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Abstract. We define the amplitude dependent spin tune and illustrate its use for
identifying spin–orbit resonances and evaluating their strength.

INTRODUCTION

A proper understanding of the spin–orbit resonance structure at high energy in
storage rings can only be obtained with a correct definition of the “spin tune”. This
requires establishing a proper coordinate system for “measuring” spin precession
and that, in turn, requires the notion of the “invariant spin field”. This paper
illustrates that programme. More details can be found in [1–6]. Our calculations
were made with the spin–orbit tracking code SPRINT [5,6]. The algorithms in
SPRINT are non–perturbative. SPRINT has extensive facilities for the dynamical

variation of the reference energy and tunes so that it has been possible to carry out
realistic tracking simulations of acceleration.

THE INVARIANT SPIN FIELD

The transverse and longitudinal motion of particles in storage rings is described
in terms of three pairs of canonical coordinates ~u = (q1, p1, q2, p2, q3, p3). The
independent variable is the distance along the ring l. There is a corresponding
classical Hamiltonian horb(~u; l). In distorted rings ~u describes motion with respect
to the resulting closed orbit. In the absence of spin flip, spin motion for electrons
and protons moving in electric and magnetic fields is described by the T–BMT
equation [1] d~S/dl = ~Ω × ~S where ~S is the rest frame spin expectation value of

1) Talk given at the 14th International Spin Physics Symposium (SPIN2000), Osaka, Japan,
October, 2000.



the particle (“the spin”) and ~Ω depends on the electric and magnetic fields, the
velocity and the energy so that it depends on ~u and l.

As a first step in setting up a coordinate system for spin we attach a laboratory
space 3–vector f̂(~u; l) of fixed unit length, to every point (~u; l). At this stage f̂ is a
definite but freely chosen smooth vector function of ~u and l. The rate of change of

f̂ along some path in (~u, l) space is df̂

dl
= ∂f̂

∂l
+

∑
3

k=1

dqk

dl

∂f̂

∂qk
+ dpk

dl

∂f̂

∂pk
. Then along

a particle trajectory, and in terms of a Poisson bracket, the equation of motion
takes the form ∂f̂/∂l + {f̂ , horb} = ~Ff̂ (~u; l). Since, by choice, ||f̂ || is invariant,

the motion of f̂ must be a rotation so that ~Ff̂ must have the form ~G(~u; l) × f̂ .

We now choose f̂ so that it obeys the T–BMT equation: df̂/dl = ~Ω × f̂ along
particle orbits. Moreover we require that it reflects the periodicity of the magnet
structure by being 1–turn periodic in l, i.e. f̂(~u; l+C) = f̂(~u; l) where C is the ring
circumference. We denote this special choice by n̂(~u; l). Except at the spin–orbit
resonances to be discussed later, n̂(~u; l) is unique.

Thus n̂(~u; l) is a pre–established 1–turn periodic vector field on (~u, l) obeying the

T–BMT equation. For one turn n̂( ~M(~u; l); l+C) = n̂( ~M(~u; l); l) = R3×3(~u; l)n̂(~u; l)

where ~M(~u; l) is the new phase space vector after one turn starting at ~u and l

and R3×3(~u; l) is the corresponding spin transfer matrix. If a spin ~S is followed

along an orbit, the scalar product ~S · n̂ of ~S and the local n̂ is invariant since
both vectors obey the T–BMT precession equation. Thus with respect to the local

unique pre-established n̂ the motion of ~S is very simple, namely a precession around
n̂. On the closed orbit n̂(~u; l) becomes n̂(~0; l) which we denote by n̂0(l). Obviously
n̂0(l + C) = n̂0(l). It is given by the real unit eigenvector of the 1–turn 3 × 3 spin
transport matrix on the closed orbit.

Examples of the field n̂ at 800 GeV for a HERA proton optic with a suitable
arrangement of Siberian Snakes are shown in figure 1. In these particular sim-
ulations the protons only execute stable linear vertical betatron motion of fixed
amplitude. Each picture shows the locus, on the surface of a sphere, of the tip of
the n̂ vector as the betatron phase varies at a point on the ring where n̂0 is vertical.
The parameters are shown in the captions. For each picture in figure 1, the phase
space coordinates of a particle are not 1–turn periodic but at a fixed position on
the ring (“azimuth”) they lie on a closed elliptical curve at positions depending on
its vertical betatron phase. Likewise a spin at some ~u set parallel to n̂ and tracked,
is not 1–turn periodic but on tracking it turn to turn, it lies on the closed curve,
parametrised by the orbital phase, of the field n̂. Thus, like the invariant orbital
ellipses, the curves of figure 1 are invariant when tracked from turn to turn and
we therefore call n̂(~u; l) the invariant spin field. As the amplitude is increased, the
invariant spin field becomes convoluted, especially near the spin–orbit resonances
to be discussed below. For motion with one degree of freedom, the loci on the
sphere are closed as, for example, in figure 1. For more than one degree of free-
dom, the phase space coordinates lie on invariant tori and the loci of n̂ do not
close in general although the field n̂ is still an invariant of the 1–turn spin–orbit
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map. If the spins for an ensemble of particles distributed uniformly around the
phase space ellipses for figure 1, are all set initially parallel to n̂0 and then tracked,
the beam polarisation at that azimuth oscillates. If they are set parallel to n̂, the
beam polarisation is stationary. The maximum stationary beam polarisation that
can be reached is Plim(l) = ||

∫
d6u wst(~u; l)n̂(~u; l)|| where wst(~u; l) is the normalised

stationary phase space density. For motion on a vertical betatron ellipse Plim is
just given by the average of n̂ over the betatron phase [3]. On the 64π mm mrad
ellipse Plim is much smaller than for the 4π mm mrad ellipse — it pays to devise
ways to keep the spread of n̂ small. Plim should be calculated before carrying out
simulations of acceleration. If Plim is small such a simulation is not worthwhile.
Note that for ~u 6= ~0, the constraint n̂(~u; l + C) = n̂(~u; l) for the invariant spin field

 a: HERA-p / 8 snakes / 4 pi mm mrad / 800 GeV
                                               

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

 a:  HERA-p / 8 snakes / 64 pi mm mrad / 800 GeV
                                              

-1
-0.5

0
0.5

1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

FIGURE 1. The field n̂ in HERA–p calculated with SPRINT on the 4π mm mrad (left) and the

64π mm mrad (right) ellipses at 800 GeV . A normalised emittance of 4π mm mrad ≡ “1 − σ”.

is obviously not equivalent to the closure condition ~N(~u; l) = R3×3(~u; l) ~N(~u; l). In
fact, the calculation of the real n̂(~u; l) is computationally nontrivial and requires ei-
ther “stroboscopic averaging” [2], Fourier analysis as in SODOM-II [7] or “adiabatic
anti–damping”. All three algorithms are non–perturbative and are implemented in
the code SPRINT [5,6].

Although we have concentrated on protons and have introduced the invariant
spin field as an essential geometrical object it was first motivated by Derbenev
and Kondratenko [8,9], for providing semiclassical spin quantisation axes when
calculating radiative spin flip for electrons.

THE AMPLITUDE DEPENDENT SPIN TUNE

To complete the construction of our coordinates for describing spin motion, two
other unit vectors n̂1(~u; l) and n̂2(~u; l) are attached to all (~u, l) such that the sets
(n̂1, n̂2, n̂) form local orthonormal coordinate systems at all points in phase space
at each l. Like n̂, n̂1 and n̂2 are 1–turn periodic in l: n̂i(~u; l + C) = n̂i(~u; l) for
i∈{1, 2}. But unlike n̂ they do not obey the T–BMT equation. As pointed out

above the motion of ~S is a precession around n̂. Now, with the basis vectors n̂1 and
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n̂2 we have a way to quantify the rate of spin precession around n̂: it is the rate of
rotation of the projection of ~S onto the n̂1, n̂2 plane. Except for the uninteresting
case of running on orbital resonance, the fields n̂1(~u; l) and n̂2(~u; l) can be chosen
so that the rate of precession is constant and independent of the starting orbital
phases [1–6]. The number of precessions per turn “measured” in this way is called
the spin tune ν. The spin tune depends only on the orbital amplitudes — a tune
depending in some way on phases would hardly be a useful quantity since it would
have to change as the phases advance.

Spins are particularly strongly perturbed, and the locus of n̂ is then expected to
be very convoluted, when the spin tune is near resonance with the orbital tunes:
ν(J1, J2, J3) = k0+k1Q1+k2Q2+k3Q3 where the Q’s are the amplitude dependent
tunes of the orbital modes, the k’s are integers and the J ’s are orbital amplitudes.
The spin tune on the closed orbit, ν(0, 0, 0), is the number of precessions per turn
of an arbitrary spin around n̂0(l). We denote it by ν0. Note that contrary to
common practice our expression for resonance does not contain ν0. Indeed, that
is the whole point of having a clean definition of spin tune as we now illustrate.
Figure 2 (left) shows the dependence of the spin tune on orbital amplitude (=
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FIGURE 2. The amplitude dependent spin tune ν and Plim on phase space ellipses with nor-

malised vertical emittance εy as calculated with SPRINT for HERA–p at 805 GeV. Left: vertical

tune Qy = 32.2725, right: Qy = 32.2825.

enclosed normalised emittance) for purely vertical betatron motion in HERA–p at
805 GeV with a suitable arrangement of snakes [3]. On the design orbit, i.e. at zero
amplitude, ν is 1/2 as expected. But it deviates from 1/2 as the amplitude increases
and at 27π mm mrad it jumps symmetrically across the resonant value 2Qy. After
increasing further, ν then decreases and at a normalised emittance of 56π mm mrad
it jumps back across the resonant value 2Qy. So ν never actually hits the resonant
value but as one can see Plim becomes small around the resonant amplitudes as
the locus of n̂ becomes convoluted and extends over the whole unit sphere. Thus
the behaviours of ν and Plim are mutually consistent. Figure 2 (right) shows the
behaviour of ν when Qy is increased. The second order resonance can no longer be
crossed but 9th order resonant behaviour occurs instead. These curves illustrate
just how complicated spin motion can be at very high energy. Such phenomena
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could obviously not be seen without a properly defined spin tune. For example, a
“fake spin tune” erroneously extracted from the complex eigenvalues of R3×3 shows
no correlation with dips in Plim. That is no surprise since that “fake tune” depends
on the orbital phase and is therefore unsuitable for describing long term spin–orbit
coherence. With the properly defined ν, the proximity to spin–orbit resonances can
be properly judged and the changes in orbital tunes needed to avoid resonances can
be properly estimated.

An especially satisfying aspect of these concepts is that they have provided a way
to generalise the application of the Froissart–Stora formula [11] for the polarisation
loss when passing through resonances. In particular, the size of a resonant jump in
ν, ∆ν, for a high order resonance, is a measure of the strength of the resonance and
using the facilities in SPRINT it has been possible to parametrise polarisation loss
with respect to n̂, when varying various machine parameters dynamically through
such high order resonances, in terms of a generalised Froissart–Stora formula [5,6],
containing ∆ν. More details on these calculations will be published elsewhere.

SUMMARY AND CONCLUSION

The use of a coordinate system based on the invariant spin field and of the
properly defined spin tune are indispensable for a clear understanding of spin–orbit
resonant behaviour in storage rings. Their use allows high order resonances to be
cleanly identified, their strengths to be determined and misconceptions based on
false definitions of spin tune to be avoided.
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