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This arti
le provides a uni�ed introdu
tion to the theory of ele
tron

and proton spin polarisation in storage rings and it provides a 
ommon

starting point for the written versions of the four talks that I gave at

Monterey.

1 Foreword

Ea
h of the four talks that I gave at Monterey had to do with spin polarisation in

storage rings and a

elerators and in ea
h talk I 
overed the relevant and ne
essary

aspe
ts of the theory. Indeed, three of the talks essentially dealt only with theory

and there was 
onsiderable repetition of the basi
s. If the written versions were to

re
e
t the talks as I delivered them, there would again be repetition but there would

also be an apparent la
k of 
onne
tion between those topi
s whi
h were spe
i�
 to

ea
h talk. Thus a reader who survived reading all four arti
les might still not have a

solid view of the 
onne
tions between the 
on
epts 
overed. So it seems appropriate

to provide a 
ommon introdu
tion to the theory. That is the burden of this arti
le.

This also provides a suitable opportunity to present a synthesis of the various ways

of des
ribing the 
ompetition between polarisation build{up and depolarisation for

ele
trons that I have 
ome a
ross or 
ontributed to over the last de
ade. Moreover it is

an opportunity to lay to rest some 
onfusions that have 
rept into the subje
t. Owing

to spa
e limitations I will not attempt to maintain a high degree of mathemati
al

rigour but aim instead to impart a feeling for the issues and for our 
urrent level of

understanding [1℄. I shall refer to this arti
le as Arti
le I.

The written versions of the talks themselves will be referred to as Arti
les II, III,

IV, and V as follows:

II Longitudinal ele
tron spin polarisation at 27:5 GeV in HERA.

( D.P. Barber for the HERA Polarisation Group )

III The permissible equilibrium polarisation distribution in a stored proton beam.

( D.P. Barber, K. Heinemann, M. Vogt and G.H. Ho�st�atter )

IV Unruh e�e
t, spin polarisation and the Derbenev-Kondratenko

formalism. ( D.P. Barber )

a

Updated version of a 
ontribution to the pro
eedings of the 15th ICFA Advan
ed Beam Dynami
s

Workshop: \Quantum Aspe
ts of Beam Physi
s", Monterey, California, U.S.A., January 1998. Also

in DESY Report 98{096, September 1998.
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V The semi
lassi
al FW transformation and the derivation of the Blo
h equation

for spin{1/2 polarised beams using Wigner fun
tions.

( K. Heinemann and D.P. Barber )

2 Introdu
tion

Spin behaviour in the ele
tromagneti
 guide �elds of storage rings is dominated by

two e�e
ts:

� Spin pre
ession

� Spin 
ip due to syn
hrotron radiation emission

b

.

In existing proton rings and those that will be built in the foreseeable future only spin

pre
ession is of signi�
an
e sin
e the syn
hrotron radiation power emitted by protons

is negligible. However, as pointed out by Sokolov and Ternov in 1964, radiative spin


ip 
an, for ele
trons, lead to a build up of polarisation [2℄. This phenomenon is then


ommonly known as the Sokolov{Ternov (ST) e�e
t




. At the time of writing, the

only known pra
ti
al way of obtaining a stored polarised proton beam is to inje
t

a prepolarised beam provided by a suitable sour
e [3℄ and then a

elerate it. Nev-

ertheless another method has been suggested and I will 
omment on that in Arti
le

III.

In the remainder of this arti
le I will provide a uni�ed overview of spin pre
ession

and spin 
ip and show how to arrive at an eÆ
ient des
ription of their 
ombined

e�e
t.

3 Spin pre
ession

Spin pre
ession for parti
les travelling in the ele
tromagneti
 �elds in storage rings

is most 
onveniently des
ribed in terms of the Thomas{Bargmann{Mi
hel{Telegdi

(T{BMT) equation [4, 5, 6℄:

d

dt

~

S =

~


�

~

S ( 1)

where

~

S is the 3{ve
tor des
ribing spin in the 
entre of mass frame and

~


 =

e

m


�

�

�

1




+ a

�

~

B +

a


1 + 


1




2

(

_

~r �

~

B)

_

~r +

1




�

a+

1

1 + 


�

(

_

~r �

~

E)

�

: ( 2)

The ve
tor

~

B is the magneti
 �eld,

~

E is the ele
tri
 �eld and 
 is the Lorentz fa
tor.

The ve
tors ~r and

_

~r are the position and velo
ity and evolve a

ording to the Lorentz

b

But it will be
ome 
lear later that the distin
tion between the two 
an be
ome blurred in storage

rings. Indeed resonant spin 
ip in nu
lear magneti
 resonan
e experiments 
an be viewed either as


ip due to photon absorption or pre
ession by � around an e�e
tive horizontal �eld.




In these arti
les statements made about ele
trons will also apply to positrons ex
ept for appropriate

trivial sign 
hanges in mathemati
al expressions.
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equation. The quantity a = (g � 2)=2 is the gyromagneti
 anomaly. For ele
trons

a � 0:0011596 and for protons a � 1:7928. The other symbols used here and elsewhere

have their usual meanings. The derivations of the T{BMT equation by its authors

were purely 
lassi
al in spirit. The derivation by BMT was based on the requirements

of relativisti
 
ovarian
e. However, Thomas 
ombined 
onventional notions of spin

pre
ession with the relativisti
 e�e
t now 
alled Thomas pre
ession [4, 6℄

d

. Note

that Eqs. (1) and (2) redu
e smoothly to the usual nonrelativisti
 limit. To obtain a


learer view of the impli
ations of the T{BMT equation one 
an rewrite it in terms

of the �eld 
omponents perpendi
ular and parallel to the orbit:

d

~

S

dt

=

e

~

S

m



� ((1 + a)

~

B

k

+ (1 + a
)

~

B

?

)

=

e

~

S

m


� ((

g

2


)

~

B

k

+ (

1




� 1 +

g

2

)

~

B

?

) ; ( 3)

where for this part of the dis
ussion the e�e
t of ele
tri
 �elds has been ignored.

Eq. (3) shows that for motion perpendi
ular to the �eld, the spin pre
esses around

the �eld at a rate 1 + a
 faster than the 
orresponding rate of orbit de
e
tion:

Æ�

spin

= (1 + a
)Æ�

orbit

= a
Æ�

orbit

+ Æ�

orbit

( 4)

in an obvious symboli
 notation. This pre
ession rate is strongly in
uen
ed by the

Thomas pre
ession. This is 
ontained in the term 1=
 � 1. For ele
trons (g � 2) the

total pre
ession is strongly suppressed. For protons (g � 5:58) the relative suppression

is mu
h weaker.

However, `spin' is a purely quantum me
hani
al 
on
ept. Moreover, we are not

working in a regime where ele
tron{positron 
reation and annihilation are important.

Thus a two{
omponent des
ription of spin should suÆ
e and one should therefore

look for a Foldy{Wouthuysen transformation (Arti
le V) of the Dira
 Hamiltonian

(
ontaining a `Pauli' term for the anomalous magneti
 moment) appropriate for the

semi
lassi
al regime of a storage ring. By `semi
lassi
al' I mean that for the high

energies involved it should only be ne
essary to keep terms up to �rst order in ~. A

Hamiltonian of the required type was already written down in 1973 by Derbenev and

Kondratenko (DK) [7℄ and takes the form

e

h

dk

op

= h

dk

op;orb

+

~

2

~�

op

�

~




op

; ( 5)

where:

h

dk

op;orb

= J

op

+ e�

op

; ( 6)

d

Thomas also provided 
ovariant forms for his equation.

e

The subs
ript `op' is to remind the reader that we are dealing with operators. In this 
ase they

operate on two{
omponent wavefun
tions. The �elds in h

dk

op

are external �elds. The derivation of

this Hamiltonian is the subje
t of Arti
le V.
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and:

~
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and where ~�

op

and J

op

are de�ned as:

~�

op

= ~p

op

�

e




~

A

op

; J

op

=

p




2

~�

op

� ~�

op

+m

2




4

: ( 8)

Thus the DK Hamiltonian 
onsists of a purely orbital part of zeroth order in ~

and a spin part of �rst order in ~. The orbital part resembles the familiar form

of the 
lassi
al relativisti
 Hamiltonian from the textbooks [8℄ and the spin part is

reminis
ent of a Stern{Gerla
h (SG) dipole energy term. As will be noted in Arti
le

V, at se
ond order in ~ this Hamiltonian gains just extra orbital terms. All in all,

the DK Hamiltonian has a satisfying and physi
ally transparent form. It is then no

surprise that in �rst order in ~ the Heisenberg equation of motion (EOM) for the

kineti
 momentum ~�

op

is the Lorentz equation with an additional term for the SG

for
e. It is also 
lear that in �rst order in ~ the Heisenberg EOM for the spin (~=2)~�

op

is a pre
ession equation with the same form as the T{BMT equation, Eqs. (1) and

(2), sin
e the operator

~




op

has a stru
ture equivalent to that of

~


 in Eq. (2). In a

wave pa
ket approximation and at �rst order in ~ the Heisenberg EOM lead to the

T{BMT equation for the expe
tation value h~�

op

i (= the polarisation) and the EOM

for the expe
tation value h~�

op

i of the kineti
 momentum of a wave pa
ket is again

the Lorentz equation modi�ed by a SG term [9℄. Thus we have now put the T{BMT

equation on a �rm quantum me
hani
al footing and have shown that it is the natural

out
ome of a semi
lassi
al approximation. Moreover (see Arti
le V), we know how to


al
ulate beyond �rst order in ~ if ne
essary. Note that the magneti
 SG terms di�er

from the familiar textbook forms for slowly moving parti
les but redu
e to them at

low energy: our terms 
ontain Thomas pre
ession 
ontributions so that, for example,

g=2 is repla
ed by g=2 � 1 + 1=
 = a + 1=
. A detailed dis
ussion on the SG terms

in the DK Hamiltonian and on the SG for
es allowed by 
ovarian
e 
an be found in

[10℄ where the EOM are given a 
lassi
al interpretation. See also Arti
le III.

The full Hamiltonian given by Derbenev and Kondratenko to in
lude radiation

e�e
ts is

h

dk

tot

= h

dk

op

+ h

dk

rad

+ h

dk

int

( 9)

where h

dk

rad

is the Hamiltonian of the free radiation �eld and where

h

dk

int

= e(�

rad

�

~v




�

~

A

rad

) +

~

2

(~�

op

�

~




rad

) ( 10)

des
ribes the parti
le{radiation intera
tion. The operator

~




rad

has the same stru
ture

as

~




op

ex
ept that the external �eld operators (denoted by the subs
ript `op') are

repla
ed with radiation �eld operators (denoted by the subs
ript `rad').
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4 Spin distributions

In the last se
tion it be
ame 
lear that to �rst order in ~ the 
entres of wave pa
kets

move (
lassi
ally) a

ording to the usual Lorentz for
e modi�ed by a SG term and that

the a

ompanying h(~=2)~�

op

i obeys the T{BMT equation. Thus for many purposes

the parti
les and the expe
tation values of their spin operators 
an be treated as if

they are 
lassi
al obje
ts and we are then in a position to move beyond single parti
les

and to dis
uss 
lassi
al spin and phase spa
e distributions. Arti
le V shows how to

arrive at spin and parti
le distributions dire
tly from the density operator.

To 
onstru
t a 
lassi
al treatment one uses the 
orresponden
es:

h~r

op

i ! ~r ; h~�

op

i ! ~� ; h

~

2

~�

op

i !

~

� ( 11)

where

~

� is a 
lassi
al spin of length ~=2. Then with the Hamiltonian:

h

dk

= h

dk

orb

+

~

� �

~


 ( 12)

with

h

dk

orb

= J + e � � ( 13)

and the Poisson bra
ket relations

f

:

fr

j

; p

k

g = Æ

jk

; fr

j

; r

k

g = fp

j

; p

k

g = fr

j

; �

k

g = fp

j

; �

k

g = 0 ;

f�

j

; �

k

g =

3

X

m=1

"

jkm

�

m

; (j; k = 1; 2; 3) ; ( 14)

and where semi
lassi
ally the

_

~r in Eq. (2) equals 


2

~�

op

=J , the Lorentz (modi�ed by a

SG term) and T{BMT equations emerge from the 
anoni
al equations of motion:

_

~r = f~r; h

dk

g ;

_

~� = f~�; h

dk

g+

�~�

�t

;

_

~

� = f

~

�; h

dk

g : ( 15)

Sin
e storage rings and a

elerators have a

elerating 
avities whi
h subje
t the parti-


les to time dependent �elds and sin
e the magnet geometry is �xed, parti
le dynami
s

is best des
ribed in terms of the 
anoni
al 
oordinates ~u = (x; p

x

; z; p

z

;�t;�E) where

x; p

x

; z; p

z

des
ribe transverse motion with respe
t to the 
urved periodi
 orbit and

�t;�E are the time delay relative to a syn
hronous parti
le (at the 
entre of the

bun
h) and the energy deviation from the energy of a syn
hronous parti
le respe
-

tively. The independent variable is now the distan
e around the ring, s. There is a


orresponding (
lassi
al) Hamiltonian, 
orre
t up to �rst order in ~,

~

h =

~

h

orb

+

~

� �

~

~


 ; ( 16)

f

If we were working to se
ond or higher order in ~ we would use the Moyal algebra [11, 12℄. In the

present 
ase of �rst order in ~ this simpli�es to the Poisson algebra.
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whi
h enables the EOM to be written in 
anoni
al form and this is derived from h

dk

by standard means [13℄. If the ring is distorted (see below), ~u des
ribes the position

with respe
t to the resulting 
losed orbit.

We now make the idealisation that the beam phase spa
e 
an be des
ribed in

terms of a smooth 
ontinuous density, w(~u; s), whi
h is a s
alar fun
tion of ~u and

the azimuth s

g

. It is normalised to unity. In the absen
e of dissipation and noise

(e.g. due to syn
hrotron radiation) and ignoring the e�e
t of the tiny SG for
es on

the orbital motion, w is 
onstant along a phase spa
e traje
tory and obeys a relation

of the Liouville type:

�w

�s

= f

~

h

orb

; wg : ( 17)

If the beam is stable, i.e. if w is the same from turn to turn, then it is periodi


in s and we write it as w

eq

so that w

eq

(~u; s) = w

eq

(~u; s + C), where C is the ring


ir
umferen
e.

Having assigned a phase spa
e density to ea
h point in phase spa
e we now assign

a polarisation

~

P (~u; s) to ea
h point

h

.

~

P is the average over parti
les of the unit spins

2

~

�=~ at (~u; s). Sin
e the T-BMT equation is linear in the spin and sin
e in this pi
ture

the spins at (~u; s) all see the same

~

~


(~u; s),

~

P (~u; s) obeys the T-BMT equation

d

~

P

ds

=

~

~


(~u(s); s)�

~

P : ( 18)

Be
ause Eq. (18) des
ribes pre
ession, j

~

P (~u; s)j is 
onstant along a phase spa
e tra-

je
tory. To make 
loser 
onta
t with the syn
hrobetatron motion, we 
an rewrite

Eq. (18) as [14, 15℄:

�

~

P

�s

= f

~

h

orb

;

~

P g+

~

~


(~u; s)�

~

P ( 19)

whi
h is analogous to Eq. (17) and assumes that

~

P (~u; s) is di�erentiable in all dire
-

tions in phase spa
e. Note that the polarisation of the whole beam as measured by a

polarimeter at azimuth s is the average a
ross phase spa
e:

~

P

av

(s) =

Z

d

6

u w(~u; s)

~

P (~u; s) : ( 20)

If the spin distribution is stable, i.e. if

~

P (~u; s) is the same from turn to turn, then

~

P (~u; s) not only obeys the T-BMT equation, but it is also periodi
 in s and we write

it as

~

P

eq

so that

~

P

eq

(~u; s) =

~

P

eq

(~u; s+ C). We denote the unit ve
tor along

~

P

eq

(~u; s)

by n̂(~u; s)

i

. This also obeys Eq. (18) and is periodi
 in s: n̂(~u; s) = n̂(~u; s + C).

On the (periodi
) 
losed orbit n̂(~u; s) be
omes n̂(

~

0; s) and we denote it by n̂

0

(s)

j

.

g

Note that in Arti
le V the phase spa
e density is denoted by `�'.

h

This is equivalent to asso
iating a spin density matrix with ea
h point in phase spa
e.

i

With respe
t to n̂(~u; s) the spin density matrix at (~u; s) is diagonal.

j

Many authors make no 
lear distin
tion between n̂ and n̂

0

and many use the symbol n̂ for n̂

0

.

This 
an sometimes lead to 
onfusion. In parti
ular the original symbol for �n̂=�Æ (se
tion 5.3) was


�n̂=�
 [7℄ and some have erroneously understood 
�n̂=�
 to mean E

0

�n̂

0

=�E

0

where E

0

is the

design energy [16℄.
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Obviously n̂

0

(s) obeys the periodi
ity 
ondition n̂

0

(s) = n̂

0

(s + C), i.e. n̂

0

(s) is the

ring periodi
 solution of the T{BMT equation on the 
losed orbit. In general it is

unique.

In the foregoing I introdu
ed the invariant (ve
tor) spin �eld n̂(~u; s) by appealing

to physi
al intuition. The underlying assumption was that the �eld n̂(~u; s), whi
h is

supposed to obey Eq. (18) over the whole of the beam phase spa
e, not only exists

but is smooth (to 
orrespond with our expe
tations of the spin distribution in a real

beam) and is unique. However, the situation is not quite so simple as I will now

explain by des
ribing some qualitative aspe
ts of spin motion.

If a 
ir
ular a

elerator only had verti
al (dipole) �elds, verti
al spins would not be

a�e
ted and n̂

0

(s) would be verti
al. Moreover, a

ording to Eq. (3) a non-verti
al

spin would pre
ess around n̂

0

(s) a
 times per turn with respe
t to the (periodi
)

design orbit. I 
all the quantity a
 the `naive spin tune'. It represents the natural

spin pre
ession frequen
y of this simple system. It in
reases by one unit for every

� 440 MeV (� 523 MeV ) in
rease in the energy of ele
trons (protons). But some

rings 
ontain verti
al bend magnets so that the design orbit is not 
at. The ring

might also 
ontain solenoidal �elds of parti
le dete
tors. In these 
ases a periodi


T-BMT solution, n̂

0

(s), on the design orbit still exists but is no longer everywhere

verti
al and it is given by the real eigenve
tor (with unit eigenvalue) of the one turn

(orthogonal) 3 x 3 spin transfer matrix for this design orbit

k

. Indeed, for the HERA

ele
tron ring (Arti
le II) n̂

0

is made longitudinal at the east IP by means of spin

rotators. The number of spin pre
essions around n̂

0

(s) per turn is extra
ted from the


omplex eigenvalues of the matrix [21, 22℄. We 
all this the `real spin tune' or just

the `spin tune' and denote it by �

spin

. In general it deviates from a


l

.

If the spin tune were an integer, the one turn matrix would be a unit matrix

and n̂

0

(s) would not be unique. This la
k of uniqueness also manifests itself in

extreme sensitivity to �eld errors. The quadrupoles and other magnets in storage

rings normally have unavoidable small misalignements so that the periodi
 (
losed)

orbit deviates from the design orbit. Likewise the real n̂

0

(s) deviates from the design

n̂

0

(s) sin
e a spin on the 
losed orbit now `sees' horizontal dipole 
omponents in the

quadrupoles. There is also a small shift in the real spin tune. The angle between the

two n̂

0

(s)'s is roughly proportional to the amount of 
losed orbit distortion. But it

be
omes very large if the design spin tune is 
lose to an integer [23, 24℄ sin
e the spin

motion is then 
oherent with the imperfe
tion �elds. The spins are then said to be

near an integer resonan
e (sometimes 
alled an `imperfe
tion resonan
e').

Parti
le bun
hes in storage rings have nonzero transverse dimensions and energy

k

However, for ~u 6=

~

0, the 
onstraint n̂(~u; s) = n̂(~u; s+C) is obviously not equivalent to an analogous

eigenproblem for n̂(~u; s) sin
e in general a spin at (~u; s) set parallel to n̂(~u; s) does not map into

itself over one turn. Thus the naive algorithm based on a one turn map (e.g. see page 27 in [17℄) is

in
orre
t; in general a `n̂' 
onstru
ted in that way would not obey the T{BMT equation everywhere

along an orbit. It would also not exhibit resonant stru
ture at the tunes spe
i�ed by Eqs. (21a, b).

As a result, a `n̂' 
onstru
ted in that way should not be used to obtain the ve
tor �n̂=�Æ (e.g. see

page 52 in [18℄) needed, as in se
tion 5.3, to des
ribe radiative depolarisation of ele
trons. However,

n̂ 
an be obtained as an eigensolution of a modi�ed eigenproblem [19, 20℄. See also footnote j.

l

A
tually, the 
omplex eigenvalues only deliver the fra
tional part of the spin tune. The integer part

must be found by following the spin motion for one turn.
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spread and the motion of a spin, 
ompared to that of a spin on the 
losed orbit,

depends on the position in phase spa
e via the ~u in

~

~


(~u; s). For parti
les 
ir
ulating

for many turns the total disturban
e to a spin 
an grow to be
ome very big if there

is 
oheren
e between the natural spin motion and the os
illatory motion in the beam


hara
terised by the spin{orbit resonan
e 
ondition:

�

spin

= m+m

x

Q

x

+m

z

Q

z

+m

s

Q

s

( 21a)

where the m's are integers and the Q's are respe
tively the horizontal, verti
al and

longitudinal tunes of the orbital os
illations.

The integer resonan
es (jm

x

j+ jm

z

j+ jm

s

j = 0 in Eq. (21a)) 
an normally be iden-

ti�ed with the imperfe
tion resonan
es already mentioned and driven by the periodi


imperfe
tion �elds along the 
losed orbit. We have absorbed their in
uen
e into a

large deviation of n̂

0

(s) from the design dire
tion. The spin-syn
hrobetatron reso-

nan
es (jm

x

j+ jm

z

j+ jm

s

j 6= 0 in Eq. (21a)) (sometimes 
alled `intrinsi
 resonan
es')

are driven by the quasiperiodi
 �elds seen by parti
les exe
uting quasiperiodi
 syn-


hrobetatron os
illations about the 
losed orbit. The sum jm

x

j+ jm

z

j+ jm

s

j is 
alled

the `order' of the resonan
e. An imperfe
tion resonan
e is then a zeroth order reso-

nan
e. Although I have just been dis
ussing the behaviour near resonan
e of arbitrary

spins it should now be 
lear that n̂, whi
h is a spe
ial solution of Eq. (18) 
onstrained

to be periodi
, should, just like n̂

0

(s), also show extreme behaviour near resonan
es.

This is 
on�rmed by the analyti
al stru
ture and numeri
al output from the algo-

rithms used for its 
onstru
tion [23℄. Near integer resonan
es in a distorted ring n̂

0

deviates strongly from the nominal dire
tion for the perfe
tly aligned ring and near

intrinsi
 resonan
es the di�eren
e n̂(~u; s) � n̂

0

be
omes large and in
reases with the

syn
hrobetatron amplitude ~u and with a


m

. So far in this paragraph I have, for

simpli
ity, assumed that the horizontal, verti
al and longitudinal os
illations of the

parti
les are linear and mutually un
oupled. However, in pra
ti
e these motions are


oupled to a greater or lesser extent for a variety of reasons. Then the spin{orbit

resonan
e 
ondition be
omes

�

spin

= m+m

I

Q

I

+m

II

Q

II

+m

III

Q

III

( 21b)

where Q

I

; Q

II

and Q

III

are the eigentunes in the presen
e of 
oupling

n

.

m

Note that the terminology `intrinsi
' and `imperfe
tion' must be used with 
are sin
e syn
hrobe-

tatron motion 
an also give rise to zeroth order resonan
e phenomena [25, 26℄.

n

It should be emphasized that 
oupling or nonlinear �elds (e.g. see pages 26, 33 and 39 in [18℄)

are not prerequisites for the o

urren
e of high order spin{orbit resonan
es. In fa
t high order

resonan
es must o

ur even for perfe
tly linear un
oupled orbital motion in spite of the fa
t that

the T{BMT equation is linear, simply be
ause rotations around di�erent axes do not 
ommute.

The in
uen
e of non
ommutation 
an be seen in the nontrivial stru
ture of the integrals used to


al
ulate n̂ in the perturbative treatments in [27, 28, 29, 25, 26℄. The �rst order integrals 
orrespond

to the SLIM approximation [23, 21, 22℄ and ea
h des
ribes the e�e
t of a single orbital mode and

exhibits �rst order resonant behaviour. The higher order integrals des
ribe the 
ombined e�e
ts of

independent orbital modes su
h as, for example, the e�e
t of the verti
al �elds in quadrupoles on

a spin{like ve
tor whi
h has been tilted from the verti
al by radial quadrupole �elds. The higher

order integrals exhibit higher order resonant behaviour. One also sees from the treatments just 
ited

8



For 27:5 GeV ele
trons in HERA (see Arti
le II) the r.m.s. angle between n̂(~u; s)

and n̂

0

(obtained by averaging a
ross phase spa
e) is just a few milliradians away

from intrinsi
 resonan
es and about 100 milliradians very near su
h resonan
es. For

protons at about 800 GeV in HERA (see Arti
le III) on the `1{�' torus this angle is

typi
ally 60 degrees unless Siberian Snakes are employed. Figure 1 depi
ts invariant

z

z’

z

z’

z

z’

E
2

E
1

E
3<<

=> =>

The effect of energy variation on the spin field

Figure 1: A typi
al n̂{�eld at three energies, the se
ond of whi
h is 
lose to resonan
e.

spin �elds n̂ `atta
hed' to verti
al betatron phase spa
e ellipses for three di�erent �xed

energies but for the same invariant verti
al emittan
e. Other examples are given in

Arti
le III.

Although I introdu
ed n̂ via spin distributions, the history of n̂ took a di�erent


ourse whi
h provides more insight into its meaning and properties. It was �rst

introdu
ed by Derbenev and Kondratenko [30, 7℄ in the pro
ess of obtaining a
tion{

angle variables for 
ombined spin{orbit motion by `diagonalising' the Hamiltonian

in Eq. (12) and this aspe
t was further illuminated by Yokoya in [31℄. A similar

approa
h 
an be used on the Hamiltonian in Eq. (16) [13, 28, 31, 32℄. I now give a

rough outline of the basi
 ideas.

It is assumed that the orbital motion is integrable and one makes an s dependent


anoni
al transformation so that

~

h

orb

is repla
ed by

�

h

orb

= �

i

2�

�

Q

i

�

I

i

where the

�

Q

i

are the three orbital tunes and the three

�

I

i

are the 
omponents of the orbital a
tion

ve
tor

~

�

I. Then one des
ribes the spin motion with respe
t to a set of orthonormal

axes (a `dreibein') (n̂

1

(~u; s), n̂

2

(~u; s), n̂

3

(~u; s)) atta
hed to ea
h point in phase spa
e

and requires that

~

� � n̂

3

is a 
onstant of motion. Clearly, n̂

3

(~u; s) must be a solution

of the T{BMT equation at (~u; s)

o

. At the same time the dreibein is 
hosen so that

that the so-
alled syn
hrotron sideband resonan
es 
omprise just one among several spe
ies of high

order resonan
es whi
h 
an be 
lassi�ed by examining the integrals in the systemati
 and uni�ed

treatments of resonan
es in [27, 26℄. However,sin
e Q

s

is usually small, the syn
hrotron sideband

resonan
es tend to be mu
h stronger than other high order resonan
es so that they are often singled

out for spe
ial attention and treated separately in various ad ho
 ways. Naturally, the introdu
tion

of 
oupling and nonlinear �elds does have 
onsequen
ies. Coupling modi�es the resonant �

spin

values

(Eq. (21b)) and 
hanges the strengths of resonant e�e
ts. Nonlinear �elds 
an, of 
ourse, drive

high order resonan
es but at high a
 and for normal levels of nonlinearity, resonan
es resulting from

non
ommutation dominate.

o

The angle between two T{BMT solutions following the same point on an orbit does not 
hange in

9



n̂

i

(~u; s) = n̂

i

(~u; s + C) ( i = 1 ! 3) and so that

~

� pre
esses around n̂

3

at a 
onstant

rate relative to n̂

1

and n̂

2

. The rate, denoted by ��(

~

�

I), should depend only on the

a
tions

~

�

I. The ve
tors n̂

1

and n̂

2

are not solutions of the T{BMT equation. The

ve
tor n̂

3

has just the properties of the ve
tor n̂ introdu
ed earlier. This 
hoi
e of the

dreibein, whi
h amounts to a ~u and s{dependent rotation of the axes for des
ribing

the spin motion, is a
hieved by a suitably designed ~u and s{dependent 
anoni
al

transformation whi
h delivers a �nal Hamiltonian (
orre
t to �rst order in ~) with

the `diagonalised' form [31℄

�

h = �

i

2�

�

Q

i

�

I

i

+ 2���

�

I

spin

( 22)

where

�

I

spin

=

~

� � n̂

3

is now an integral of motion, the spin a
tion, and the

�

Q

i

and

�

I

i

are the 
orresponding orbital tunes and a
tions. The

�

I

i

di�er from the

�

I

i

by SG

terms [31℄. Note that the 
on
ept of spin tune has now been generalised; instead of

the 
losed orbit spin tune �

spin

we have a spin tune ��(

~

�

I) depending on the orbital

a
tions (but not on

�

I

spin

) whi
h di�ers slightly from �

spin

and whi
h redu
es to �

spin

for zero orbital a
tions

p

. Now, in retrospe
t, the de�nition of resonan
e must be

re�ned; we should really use ��(

~

�

I) in Eqs. (21a, b) instead of �

spin

. It should now be


lear why we sought a de�nition of spin pre
ession rate, i.e. spin tune, whi
h makes

the latter independent of orbital phases and the azimuth s. Spin tune should tell us

something about the degree of long term 
oheren
e between the spin motion and the

orbital motion and allow us to express this 
oheren
e by means of resonan
e relations

like Eqs. (21a, b) (with ��(

~

�

I)). But if we work with a `fake spin tune' su
h as that

obtained from the one{turn eigenproblem (see footnote k and [33℄) whi
h depends

on orbital phases so that the `fake spin phase advan
e' per turn varies from turn to

turn, we 
an make no statements about long term 
oheren
e. With this rede�nition

of spin tune the dreibein (n̂

1

, n̂

2

, n̂

3

) is unique ex
ept at spin{orbit resonan
es [31, 34℄

and by this uniqueness the ve
tor n̂

3

is just the ve
tor n̂ introdu
ed earlier ex
ept for

a possible di�eren
e of sign! The exoti
 (unstable) behaviour of n̂ near resonan
e is

a manifestation of la
k of uniqueness at resonan
e.

Now I return to the questions of smoothness and existen
e of a n̂ obeying Eq.

(18). Sin
e �� depends on orbital a
tions, n̂ is potentially nonunique at almost all

points in phase spa
e be
ause the resonan
e 
ondition is satis�ed almost everywhere

if we in
lude resonan
es of arbitrarily high order. Thus n̂ might not be di�erentiable

in all dire
tions in phase spa
e [35℄. However, algorithms, both perturbative and

nonperturbative, for 
onstru
ting approximations to n̂ are available [23℄ (see also

Arti
le III ) and experien
e with 
al
ulating n̂ by the author and 
olleagues seems to

indi
ate that resonan
e e�e
ts rapidly be
ome weak as the resonan
e order in
reases

so that only a limited number of relatively low order resonan
es are likely to 
ause

trouble. Therefore in the remainder of the arti
le it will be assumed that the spin

�eld n̂ is a legitimate tool in pra
ti
e. Nevertheless, the te
hni
al and interesting

time. See also footnote k.

p

Note that for

~

�

I 6=

~

0, ��(

~

�

I) 
annot normally be obtained from a 
omplex eigenvalue of the naive

one{turn eigenproblem dis
ussed in footnote k.
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matters of existen
e and smoothness are under a
tive investigation [36℄ and knowledge

gained from this study will be in
orporated in our treatment of spin distributions.

An example of the dependen
e of �� on amplitude 
an be found in [33℄.

An extension of the numeri
al work reported in [33℄ but 
arried out just before

this arti
le was 
ompleted indi
ates that �� a
tually `jumps over' resonant values as

the orbit amplitude is 
hanged [37, 38℄. That work is based on the `strobos
opi


averaging' algorithm in the 
omputer 
ode SPRINT [34℄. But even more re
ent

results from a new version of the SODOM algorithm [19, 20℄ 
orroborates these �nd-

ings. This implies, 
ontrary to traditional expe
tations based on perturbation theory,

that the spin{orbit resonan
e 
onditions of Eqs. (21a, b) is never exa
tly satis�ed

in non{perturbative 
al
ulations. However, near to resonan
e, n̂ still exhibits exoti


behaviour.

Although n̂ and

~

� both obey the T{BMT equation they are very di�erent obje
ts;

n̂ is a fun
tion of the dynami
al phase spa
e variables but

~

� is a dynami
al spin

variable and by Eq. (14) the Poisson bra
ket fn̂;

~

�g vanishes. Now that we have a


lassi
al integral of motion for the spin, namely

�

I

spin

, we re
ognize n̂ as a phase spa
e

dependent semi
lassi
al quantisation axis 
orresponding to the quantum observable

(~=2)~�

op

� n̂. We also see that the quantisation axis 
oin
ides with the dire
tion of the

equilibrium spin �eld. As we will see later (~=2)~�

op

� n̂ is a key obje
t in the analyti
al

theory of equilibrium ele
tron polarisation and indeed it was originally introdu
ed as

an aid to 
al
ulating the ele
tron polarisation [30, 7℄. The analysis be
omes more


ompli
ated if the orbital motion is nonlinear but in pra
ti
e one tries to use an opti


for whi
h the nonlinear e�e
ts have been minimised and tries to restri
t the beam to

a phase spa
e volume su
h that the motion is almost integrable.

One last point on the virtues of n̂: a 
al
ulation of ele
tron polarisation with the


omputer program SODOM [19℄ whi
h exploits n̂ agrees well with a 
al
ulation using

the Monte{Carlo spin tra
king program SITROS [39℄ whi
h 
ontains no notion of n̂.

The material on spin distributions presented in this se
tion is appli
able both to

ele
trons and protons. The appli
ation to protons is the topi
 of Arti
le III so that

for the remainder of this arti
le I will fo
us on ele
trons and in parti
ular on the

modi�
ations by syn
hrotron radiation to the 
on
epts already presented.

5 The e�e
ts of syn
hrotron radiation

Syn
hrotron radiation (SR) emitted by stored ele
trons has three main e�e
ts: it

determines the phase spa
e distribution and it brings about spin polarisation owing

to spin 
ip asso
iated with syn
hrotron radiation (the ST e�e
t) but the sto
hasti


element of SR also 
auses depolarisation. Thus SR brings polarisation but it also takes

it away! As we have seen already and as we will see below spin motion is irrevo
ably

intertwined with the orbital e�e
ts. I will begin by summarising the orbital dynami
s

and then dis
uss the polarisation and depolarisation e�e
ts in detail.
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5.1 Orbital phase spa
e

Although SR spe
tra 
an be estimated by 
lassi
al means [6℄ SR is fundamentally

a quantum phenomenon; it 
onsists of single photons so that one 
an only make

reliable predi
tions by using quantised radiation theory. One then �nds 
orre
tions

to the 
lassi
al spe
trum [40℄. The work of Huang and Ruth [41℄ presented at this

meeting is a good example of re
ent quantum 
al
ulations.

Most of the SR in 
onventional storage rings is generated in the �elds of the dipole

magnets de�ning the design orbit. A quantum treatment for this 
ase of the e�e
ts

of SR on the orbital phase spa
e distribution was 
arried out in 1975 [42℄ using the

Hamiltonian of Eq. (10). I will return to this later but here I will follow another route

whi
h has the advantage of exhibiting the transparen
y needed for this arti
le.

Photon emission in the dipole �elds is largely in
oherent and detailed 
al
ulations

show that one 
an 
onsider the photons to be emitted over short distan
es of the

order of �=
 where � is the orbit radius

q

. Furthermore in pra
ti
al storage rings

the energy loss per turn of a single parti
le is small 
ompared to the nominal energy.

Thus the dissipative e�e
t is weak and for example in HERA (Arti
le II) an ele
tron

at 27:5 GeV loses about 80 MeV per turn. Then for many purposes it suÆ
es to

des
ribe the radiation rea
tion power p(s) from SR using a 
lassi
al model in whi
h

smooth 
lassi
al radiation rea
tion power p


l

(s) is overlayed with a `delta 
orrelated'

(`white') sto
hasti
 
omponent Æp(s):

p(s) = p


l

(s) + Æp(s) ; hÆp(s)Æp(s

0

)i = R(E

0

;K)Æ(s� s

0

) ( 23)

where the parameter R quanti�es the intensity of the noise and depends on the design

energy E

0

and the 
urvature K [43℄.

The equations for ~u of deterministi
 orbital motion derived from a Hamiltonian

are then modi�ed by in
lusion of damping and sto
hasti
 terms and in the (very

good) approximation that the photons are emitted parallel to the parti
le traje
tory

and negle
ting interparti
le intera
tions the resultant linearised sto
hasti
 di�erential

equation des
ribing motion with respe
t to the 
losed orbit 
an be used to 
onstru
t

the Fokker{Plan
k equation for the evolution of the phase spa
e density [43, 44, 45, 46℄

r

. I write this as

�w

�s

= L

FP;orb

w ; ( 24)

where the orbital Fokker{Plan
k operator 
an be de
omposed into the form:

L

FP;orb

= L

ham

+ L

0

+ L

1

+ L

2

:

The term L

ham

w is asso
iated with the original symple
ti
 (i.e. phase spa
e

density preserving) motion and it 
ontains just �rst order derivatives with respe
t to

q

At this point I re
ommend the reader to 
onsult the 
hart of time s
ales for ele
tron dynami
s

in [17℄. We will need this on several o

asions. Indeed, an appre
iation of these time s
ales is

indispensible for understanding the physi
s of ele
tron storage rings.

r

Restri
tion to linearised motion enables me to des
ribe the 
hief qualitative features to be dis
erned

without undue 
ompli
ation.
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the 
omponents u

i

(i = 1:::6). The operators L

0

and L

1


ontain zeroth and �rst order

derivatives and a

ount for damping e�e
ts. The operator L

2


ontains se
ond order

derivatives originating in di�usion e�e
ts.

A 
entral property of Eq. (24) is that w(~u; s) rea
hes equilibrium with w(~u; s) =

w(~u; s + C) within a few damping times. At HERA at 27:5 GeV the longitudinal

damping time is about 7 millise
onds � 350 turns � (design energy)=(energy loss

per turn) [47℄. Furthermore w(~u; s) is gaussian and sin
e the radiation e�e
ts are

weak, w(~u; s) is very 
lose to being a solution of the radiationless transport equation

Eq. (17) but with the radiation e�e
ts determining the beam size and 
ausing a tiny

ripple in the emittan
es

s

as fun
tions of s.

Now that we understand the e�e
ts of SR on orbital phase spa
e we 
an move on

to spin.

5.2 The Sokolov-Ternov e�e
t

Only a very small fra
tion of the radiated photons 
ause spin 
ip but for ele
tron

spins aligned along a uniform magneti
 �eld, the "# and #" 
ip rates di�er and this

leads to a build-up of spin polarisation antiparallel to the �eld. Positrons be
ome

polarised parallel to the �eld. The transition rates for ele
trons are [2℄:

W

"#

=

5

p

3

16

e

2




5

~

m

2

e




2

j�j

3

�

1 +

8

5

p

3

�

W

#"

=

5

p

3

16

e

2




5

~

m

2

e




2

j�j

3

�

1 �

8

5

p

3

�

: ( 25)

For positrons, inter
hange plus and minus signs here and elsewhere.

The equilibrium polarisation in a uniform magneti
 �eld is independent of 
,

P

st

=

W

"#

�W

#"

W

"#

+W

#"

=

8

5

p

3

= 92:38% : ( 26)

For a beam with zero initial polarisation, the time dependen
e for build-up to equi-

librium is

P (t) = P

st

[1� exp (�t=�

0

)℄ ( 27)

where the build-up rate is

�

�1

0

=

5

p

3

8

e

2




5

~

m

2

e




2

j�j

3

: ( 28)

The time �

0

depends strongly on 
 and � but is typi
ally minutes or hours.

However, the �elds in storage rings are far from uniform but sin
e the system

is semi
lassi
al, Eq. (25), whi
h was originally obtained from solutions of the Dira


equation, 
an be generalised and a

ording to Baier and Katkov[48℄ for ele
tron spins

initially aligned along an arbitrary unit ve
tor

^

� the transition rate is

W =

1

2�

0

�

1 �

2

9

(

^

� � ŝ)

2

+

8

5

p

3

^

� �

^

b

�

( 29)

s

For ele
trons I de�ne the emittan
e of a mode to be the r.m.s. a
tion of the mode.
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where ŝ = dire
tion of motion and

^

b = (ŝ�

_

ŝ)=j

_

ŝj. This is the magneti
 �eld dire
tion

if the ele
tri
 �eld vanishes and the motion is perpendi
ular to the magneti
 �eld.

The 
orresponding instantaneous rate of build-up of polarisation along

^

� is

�

�1

bk

= �

0

�1

�

1�

2

9

(

^

� � ŝ)

2

�

: ( 30)

But instead of spin 
ip rates we really need an EOM for the polarisation itself and

if we negle
t the e�e
t of sto
hasti
 (syn
hrotron radiation) photon emission on the

orbit and imagine that all parti
les remain on the 
losed orbit (CO), the equation of

motion for ele
tron polarisation as given by Baier, Katkov and Strakhovenko (BKS)

is [49, 50℄

d

~

P

dt

=

~





o

�

~

P �

1

�

0

(s)

�

~

P �

2

9

ŝ(

~

P � ŝ) +

8

5

p

3

^

b(s)

�

: ( 31)

Note that the T{BMT term

~





o

�

~

P appears here as the output of the radiation


al
ulation itself.

By noting that the 
hara
teristi
 time for polarisation build up is mu
h larger

than the 
ir
ulation time

t

, and integrating the BKS equation (Eq. (31)) one �nds

the generalised Sokolov{Ternov formula for the asymptoti
 ele
tron polarisation in

arbitrary magneti
 �elds along the 
losed orbit [17℄:

~

P

bks

= �

8

5

p

3

n̂

0

H

ds (n̂

0

(s) �

^

b(s))=j�(s)j

3

H

ds

�

1�

2

9

(n̂

0

(s) � ŝ)

2

�

=j�(s)j

3

: ( 32)

So the polarisation settles down aligned with n̂

0

(s), the periodi
 solution to the

T-BMT equation on the 
losed orbit. In rings 
ontaining dipole spin rotators (Arti
le

II) the polarization 
an usually not rea
h 92.38% sin
e n̂

0

(s) is then not parallel to

the �eld everywhere. The 
orresponding polarisation build-up rate is

�

�1

bks

=

5

p

3

8

e

2




5

~

m

2

e




2

1

C

I

ds

�

1�

2

9

(n̂

0

� ŝ)

2

�

j�(s)j

3

: ( 33)

The above formulae show that in the absen
e of sto
hasti
 motion the maximum

attainable polarisation is 92:38% instead of 100%. Why should this be?

At the simplest level the reason is 
lear: the probability for reverse spin 
ip is

nonzero (Eq. (25)). Nevertheless, `lay observers' often imagine that spin 
ip has

something to do with spin's trying to rea
h the lowest energy level of the two levels

of a magneti
 dipole in a magneti
 �eld and that on
e the spin is in its lowest level

it will stay there. Then 100% polarisation would be a
hieved. Also, reverse 
ip by

radiation emission would defy energy 
onservation.

However, we are not dealing with spins at rest but with spins `sitting' on relativisti


ele
trons whi
h already have quantised orbital energy levels so that the prohibition of

t

Again, see [17℄ for a 
ompilation of time s
ales.
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reverse 
ip by energy 
onservation no longer applies. From Eq. (5) applied to ele
trons

in a uniform verti
al magneti
 �eld it is 
lear that the energy 
hange asso
iated with

spin reversal from up to down is (1+a
 = 
(1=
�1+g=2)) larger than the separation

of orbital energy levels ~!




where !




is the angular frequen
y of the orbit. So one


ould naively imagine spin 
ip o

uring without radiation but simply by a 
hange of

orbital energy level. A related phenomenon involving ex
hange of orbital and spin

energy has been proposed by Derbenev [51, 13℄ while 
ommenting on the possible use

of transverse SG for
es in storage rings. See Arti
le III.

Note also that the splitting of spin energy levels is not simply proportional to

g=2 but 
ontains a Thomas pre
ession term, whi
h indi
ates that the spin motion

is 
oupled to the orbital motion. Furthermore, the average energy of a syn
hrotron

radiation photon is tens of KeV. This is many orders of magnitude greater than the

separation of spin levels. Moreover, photons emitted during spin 
ip tend to have

higher energies than those emitted without spin 
ip. In addition, the polarisation

does not reverse its sign with respe
t to the magneti
 �eld at g = 0 but at g � 1:2

[7, 40, 48℄. This results from the fa
t that (1=
�1+g=2) appears in the Hamiltonian

h

dk

int

(Eq. (10))instead of just g=2.

Finally, it is interesting to note that the syn
hrotron radiation spe
trum and the

polarisation e�e
ts just depend on the 
urvature (i.e. the geometry) of the orbit [48℄.

So the same e�e
ts 
ould be obtained by using ele
tri
 �elds to bend the traje
tory

instead of magneti
 �elds.

These 
omments should 
onvin
e the reader that in the laboratory frame we are

not dealing with a simple two level spin system. For further dis
ussions relevant to

this topi
 the reader is dire
ted to the arti
les by W. G. Unruh and J.D. Ja
kson in

these pro
eedings and elsewhere [40℄.

5.3 Radiative depolarisation

The sto
hasti
 element of photon emission together with damping determines the

equilibrium phase spa
e density distribution. The same photon emission also imparts

a sto
hasti
 element to the ~u in

~

~


(~u; s) and then, via the T-BMT equation applied to

spin motion in the (inhomogeneous) fo
using �elds and in a simple 
lassi
al pi
ture,

spin di�usion (and thus depolarisation) 
an o

ur [52℄. The polarisation level rea
hed

is the result of a balan
e between the Sokolov{Ternov e�e
t and this radiative depo-

larisation. In pra
ti
e, depolarisation 
an be strong and it is therefore essential that

it is well understood.

But how 
an we 
al
ulate the equilibrium polarisation? After all, the polarisation

at a point in phase spa
e is the average of the unit spins 2

~

�=~ 
ontained in a small

pa
ket of phase spa
e at that point. Now, for protons, the phase spa
e density is


onserved along a traje
tory so that no parti
les are lost from su
h a pa
ket but

for ele
trons their sto
hasti
 motion means that spins are 
ontinually di�using from

pa
ket to pa
ket. For the orbital motion one then employs a Fokker{Plan
k equation

for the parti
le density. But polarisation is not a density so that it is not immediately


lear how to pro
eed. Moreover the ST e�e
t must be in
luded so that an analogue

of the BKS expression for sto
hasti
 orbits is needed. I will mention the best solution
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to this puzzle later but in the meantime I will follow a path whi
h roughly re
e
ts

the way that estimates have been made in pra
ti
e.

A 
lue to the next step is 
ontained in the above 
omments about the equilib-

rium phase spa
e distribution resulting from weak dissipation. There, the phase spa
e

distribution settles down to a distribution 
lose to an invariant solution for the dissipa-

tionless problem but with the widths of the distribution determined by the radiation.

Assuming that one has signi�
ant asymptoti
 polarisation the 
hara
teristi
 depolar-

isation time must be similar to the polarisation time, namely minutes or hours. Both

are orders of magnitude larger than the orbital damping times

u

. Thus the analogue

for the polarisation would be that the dire
tion of the equilibrium polarisation at ea
h

point in phase spa
e would settle down 
lose to the equilibrium solution of the radi-

ationless problem, namely n̂(~u; s). Furthermore, the `spin emittan
e' i.e. the average

of

�

I

spin

=

~

� � n̂ at ea
h point in phase spa
e, would be independent of ~u and s.

As has been 
ustomary I will now adopt these plausible notions as working as-

sumptions that at equilibrium a) the polarisation is parallel to n̂(~u; s) and b) the

value of the polarisation is independent of ~u and s. In parti
ular, it is assumed that

the spin tune hardly varies a
ross phase spa
e so that there are no `lo
al' spin{orbit

resonan
es and therefore no polarisation `absorbers'. I will o�er support for the �rst

assumption at the end of this arti
le but in the meantime some support for these

assumptions 
omes from noting that by integrating the BKS equation along a deter-

ministi
 syn
hrobetatron orbit the polarization settles down very nearly parallel to

n̂ [53℄ in analogy with the solution on the 
losed orbit (Eq. 32)

v

. Furthermore, a

study of a spe
ial but exa
tly solvable model of spin di�usion [15℄ shows that far from

resonan
e the polarization settles down asymptoti
ally very nearly parallel to n̂.

This pi
ture was �rst proposed by Derbenev and Kondratenko [7℄. In the absen
e

of radiation s

n

= (~=2)~�

op

� n̂ is 
onserved. But in the presen
e of radiation one has

ds

n

dt

=

i

~

[h

dk

rad

+ h

dk

int

; s

n

℄ : ( 34)

This is evaluated in the equations following Eq. (4.2) in [7℄ and by writing

~

s =

(~=2)~�

op

the essen
e of the physi
s 
an be stated (very) symboli
ally in the form:

ds

n

dt

=

d

~

s

dt

� ~n+

~

s �

d~n

dt

: ( 35)

The �rst term des
ribes the rate of 
hange of s

n

due to pure spin 
ip at a point

in phase spa
e (pure ST e�e
t). The 
onsequent build{up of polarisation is a `spin

damping' analogous to orbital damping. The se
ond term des
ribes the 
hange in s

n

due to the fa
t that when a photon is emitted, the parti
le jumps without a 
hange

of spin to a new position in phase spa
e where it �nds a new n̂ whi
h will in general

not be parallel to the n̂ at the initial point. The proje
tion of the spin on the n̂{axis

has thus de
reased sto
hasti
ally so that s

n

di�uses in analogy with the di�usion of

u

Time s
ales [17℄ again!

v

`very nearly' means that the angle between the polarization and n̂ is mu
h less than the angle

between n̂

0

and n̂.
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the orbital a
tions. This is where the depolarisation 
omes in. Thus the e�e
t on the

polarisation of the sto
hasti
 journey of a parti
le though phase spa
e is a

ounted

for by de�ning an appropriate quantisation axis at ea
h point in phase spa
e. Photon

emission imparts both transverse and longitudinal re
oils to the ele
tron but sin
e

a photon is emitted typi
ally within an angle 1=
 with respe
t to the dire
tion of

the ele
tron, the e�e
t of the longitudinal re
oil (i.e. the energy jump) dominates:

the ele
tron remains at almost the same point in x and z but 
an su�er a signi�
ant


hange in energy. Then by negle
ting the e�e
t of transverse re
oil Derbenev and

Kondratenko arrive at the following expression for the equilibrium polarisation along

the axes n̂:

P

dk

= �

8

5

p

3

H

ds

D

^

b � (n̂�

�n̂

�Æ

)=j�(s)j

3

E

s

H

ds

D

(1 �

2

9

(n̂ � ŝ)

2

+

11

18

�

�n̂

�Æ

�

2

)=j�(s)j

3

E

s

( 36)

where h i

s

denotes an average over phase spa
e at azimuth s and Æ = �E=E

0

is

the fra
tional energy deviation from the design energy

w

. This formula di�ers from

Eq. ( 32) by the in
lusion of the terms with �n̂=�Æ and use of n̂ instead of n̂

0

. The

derivative �n̂=�Æ is a measure of the 
hange of n̂ 
aused by fra
tional energy jumps

Æ and its presen
e 
orresponds to the fa
t that the main 
onsequen
e of a photon

emission is a 
hange in parti
le energy. The phase spa
e average of the polarisation

is

~

P

av;dk

(s) = P

dk

hn̂i

s

( 37)

and hn̂i

s

is very nearly aligned along n̂

0

(s) (see the angle estimate below). The value

of the phase spa
e average, P

av;dk

(s), is essentially independent of s.

The e�e
t of transverse re
oil 
an also be in
luded but 
ontributes derivative terms

(see Arti
le IV, Eq. (2)) analogous to �n̂=�Æ whi
h are typi
ally a fa
tor 
 smaller

than �n̂=�Æ and 
an usually be negle
ted [54, 55℄. This point will be dealt with again

in Arti
le IV .

In the presen
e of radiative depolarisation Eq. ( 33) be
omes

�

�1

dk

=

5

p

3

8

e

2




5

~

m

2

e




2

1

C

I

ds

*

1�

2

9

(n̂ � ŝ)

2

+

11

18

�

�n̂

�Æ

�

2

j�(s)j

3

+

s

: ( 38)

Away from the spin{orbit resonan
es of Eqs. (21a, b) n̂(~u; s) � n̂

0

(s). But near

resonan
es n̂(~u; s) deviates from n̂

0

(s) by typi
ally several tens of milliradians at a few

tens of GeV and the deviation in
reases with distan
e in phase spa
e from the 
losed

orbit. The spin orbit 
oupling fun
tion �n̂=�Æ, whose square (�n̂=�Æ)

2

in Eq. (36)

quanti�es the depolarisation, 
an then be large and the equilibrium polarisation 
an

then be small.

x

For example if j�n̂=�Æj is 1 the polarisation will not ex
eed about

w

This is sometimes written as Æ
=
 [7℄. See also footnote j.

x

The ve
tor �n̂=�Æ (whi
h is still often written as 
�n̂=�
, see footnote j) is sometimes 
alled the

\spin 
hromati
ity" but it is better to use the terms \spin{orbit 
oupling fun
tion" or \spin �eld

derivative" so that \spin 
hromati
ity" 
an be reserved for the rate of 
hange of a spin tune w.r.t.

a fra
tional energy 
hange. In any 
ase, and as already mentioned, in the full theory, formula ( 36)

must be modi�ed to in
lude relatively small terms involving derivatives of n̂ w.r.t. the two transverse


anoni
al momenta [54, 55℄, and for su
h terms the name \
hromati
ity" is 
learly unsuitable.
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57%.

Note that even very 
lose to resonan
es, jhn̂i

s

j � 1: the phase spa
e average

polarisation measured by a polarimeter is mainly in
uen
ed by the value of P

dk

in

Eq. (37).

The ni
e thing about this formulation is that a very 
ompli
ated 
al
ulation of

the e�e
ts of radiation has been distilled into a formula involving a few strange 
oef-

�
ients (emanating from the radiation theory) and a 
lassi
al solution to the T{BMT

equation, namely n̂ whose behaviour en
apsulates all of the depolarisation e�e
ts.

To get high polarisation, one must have (�n̂=�Æ)

2

� 1 in dipole magnets. If n̂ is

independent of the position in phase spa
e, the derivative is zero: all points in phase

spa
e have the same quantisation axis and there is no depolarisation. But storage

ring �elds are inhomogeneous so that n̂ varies a
ross phase spa
e. Thus the ve
tor

�n̂

�Æ

depends on the opti
 of the ma
hine. The optimisation of the opti
 required to make

�n̂=�Æ small is 
alled spin mat
hing [23℄. This will be mentioned again in Arti
le II.

An example 
an be found in [56℄.

The term linear in �n̂=�Æ in Eq. ( 36) is due to a 
orrelation between the spin

orientation and the radiation power [17, 57℄. Alternatively, it 
an be 
onsidered to

result from the interferen
e between the two terms in Eq. (35). In rings where n̂

0

is

horizontal due, say, to the presen
e of a solenoid Siberian Snake [58℄, �n̂=�Æ has a

verti
al 
omponent in the dipole �elds. This 
an lead to a build-up of polarisation

(`kineti
 polarisation') even though the pure Sokolov{Ternov e�e
t vanishes. The rate

is �

�1

dk

.

The expression for �

�1

dk

in Eq. (38) 
an be found from a purely 
lassi
al 
al
ulation

of spin di�usion by evaluating the e�e
ts of the se
ond term in Eq. (35) or by other

means [30, 28, 43, 23℄ and indeed this was the �rst use for n̂ [30℄. Then we have a mixed


al
ulation: the spin 
ip is des
ribed by quantum me
hani
s and the depolarisation is

des
ribed by 
lassi
al di�usion. But obviously kineti
 polarisation will not be found

by that route and the exoti
 resonan
e stru
ture examined in Arti
le IV would be

missed. So it is 
lear that a quantum me
hani
al approa
h is needed to get the full

pi
ture. An observation of kineti
 polarisation [58℄ would be a ni
e vindi
ation of this

viewpoint.

The Derbenev-Kondratenko formula (Eq. (36)) has been rederived in a very ele-

gant way by Mane [27℄. He introdu
es the 
on
ept of generalised spin 
ip whereby

he 
al
ulates the transition rates due to photon emission from `spin up along

n̂(x; p

x

; z; p

z

;�t;�E; s)' to `spin down along n̂(x; p

x

; z; p

z

;�t;�E � �

ph

; s)' where

�

ph

is the energy of the emitted photon. One also needs the 
orresponding `spin

down' to `spin up' rates. Then by requiring that the polarisation has the same value

over all of phase spa
e and imposing the 
onstraint that the total generalised up{

to{down rate equals the total down{to{up rate, and solving for the polarisation one

arrives at Eq. (36)! In this formulation, the 
on
ept of depolarisation never arises!

Instead one just has a statisti
al spin equilibrium. In a perturbative 
al
ulation of

h(�n̂=�Æ)

2

i [27℄ one �nds a series expansion in powers of emittan
es, i.e. in powers

of ~, in whi
h ea
h term 
ontains a produ
t of resonan
e denominators whi
h impart

the resonant stru
ture to n̂. As the order of ~ in
reases along the series so does the

order of the resonan
es 
ontained in the su

essive terms.
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Apart from the 
al
ulation of Bell and Leinaas (Arti
le IV), there are two further

quantum 
al
ulations whi
h should be mentioned, namely those of Hand and Skuja

[55, 59℄. They 
hoose n̂

0

as the spin quantisation axis. When a photon is emitted, the

ele
tron jumps to a new orbit. By writing the phase spa
e 
oordinates as fun
tions

of the radiation �elds and in
luding damping phenomenologi
ally, they 
al
ulate the

rates of spin 
ip along n̂

0

[55℄ and obtain an expression for the equilibriumpolarisation

whi
h is equivalent to the Derbenev{Kondratenko{Mane (DKM) expression in the

limit in whi
h the derivatives of n̂ are evaluated in the linear approximation as in the

SLIM formalism [23, 21, 22℄. Thus they only �nd the �rst order spin{orbit resonan
es

[23℄. Indeed, sin
e their (quantum) representation of the orbit has a form similar to

the 
lassi
al representation in [60℄ their �nal expression 
ontains terms whi
h are

equivalent and identi
al in form to terms obtained in [60℄ in a model of 
lassi
al

spin di�usion. The fa
t that they only �nd �rst order resonan
es 
an then be tra
ed

to their use of just a �rst order perturbative 
al
ulation and the 
hoi
e of n̂

0

as

quantisation axis. To �nd the higher order resonan
es one should use n̂. However, in

a se
ond 
al
ulation [59℄, again using n̂

0

, they 
al
ulated to higher order and although

the out
ome is not very transparent, the terms beyond the leading order in ~ 
ontain

high order resonant behaviour. But in the end the moral seems to be that it is more

eÆ
ient to 
hoose a quantisation axis (i.e. an unperturbed eigenstate), namely n̂,

whi
h re
e
ts the physi
s and invest the numeri
al e�ort in working with this. In this

respe
t the DKM formalism provides a 
lean pra
ti
al framework in whi
h to 
al
ulate

higher order e�e
ts. Radiation �elds 
an 
ause spin 
ip. Now we 
an see how, by

treating the external �elds experien
ed by the spin as fun
tions of the radiation �elds,

spin pre
ession 
an be regarded as spin 
ip as suggested at the beginning.

We have seen that there are several ways to approa
h the estimation of the equilib-

rium polarisation. In pra
ti
e analyti
al 
al
ulations are 
arried out using the DKM

formalism and this has been a su

essful and essential tool for predi
ting the main

qualitative features of polarisation in ele
tron storage rings. However, I now present

an approa
h whi
h is in many ways more satisfying.

5.4 Phase spa
e and polarisation evolution equations

Earlier, while dis
ussing the diÆ
ulty of �nding a Fokker{Plan
k treatment for the

polarisation I promised further insights and they follow now.

We have seen that the orbital phase spa
e density w obeys the Fokker{Plan
k

equation, Eq. (24). Then if the ST e�e
t is ignored and it is re
ognised that spin is a

passenger subje
t to the T{BMT equation it may be demonstrated using a 
lassi
al

pi
ture [15, 61℄ that the spin di�usion is des
ribed by the `Blo
h' equation:

�

~

P

�s

= L

FP;orb

~

P +

~

~


�

~

P ; ( 39)

where

~

~


 was de�ned by Eq. (16) and

~

P is the `polarisation density' whi
h is de�ned

as 2=~�(density in phase spa
e per parti
le of spin angular momentum). The Blo
h

equation for the polarisation density is linear and it is universal in the sense that
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it does not 
ontain the phase spa
e density [15℄. It is also valid far from spin{

orbit equilibrium. So the tri
k is to work with the polarisation density instead of

the lo
al polarisation

~

P (~u; s). It is simple to show that

~

P(~u; s) =

~

P (~u; s)w(~u; s)

and then by 
ombining Eqs. (17) and (19) it is already 
lear that in the absen
e of

radiation,

~

P obeys the radiationless limit of Eq. (39), namely Eq. (40) below. The

evolution equation for the lo
al polarisation in the presen
e of radiation is obtained

by 
ombining Eq. (24) with Eq. (39). One �nds that it has a more 
ompli
ated form

than Eq. (39) owing to the presen
e of the se
ond derivatives in the L

2

in L

FP;orb

.

It also 
ontains the phase spa
e density so that it is not universal. But the lo
al

polarisation 
an always be obtained instead as

~

P(~u; s)=w(~u; s).

The ST e�e
t 
an be in
luded by adding in terms from the BKS equation multi-

plied by the phase spa
e density, together with some terms to represent the interfer-

en
e between ST e�e
t and di�usion[15℄ and in fa
t the full Blo
h equation for the

polarisation density and the Fokker{Plan
k equation for the phase spa
e density 
an

be obtained from quantum radiation theory [42℄.

In the absen
e of radiation we obtain:

�

~

P

�s

= f

~

h

orb

;

~

Pg+

~

~


 �

~

P : ( 40)

From here it is easy to see, in analogy with the 
ase of the phase spa
e, that sin
e

the orbital damping, orbital di�usion and ST terms are very small 
ompared to the

remaining symple
ti
 and T{BMT terms, the equilibrium (i.e. periodi
)

~

P (~u; s) will

indeed be almost parallel to n̂(~u; s), at least away from resonan
es

y

.

The Blo
h equation for the polarisation density is free from assumptions of the

kind we needed earlier and in prin
iple it allows us to 
al
ulate everything we need

from s
rat
h by looking at the beam as a whole instead of fo
using on individual

parti
les to begin with. It is 
learly the best starting point for dis
ussing radiative

polarisation. Furthermore, the spin di�usion part (Eq. (39)) 
an be set up for any

sour
e of noise in the orbital motion | we just need the appropriate L

FP;orb

. For

example it 
ould be applied to s
attering of protons by gas mole
ules.

Con
lusion

Spin polarisation in high energy storage rings is an ex
iting and exoti
 topi
. I hope

that the reader now has a solid overview of the status of our understanding and will

pass on to Arti
les II, III, IV and V. An overview of the experimental aspe
ts of

ele
tron polarization and plans for the future 
an be found in [63, 64℄.
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