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Abstract: If the Fokker–Planck equation for the phase space density of electrons in
a storage ring is given, the corresponding equation for the polarization density has
a related, simple and elegant form which can be deduced by a simple illuminating
argument.

Introduction

If the phase space density Worb(~u; s) of electrons in a storage ring evolves according to a Fokker–
Planck equation:

∂Worb

∂s
= L

FP,orb
Worb , (1)

where s is the distance around the ring, ~u is the vector of the six canonical phase space
coordinates and L

FP,orb
is the Fokker–Planck operator for the orbital motion, how can we write

a corresponding equation for the transport of spin?

The solution is to work with the polarization density ~P(~u; s) which is defined as 2/h̄ ~S
where ~S is the phase space density per particle of the spin angular momentum. It can then be
shown [1] that ~P(~u; s) satisfies the equation:

∂ ~P
∂s

= L
FP,orb

~P + ~Ω(~u; s) × ~P , (2)

where ~Ω(~u; s) is the spin precession vector in the Thomas–BMT spin precession equation,

d~S/ds = ~Ω × ~S, describing the coupling of the spin expectation value ~S (“the spin”) of a
particle to the electric and magnetic fields [2, 3].

A relationship as elegant and simple as that between Eqs. (1) and (2) begs a simple intuitive
interpretation. We offer this in the next section.
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A colourful analogy

Imagine that the particles carry three continuous “charges” which, for amusement, we can call
redness, blueness and greeness and which are parametrized by the variables R, B, G which we
group into a three component colour vector ~C. Imagine also that these charges do not couple
to the electric and magnetic fields so that the dynamics is blind to colour. The joint density in
phase and colour space is W (~u, ~C; s) and Worb(~u; s) =

∫

W (~u, ~C; s) d3C.

Since the dynamics is blind to colour W (~u, ~C; s) obeys the usual transport equation:

∂W (~u, ~C; s)

∂s
= L

FP,orb
W (~u, ~C; s) . (3)

Likewise the phase space density of the colour ~C(~u; s) =
∫ ~C W (~u, ~C; s) d3C also obeys this

equation:

∂ ~C
∂s

= L
FP,orb

~C . (4)

So the colour density vector obeys the same evolution equation as the phase space density! If
there is a constraint such as R2 + B2 + G2 = A2 = constant, then the colour vectors lie on a
spherical shell in colour space: W = W̃ δ(

√
R2 + B2 + G2 − |A|).

We now make the replacements: R −→ S
x
, B −→ S

z
, G −→ S

s
, ~C −→ ~S where S

x
, S

z

and S
s

are the spin components of the spin vector ~S of a particle. Then in analogy to Eq. (4)

and recalling the definition of ~P it is clear that if spin were not to couple directly to electric
and magnetic fields we would have

∂ ~P
∂s

= L
FP,orb

~P . (5)

Equation (5) contains all contributions to ∂ ~P/∂s from instantaneous orbital motion for the
case where spin is just a spectator, i.e. in the absence of spin–to–field coupling. The alert
reader will realise that this derivation just reflects the derivation of the first two terms of Eq.
(11) in [1] using the first two terms in Eq. (10) in [1].

But spins precess in electric and magnetic fields according to the Thomas–BMT equation
and ~P = ~Ploc(~u; s) Worb where Worb is now normalized to unity and ~Ploc(~u; s) is the polarization

at (~u; s). Thus precession of ~Ploc should be reflected in the precession of ~P at the rate ~Ω(~u; s)× ~P.

We now note [1] that the operator L
FP,orb

can be written as

L
FP,orb

= Lham + L0 + L1 + L2 (6)

where Lham is the “Hamiltonian part” and accounts for noiseless and damping–free motion.
For “Hamiltonian motion” (L

FP,orb
→ Lham), Eq. (1) reduces to an equation of the Liouville

type and dWorb/ds, vanishes along trajectories so that Worb is conserved. If there were no

spin–to–field coupling ~Ploc and ~P would, by a similar reduction of Eq. (5), be conserved too.
The terms L0, L1, L2 account for the deviation from “Hamiltonian motion” due to damping
and noise and contain zeroth, first and second order partial derivatives w.r.t. the components
of ~u respectively. The precession of ~P is also a deviation from Hamiltonian motion. So to
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include spin–to–field coupling we simply add a term ~Ω(~u; s) × ~P to the r.h.s. of Eq.(5). We
have now arrived at Eq. (2) by heuristic arguments and by this means we have exposed the
essence of the matter.

Note that the relationship between equations (1) and (2) survives if L
FP,orb

is replaced by
any physically sensible transport operator T

orb
— which could even contain derivatives beyond

second order.

Commentary

From Eqs.(1) and (2) and the relation ~P = ~Ploc Worb it is simple to show that the corresponding

equation for ~Ploc is

∂ ~Ploc

∂s
= L

ham

~Ploc + ~Ω × ~Ploc + L1
~Ploc +

L2 (~Ploc Worb) − ~Ploc(L2 Worb)

Worb

. (7)

This is considerably more complicated than Eq. (2) so that to obtain ~Ploc it is better to solve

Eqs. (1) and (2) separately and calculate ~P/Worb.

By appealing again to our heuristic picture, equation (2) can be extended to include other
effects such as intrinsic spin flip due to the Sokolov—Ternov effect [4] so that we obtain

∂ ~P
∂s

= L
ham

~P + ~Ω(~u; s) × ~P
︸ ︷︷ ︸

≡Noise and damping free part
︸ ︷︷ ︸

Large

+L0
~P + L1

~P + L2
~P + Intrinsic spin flip

︸ ︷︷ ︸

e.g.Sokolov−Ternov

+ Cross terms
︸ ︷︷ ︸

e.g. Kinetic pol

︸ ︷︷ ︸

Small

(8)

and thereby arrive at an interpretation of the calculation in [6].

Equation (8) provides a clean starting point for perturbative estimates of the combined

effects of damping, noise and spin flip close to equilbrium. In fact the part ∂ ~P/∂s = L
ham

~P +
~Ω(~u; s)× ~P in Eq. (8) is just the T–BMT equation for ~P and the direction of the stationary (i.e.

ring periodic) solution for ~P is the invariant spin field ~n(~u; s) [5]. Since ~Ω(~u; s) is usually large
one can then evaluate the influence of the “Small” terms using perturbation theory to obtain
expressions for the equilbrium polarization and the depolarization rate in terms of functionals
of ~n and its derivatives [7]. Near to spin–orbit resonances [5], ~n is a sensitive function of ~u and
this sensitivity feeds through to enhance the rate of depolarization near resonances. Further
details will be given elsewhere.

Conclusion

Once the Fokker–Planck equation for the evolution of the phase space density of electrons in
a storage ring has been specified, the evolution equation for the polarization density follows
immediately. This equation not only has a simple and elegant relationship with the parent
Fokker–Planck equaton but its form can also be deduced by simple heuristic arguments.

We thank M. Berglund and G.H. Hoffstätter for useful comments on the manuscript.
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