also at 3 IP's simultaneously! $\approx 30 \text{ GeV}, \tau_{st} \approx 30 \text{ mins}.$ Depolarisation not too strong. Perfectly balanced parameters

Polarisation vertical in the arcs – to drive the Sokolov-Ternov effect

NO INTERNAL QUADRUPOLES!

3 pairs of rotators (so max. Sokolov-Ternov polarisation = 83 %), solenoids on, no beam-beam

Some theory and phenomenology

- Electrons (positrons) in storage rings can become spin POLARISED due to emission of synchrotron radiation: Sokolov-Ternov effect (1964).
- The polarisation is perpendicular to the machine plane in simple rings.
- The maximum value is then $P_{st} = 92.4\%$.

BUT!

- Sync. radn. also excites orbit motion. This leads to DEPOLARISATION!
- In any case, the value of the polarisation is the same at all azimuths time scales.

The T-BMT equation.

$$\frac{d\vec{S}}{ds} = \vec{\Omega}(\gamma, \vec{v}, \vec{B}, \vec{E}) \times \vec{S}$$

Periodic solution \hat{n}_0 on closed orbit.

The real unit eigenvector of:

$$R_{3\times 3}(s+C,s)\hat{n}_0 = \hat{n}_0$$

 \hat{n}_0 is 1-turn periodic: $\hat{n}_0(s+C) = \hat{n}_0(s)$

 \hat{n}_0 : direction of measured equilibrium radiative polarisation.

Closed orbit spin tune ν_0 : number of precessions per turn around \hat{n}_0 for a spin on the closed orbit. Extract from the eigenvalues of $R_{3\times 3}(s+C,s)$

Spin motions

- Protons: largely deterministic unless various noise (e.g.IBS).
- Electrons/positrons:

If a photon causes a spin flip, what are the other $\approx 10^{10}$ photons doing? ===>

Stochastic/damped orbital motion due to synchrotron radiation

- + inhomogeneous fields
- + spin–orbit coupling via T–BMT

==> spin diffusion i.e. depolarisation!!!

Self polarisation: Balance of poln. and depoln. ==>

$$P_{\infty} \approx P_{\scriptscriptstyle BK} \; \frac{1}{1 \; + \; (\frac{\tau_{dep}}{\tau_{\scriptscriptstyle BK}})^{-1}} \qquad (P_{\scriptscriptstyle ST} \to P_{\scriptscriptstyle BK})$$

In any case:

$$au_{dep}^{-1} \propto \gamma^{2N} au_{st}^{-1}$$
 (actually a polynomial in γ^{2N})

==> Trouble at high energy!

Spin-orbit resonances

 $\nu_{\rm spin} = k + k_I \nu_I + k_{II} \nu_{II} + k_{III} \nu_{III}$

 $\nu_{\rm spin}$: amplitude dependent spin tune \approx closed orbit spin tune = precessions /turn on CO

- Orbit "drives spins" ===> Resonant enhancement of spin diffusion AT FIXED ENERGY EVEN AWAY FROM RESONANCES!
- Resonance order: $|k_I| + |k_{II}| + |k_{III}|$
- First order: $|k_I| + |k_{II}| + |k_{III}| = 1$ e.g. SLIM like formalisms.
- Strongest beyond first order: synchrotron sidebands of first order parent betatron or synchrotron resonances

 $\nu_{\rm spin} = k + k_i \nu_i + k_{III} \nu_{III}, \quad i = I, II \text{ or } III$

• Proton-style resonances strengths are NOT helpful for estimating depolarising rates!

Sidebands of parent first order betatron resonances: a useful approximation

$$\tau_{dep}^{-1} \propto \frac{A}{\left(\nu_0 \pm Q_y\right)^2} \quad \to \quad \tau_{dep}^{-1} \propto \sum_{m_s = -\infty}^{\infty} \frac{A B(\xi; m_s)}{\left(\nu_0 \pm Q_y \pm m_s Q_s\right)^2}$$

A is an energy dependent factor

 $B(\xi; m_s)$'s: enhancement factors, contain modified Bessel functions $I_{|m_s|}(\xi)$ and $I_{|m_s|+1}(\xi)$ depending on the modulation index

 $\xi = (\frac{a\gamma \ \sigma_{\delta}}{Q_s})^2$

in a simple flat ring.

===> very strong effects at high energy — dominant source of trouble

Analogous formula for sidebands of first order synchrotron resonances.

- For longitudinal polarisation the polarisation vector must be rotated into the longitudinal direction before an IP and back to the vertical afterwards ===> spin rotators.
- Vertical bends must be neutralised otherwise \hat{n}_0 is not vertical \implies strong depolarisation
- Depolarisation can be strongly enhanced by misalignments, regions where the polarisation vector (\hat{n}_0) is horizontal between spin rotators etc, etc.....

\implies Linear spin matching

Skip the invariant spin field and the Derbenev-Kondratenko formula for today!

Heuristics instead!

N.B. this is not the trivial business of ensuring that a spin behaves as required in a string of dipoles!!

 $\vec{S} \approx \hat{n}_0(s) + \alpha \hat{m}_0(s) + \beta \hat{l}_0(s)$

 α, β : 2 small spin tilt angles — have subtracted out the big rotations!

$$\mathbf{\hat{M}}_{8 imes 8} \;=\; \left(egin{array}{ccc} \mathbf{M_{6 imes 6}} & \mathbf{0_{6 imes 2}} \ \mathbf{G_{2 imes 6}} & \mathbf{D_{2 imes 2}} \end{array}
ight)$$

acting on $\vec{u} = (x, x', y, y', l, \delta)$ and α, β

This is the SLIM formalism for estimating depolarisation analytically at first order (Chao 1981).

To minimize depolarisation: minimize appropriate bits of $G_{2\times 6}$ for appropriate stretches of ring ===> lots of independent quadrupole circuits.

Spin coordinates

$$\hat{S} = \sqrt{1 - \alpha^2 - \beta^2} \ \hat{n}_0 + \alpha \hat{m} + \beta \hat{l}$$

Estimating depolarisation by M-C simulation $\alpha^2 + \beta^2 << 1$

$$\Delta P \approx -\frac{1}{2}\Delta(\langle \alpha^2 + \beta^2 \rangle) = -\frac{1}{2}\Delta(\sigma_{\alpha}^2 + \sigma_{\beta}^2) \implies \frac{dP}{dt} \approx -\frac{1}{2} = -\frac{1}{2}\frac{d}{dt}(\sigma_{\alpha}^2 + \sigma_{\beta}^2)$$

Spin-orbit covariance matrix

•
•
•
•
•
—
$\sigma_{lphaeta}$
σ_{eta}^2 ,

Spin–orbit maps for sections

For linearised spin motion (SLIM/SLICK):

$$\hat{\mathbf{M}} = \left(egin{array}{ccc} \mathbf{M_{6 imes 6}} & \mathbf{0_{6 imes 2}} \ \mathbf{G_{2 imes 6}} & \mathbf{D_{2 imes 2}} \end{array}
ight)$$

The $\mathbf{G}_{2\times 6} \times (\mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{y}', \Delta \mathbf{l}, \delta)^{\mathbf{T}}$ delivers changes to the 2 small angles α and β

For full 3–D spin motion:

$$\mathbf{\hat{M}} \;=\; \left(egin{array}{ccc} \mathbf{M_{6 imes 6}} & \mathbf{0_{6 imes 3}} \ \mathbf{G_{3 imes 6}} & \mathbf{D_{3 imes 3}} \end{array}
ight)$$

The $\mathbf{G}_{\mathbf{3}\times\mathbf{6}} \times (\mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{y}', \mathbf{\Delta}\mathbf{l}, \delta)^{\mathbf{T}}$ delivers rotations around $\hat{n}_0, \ \hat{m}_0, \ \hat{l}_0$

The beam-beam (non-linear) kicks are applied at single points

Some advice to calculaters:

Software, for linearised spin motion, that does not intrinsically include synchrotron motion and which does not include misalignments and orbit correction is useless above a couple of GeV.

Software that cannot, in addition, account for full 3-D spin motion, and which therefore cannot consistently account for synchrotron sidebands, is useless above about 10 GeV.

A first look!!

Summary on the flat ring

- Initial calculations suggest that vertical polarisation would not be impossible with modern very good alignment.
- The dependence on Q_s is qualitatively as expected.
- The attainable equilibrium polarisation is highest at low energy as expected.

Longitudinal polarisation

- Need rotators ==> need serious spin matching.
- Rotators must be compatible with the contraints of the environment.
- Do Siberian Snakes help to suppress the effect of synchrotron sidebands by suppressing the oscillations of $a\gamma$?
- Naive use of snakes kills the Sokolov-Ternov polarisation!
- So need asymmetric distribution of radiation.
- Try the Derbenev-Grote scheme (1995).

\implies very strong depolarisation – of course!

But we can switch spin-orbit coupling off/on to see what does what: the G matrix

So make the interaction region and rotators spin transparent in software.

Diagnostics! – since 1982

- $Q_x = 124.36$
- $Q_y = 88.80$
- $\sigma_{\rm vco} = 75$ microns
- R.m.s. tilt of $\hat{n}_0 \approx 8$ mrad near the peak polarisation. No harmonic closed-orbit spin matching so far.
- Radiative energy loss: 586 MeV per turn
- $a\gamma_0 \frac{\sigma_{\gamma_0}}{\gamma_0} \approx 0.13.$
- An ideal thin lens snake which is transparent for orbital motion.
- ν_0 is almost independent of machine energy: around 0.41 (not 0.5 because of the rotators).

Summary on the model ring with rotators and a snake

- The maximum S-T polarisation is limited by the need for the asymmetric radiation distribution.
- In these calculations \hat{n}_0 is tilted from the vertical twice as much as for the flat ring \implies lower polarisation compared to the maximum S-T polarisation.
- With this rotator, \hat{n}_0 is tilted in the arcs away from design energy.
- Initial indications that the snake supresses the synchrotron sidebands. Much more investigation needed.
- —- the first time in the field that this topic has been invstigated.
- Essential to provide optical spin matching of the IR and arcs obviously!.
- The dogleg rotator fits the need to bring the electron beam down to the proton beam.
- A practical snake design is needed.
- Optical spin matching is a big but necessary challenge.
- Harmonic closed orbit spin matching should be tested.
- In any case it would be essential to align the ring extremely well but modern rings do have good alignment.

This has been a very first look but:

with modern alignment and the use of the Derbenev-Grote scheme,

optical spin matching will be well worth pursuing as the next step.

By Brian Montague during the lead-up to LEP and HERA polarisation.