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This artile provides a uni�ed introdution to the theory of eletron

and proton spin polarisation in storage rings and it provides a ommon

starting point for the written versions of the four talks that I gave at

Monterey.

1 Foreword

Eah of the four talks that I gave at Monterey had to do with spin polarisation in

storage rings and aelerators and in eah talk I overed the relevant and neessary

aspets of the theory. Indeed, three of the talks essentially dealt only with theory

and there was onsiderable repetition of the basis. If the written versions were to

reet the talks as I delivered them, there would again be repetition but there would

also be an apparent lak of onnetion between those topis whih were spei� to

eah talk. Thus a reader who survived reading all four artiles might still not have a

solid view of the onnetions between the onepts overed. So it seems appropriate

to provide a ommon introdution to the theory. That is the burden of this artile.

This also provides a suitable opportunity to present a synthesis of the various ways

of desribing the ompetition between polarisation build{up and depolarisation for

eletrons that I have ome aross or ontributed to over the last deade. Moreover it is

an opportunity to lay to rest some onfusions that have rept into the subjet. Owing

to spae limitations I will not attempt to maintain a high degree of mathematial

rigour but aim instead to impart a feeling for the issues and for our urrent level of

understanding [1℄. I shall refer to this artile as Artile I.

The written versions of the talks themselves will be referred to as Artiles II, III,

IV, and V as follows:

II Longitudinal eletron spin polarisation at 27:5 GeV in HERA.

( D.P. Barber for the HERA Polarisation Group )

III The permissible equilibrium polarisation distribution in a stored proton beam.

( D.P. Barber, K. Heinemann, M. Vogt and G.H. Ho�st�atter )

IV Unruh e�et, spin polarisation and the Derbenev-Kondratenko

formalism. ( D.P. Barber )

a

Updated version of a ontribution to the proeedings of the 15th ICFA Advaned Beam Dynamis

Workshop: \Quantum Aspets of Beam Physis", Monterey, California, U.S.A., January 1998. Also

in DESY Report 98{096, September 1998.
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V The semilassial FW transformation and the derivation of the Bloh equation

for spin{1/2 polarised beams using Wigner funtions.

( K. Heinemann and D.P. Barber )

2 Introdution

Spin behaviour in the eletromagneti guide �elds of storage rings is dominated by

two e�ets:

� Spin preession

� Spin ip due to synhrotron radiation emission

b

.

In existing proton rings and those that will be built in the foreseeable future only spin

preession is of signi�ane sine the synhrotron radiation power emitted by protons

is negligible. However, as pointed out by Sokolov and Ternov in 1964, radiative spin

ip an, for eletrons, lead to a build up of polarisation [2℄. This phenomenon is then

ommonly known as the Sokolov{Ternov (ST) e�et



. At the time of writing, the

only known pratial way of obtaining a stored polarised proton beam is to injet

a prepolarised beam provided by a suitable soure [3℄ and then aelerate it. Nev-

ertheless another method has been suggested and I will omment on that in Artile

III.

In the remainder of this artile I will provide a uni�ed overview of spin preession

and spin ip and show how to arrive at an eÆient desription of their ombined

e�et.

3 Spin preession

Spin preession for partiles travelling in the eletromagneti �elds in storage rings

is most onveniently desribed in terms of the Thomas{Bargmann{Mihel{Telegdi

(T{BMT) equation [4, 5, 6℄:

d

dt
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The vetor

~

B is the magneti �eld,

~

E is the eletri �eld and  is the Lorentz fator.

The vetors ~r and

_

~r are the position and veloity and evolve aording to the Lorentz

b

But it will beome lear later that the distintion between the two an beome blurred in storage

rings. Indeed resonant spin ip in nulear magneti resonane experiments an be viewed either as

ip due to photon absorption or preession by � around an e�etive horizontal �eld.



In these artiles statements made about eletrons will also apply to positrons exept for appropriate

trivial sign hanges in mathematial expressions.
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equation. The quantity a = (g � 2)=2 is the gyromagneti anomaly. For eletrons

a � 0:0011596 and for protons a � 1:7928. The other symbols used here and elsewhere

have their usual meanings. The derivations of the T{BMT equation by its authors

were purely lassial in spirit. The derivation by BMT was based on the requirements

of relativisti ovariane. However, Thomas ombined onventional notions of spin

preession with the relativisti e�et now alled Thomas preession [4, 6℄

d

. Note

that Eqs. (1) and (2) redue smoothly to the usual nonrelativisti limit. To obtain a

learer view of the impliations of the T{BMT equation one an rewrite it in terms

of the �eld omponents perpendiular and parallel to the orbit:

d
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) ; ( 3)

where for this part of the disussion the e�et of eletri �elds has been ignored.

Eq. (3) shows that for motion perpendiular to the �eld, the spin preesses around

the �eld at a rate 1 + a faster than the orresponding rate of orbit deetion:

Æ�

spin

= (1 + a)Æ�

orbit

= aÆ�

orbit

+ Æ�

orbit

( 4)

in an obvious symboli notation. This preession rate is strongly inuened by the

Thomas preession. This is ontained in the term 1= � 1. For eletrons (g � 2) the

total preession is strongly suppressed. For protons (g � 5:58) the relative suppression

is muh weaker.

However, `spin' is a purely quantum mehanial onept. Moreover, we are not

working in a regime where eletron{positron reation and annihilation are important.

Thus a two{omponent desription of spin should suÆe and one should therefore

look for a Foldy{Wouthuysen transformation (Artile V) of the Dira Hamiltonian

(ontaining a `Pauli' term for the anomalous magneti moment) appropriate for the

semilassial regime of a storage ring. By `semilassial' I mean that for the high

energies involved it should only be neessary to keep terms up to �rst order in ~. A

Hamiltonian of the required type was already written down in 1973 by Derbenev and

Kondratenko (DK) [7℄ and takes the form

e

h

dk

op

= h

dk

op;orb

+

~

2

~�

op

�

~




op

; ( 5)

where:

h

dk

op;orb

= J

op

+ e�

op

; ( 6)

d

Thomas also provided ovariant forms for his equation.

e

The subsript `op' is to remind the reader that we are dealing with operators. In this ase they

operate on two{omponent wavefuntions. The �elds in h

dk

op

are external �elds. The derivation of

this Hamiltonian is the subjet of Artile V.
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and where ~�
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and J

op

are de�ned as:
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: ( 8)

Thus the DK Hamiltonian onsists of a purely orbital part of zeroth order in ~

and a spin part of �rst order in ~. The orbital part resembles the familiar form

of the lassial relativisti Hamiltonian from the textbooks [8℄ and the spin part is

reminisent of a Stern{Gerlah (SG) dipole energy term. As will be noted in Artile

V, at seond order in ~ this Hamiltonian gains just extra orbital terms. All in all,

the DK Hamiltonian has a satisfying and physially transparent form. It is then no

surprise that in �rst order in ~ the Heisenberg equation of motion (EOM) for the

kineti momentum ~�

op

is the Lorentz equation with an additional term for the SG

fore. It is also lear that in �rst order in ~ the Heisenberg EOM for the spin (~=2)~�

op

is a preession equation with the same form as the T{BMT equation, Eqs. (1) and

(2), sine the operator

~




op

has a struture equivalent to that of

~


 in Eq. (2). In a

wave paket approximation and at �rst order in ~ the Heisenberg EOM lead to the

T{BMT equation for the expetation value h~�

op

i (= the polarisation) and the EOM

for the expetation value h~�

op

i of the kineti momentum of a wave paket is again

the Lorentz equation modi�ed by a SG term [9℄. Thus we have now put the T{BMT

equation on a �rm quantum mehanial footing and have shown that it is the natural

outome of a semilassial approximation. Moreover (see Artile V), we know how to

alulate beyond �rst order in ~ if neessary. Note that the magneti SG terms di�er

from the familiar textbook forms for slowly moving partiles but redue to them at

low energy: our terms ontain Thomas preession ontributions so that, for example,

g=2 is replaed by g=2 � 1 + 1= = a + 1=. A detailed disussion on the SG terms

in the DK Hamiltonian and on the SG fores allowed by ovariane an be found in

[10℄ where the EOM are given a lassial interpretation. See also Artile III.

The full Hamiltonian given by Derbenev and Kondratenko to inlude radiation

e�ets is

h

dk

tot

= h

dk

op

+ h

dk

rad

+ h

dk

int

( 9)

where h

dk

rad

is the Hamiltonian of the free radiation �eld and where

h

dk

int

= e(�

rad

�
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A
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2
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rad

) ( 10)

desribes the partile{radiation interation. The operator

~




rad

has the same struture

as

~




op

exept that the external �eld operators (denoted by the subsript `op') are

replaed with radiation �eld operators (denoted by the subsript `rad').
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4 Spin distributions

In the last setion it beame lear that to �rst order in ~ the entres of wave pakets

move (lassially) aording to the usual Lorentz fore modi�ed by a SG term and that

the aompanying h(~=2)~�

op

i obeys the T{BMT equation. Thus for many purposes

the partiles and the expetation values of their spin operators an be treated as if

they are lassial objets and we are then in a position to move beyond single partiles

and to disuss lassial spin and phase spae distributions. Artile V shows how to

arrive at spin and partile distributions diretly from the density operator.

To onstrut a lassial treatment one uses the orrespondenes:

h~r
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i ! ~r ; h~�
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i ! ~� ; h

~

2

~�
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i !

~

� ( 11)

where

~

� is a lassial spin of length ~=2. Then with the Hamiltonian:

h
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+
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 ( 12)

with

h

dk

orb

= J + e � � ( 13)

and the Poisson braket relations

f
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; (j; k = 1; 2; 3) ; ( 14)

and where semilassially the

_

~r in Eq. (2) equals 

2

~�

op

=J , the Lorentz (modi�ed by a

SG term) and T{BMT equations emerge from the anonial equations of motion:

_

~r = f~r; h

dk

g ;

_

~� = f~�; h

dk

g+

�~�

�t

;

_

~

� = f

~

�; h

dk

g : ( 15)

Sine storage rings and aelerators have aelerating avities whih subjet the parti-

les to time dependent �elds and sine the magnet geometry is �xed, partile dynamis

is best desribed in terms of the anonial oordinates ~u = (x; p

x

; z; p

z

;�t;�E) where

x; p

x

; z; p

z

desribe transverse motion with respet to the urved periodi orbit and

�t;�E are the time delay relative to a synhronous partile (at the entre of the

bunh) and the energy deviation from the energy of a synhronous partile respe-

tively. The independent variable is now the distane around the ring, s. There is a

orresponding (lassial) Hamiltonian, orret up to �rst order in ~,

~

h =

~

h

orb

+

~

� �

~

~


 ; ( 16)

f

If we were working to seond or higher order in ~ we would use the Moyal algebra [11, 12℄. In the

present ase of �rst order in ~ this simpli�es to the Poisson algebra.
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whih enables the EOM to be written in anonial form and this is derived from h

dk

by standard means [13℄. If the ring is distorted (see below), ~u desribes the position

with respet to the resulting losed orbit.

We now make the idealisation that the beam phase spae an be desribed in

terms of a smooth ontinuous density, w(~u; s), whih is a salar funtion of ~u and

the azimuth s

g

. It is normalised to unity. In the absene of dissipation and noise

(e.g. due to synhrotron radiation) and ignoring the e�et of the tiny SG fores on

the orbital motion, w is onstant along a phase spae trajetory and obeys a relation

of the Liouville type:

�w

�s

= f

~

h

orb

; wg : ( 17)

If the beam is stable, i.e. if w is the same from turn to turn, then it is periodi

in s and we write it as w

eq

so that w

eq

(~u; s) = w

eq

(~u; s + C), where C is the ring

irumferene.

Having assigned a phase spae density to eah point in phase spae we now assign

a polarisation

~

P (~u; s) to eah point

h

.

~

P is the average over partiles of the unit spins

2

~

�=~ at (~u; s). Sine the T-BMT equation is linear in the spin and sine in this piture

the spins at (~u; s) all see the same

~

~


(~u; s),

~

P (~u; s) obeys the T-BMT equation

d

~

P

ds

=

~

~


(~u(s); s)�

~

P : ( 18)

Beause Eq. (18) desribes preession, j

~

P (~u; s)j is onstant along a phase spae tra-

jetory. To make loser ontat with the synhrobetatron motion, we an rewrite

Eq. (18) as [14, 15℄:

�

~

P

�s

= f

~

h

orb

;

~

P g+

~

~


(~u; s)�

~

P ( 19)

whih is analogous to Eq. (17) and assumes that

~

P (~u; s) is di�erentiable in all dire-

tions in phase spae. Note that the polarisation of the whole beam as measured by a

polarimeter at azimuth s is the average aross phase spae:

~

P

av

(s) =

Z

d

6

u w(~u; s)

~

P (~u; s) : ( 20)

If the spin distribution is stable, i.e. if

~

P (~u; s) is the same from turn to turn, then

~

P (~u; s) not only obeys the T-BMT equation, but it is also periodi in s and we write

it as

~

P

eq

so that

~

P

eq

(~u; s) =

~

P

eq

(~u; s+ C). We denote the unit vetor along

~

P

eq

(~u; s)

by n̂(~u; s)

i

. This also obeys Eq. (18) and is periodi in s: n̂(~u; s) = n̂(~u; s + C).

On the (periodi) losed orbit n̂(~u; s) beomes n̂(

~

0; s) and we denote it by n̂

0

(s)

j

.

g

Note that in Artile V the phase spae density is denoted by `�'.

h

This is equivalent to assoiating a spin density matrix with eah point in phase spae.

i

With respet to n̂(~u; s) the spin density matrix at (~u; s) is diagonal.

j

Many authors make no lear distintion between n̂ and n̂

0

and many use the symbol n̂ for n̂

0

.

This an sometimes lead to onfusion. In partiular the original symbol for �n̂=�Æ (setion 5.3) was

�n̂=� [7℄ and some have erroneously understood �n̂=� to mean E

0

�n̂

0

=�E

0

where E

0

is the

design energy [16℄.
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Obviously n̂

0

(s) obeys the periodiity ondition n̂

0

(s) = n̂

0

(s + C), i.e. n̂

0

(s) is the

ring periodi solution of the T{BMT equation on the losed orbit. In general it is

unique.

In the foregoing I introdued the invariant (vetor) spin �eld n̂(~u; s) by appealing

to physial intuition. The underlying assumption was that the �eld n̂(~u; s), whih is

supposed to obey Eq. (18) over the whole of the beam phase spae, not only exists

but is smooth (to orrespond with our expetations of the spin distribution in a real

beam) and is unique. However, the situation is not quite so simple as I will now

explain by desribing some qualitative aspets of spin motion.

If a irular aelerator only had vertial (dipole) �elds, vertial spins would not be

a�eted and n̂

0

(s) would be vertial. Moreover, aording to Eq. (3) a non-vertial

spin would preess around n̂

0

(s) a times per turn with respet to the (periodi)

design orbit. I all the quantity a the `naive spin tune'. It represents the natural

spin preession frequeny of this simple system. It inreases by one unit for every

� 440 MeV (� 523 MeV ) inrease in the energy of eletrons (protons). But some

rings ontain vertial bend magnets so that the design orbit is not at. The ring

might also ontain solenoidal �elds of partile detetors. In these ases a periodi

T-BMT solution, n̂

0

(s), on the design orbit still exists but is no longer everywhere

vertial and it is given by the real eigenvetor (with unit eigenvalue) of the one turn

(orthogonal) 3 x 3 spin transfer matrix for this design orbit

k

. Indeed, for the HERA

eletron ring (Artile II) n̂

0

is made longitudinal at the east IP by means of spin

rotators. The number of spin preessions around n̂

0

(s) per turn is extrated from the

omplex eigenvalues of the matrix [21, 22℄. We all this the `real spin tune' or just

the `spin tune' and denote it by �

spin

. In general it deviates from a

l

.

If the spin tune were an integer, the one turn matrix would be a unit matrix

and n̂

0

(s) would not be unique. This lak of uniqueness also manifests itself in

extreme sensitivity to �eld errors. The quadrupoles and other magnets in storage

rings normally have unavoidable small misalignements so that the periodi (losed)

orbit deviates from the design orbit. Likewise the real n̂

0

(s) deviates from the design

n̂

0

(s) sine a spin on the losed orbit now `sees' horizontal dipole omponents in the

quadrupoles. There is also a small shift in the real spin tune. The angle between the

two n̂

0

(s)'s is roughly proportional to the amount of losed orbit distortion. But it

beomes very large if the design spin tune is lose to an integer [23, 24℄ sine the spin

motion is then oherent with the imperfetion �elds. The spins are then said to be

near an integer resonane (sometimes alled an `imperfetion resonane').

Partile bunhes in storage rings have nonzero transverse dimensions and energy

k

However, for ~u 6=

~

0, the onstraint n̂(~u; s) = n̂(~u; s+C) is obviously not equivalent to an analogous

eigenproblem for n̂(~u; s) sine in general a spin at (~u; s) set parallel to n̂(~u; s) does not map into

itself over one turn. Thus the naive algorithm based on a one turn map (e.g. see page 27 in [17℄) is

inorret; in general a `n̂' onstruted in that way would not obey the T{BMT equation everywhere

along an orbit. It would also not exhibit resonant struture at the tunes spei�ed by Eqs. (21a, b).

As a result, a `n̂' onstruted in that way should not be used to obtain the vetor �n̂=�Æ (e.g. see

page 52 in [18℄) needed, as in setion 5.3, to desribe radiative depolarisation of eletrons. However,

n̂ an be obtained as an eigensolution of a modi�ed eigenproblem [19, 20℄. See also footnote j.

l

Atually, the omplex eigenvalues only deliver the frational part of the spin tune. The integer part

must be found by following the spin motion for one turn.
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spread and the motion of a spin, ompared to that of a spin on the losed orbit,

depends on the position in phase spae via the ~u in

~

~


(~u; s). For partiles irulating

for many turns the total disturbane to a spin an grow to beome very big if there

is oherene between the natural spin motion and the osillatory motion in the beam

haraterised by the spin{orbit resonane ondition:

�

spin

= m+m

x

Q

x

+m

z

Q

z

+m

s

Q

s

( 21a)

where the m's are integers and the Q's are respetively the horizontal, vertial and

longitudinal tunes of the orbital osillations.

The integer resonanes (jm

x

j+ jm

z

j+ jm

s

j = 0 in Eq. (21a)) an normally be iden-

ti�ed with the imperfetion resonanes already mentioned and driven by the periodi

imperfetion �elds along the losed orbit. We have absorbed their inuene into a

large deviation of n̂

0

(s) from the design diretion. The spin-synhrobetatron reso-

nanes (jm

x

j+ jm

z

j+ jm

s

j 6= 0 in Eq. (21a)) (sometimes alled `intrinsi resonanes')

are driven by the quasiperiodi �elds seen by partiles exeuting quasiperiodi syn-

hrobetatron osillations about the losed orbit. The sum jm

x

j+ jm

z

j+ jm

s

j is alled

the `order' of the resonane. An imperfetion resonane is then a zeroth order reso-

nane. Although I have just been disussing the behaviour near resonane of arbitrary

spins it should now be lear that n̂, whih is a speial solution of Eq. (18) onstrained

to be periodi, should, just like n̂

0

(s), also show extreme behaviour near resonanes.

This is on�rmed by the analytial struture and numerial output from the algo-

rithms used for its onstrution [23℄. Near integer resonanes in a distorted ring n̂

0

deviates strongly from the nominal diretion for the perfetly aligned ring and near

intrinsi resonanes the di�erene n̂(~u; s) � n̂

0

beomes large and inreases with the

synhrobetatron amplitude ~u and with a

m

. So far in this paragraph I have, for

simpliity, assumed that the horizontal, vertial and longitudinal osillations of the

partiles are linear and mutually unoupled. However, in pratie these motions are

oupled to a greater or lesser extent for a variety of reasons. Then the spin{orbit

resonane ondition beomes

�

spin

= m+m

I

Q

I

+m

II

Q

II

+m

III

Q

III

( 21b)

where Q

I

; Q

II

and Q

III

are the eigentunes in the presene of oupling

n

.

m

Note that the terminology `intrinsi' and `imperfetion' must be used with are sine synhrobe-

tatron motion an also give rise to zeroth order resonane phenomena [25, 26℄.

n

It should be emphasized that oupling or nonlinear �elds (e.g. see pages 26, 33 and 39 in [18℄)

are not prerequisites for the ourrene of high order spin{orbit resonanes. In fat high order

resonanes must our even for perfetly linear unoupled orbital motion in spite of the fat that

the T{BMT equation is linear, simply beause rotations around di�erent axes do not ommute.

The inuene of nonommutation an be seen in the nontrivial struture of the integrals used to

alulate n̂ in the perturbative treatments in [27, 28, 29, 25, 26℄. The �rst order integrals orrespond

to the SLIM approximation [23, 21, 22℄ and eah desribes the e�et of a single orbital mode and

exhibits �rst order resonant behaviour. The higher order integrals desribe the ombined e�ets of

independent orbital modes suh as, for example, the e�et of the vertial �elds in quadrupoles on

a spin{like vetor whih has been tilted from the vertial by radial quadrupole �elds. The higher

order integrals exhibit higher order resonant behaviour. One also sees from the treatments just ited

8



For 27:5 GeV eletrons in HERA (see Artile II) the r.m.s. angle between n̂(~u; s)

and n̂

0

(obtained by averaging aross phase spae) is just a few milliradians away

from intrinsi resonanes and about 100 milliradians very near suh resonanes. For

protons at about 800 GeV in HERA (see Artile III) on the `1{�' torus this angle is

typially 60 degrees unless Siberian Snakes are employed. Figure 1 depits invariant

z

z’

z

z’

z

z’

E
2

E
1

E
3<<

=> =>

The effect of energy variation on the spin field

Figure 1: A typial n̂{�eld at three energies, the seond of whih is lose to resonane.

spin �elds n̂ `attahed' to vertial betatron phase spae ellipses for three di�erent �xed

energies but for the same invariant vertial emittane. Other examples are given in

Artile III.

Although I introdued n̂ via spin distributions, the history of n̂ took a di�erent

ourse whih provides more insight into its meaning and properties. It was �rst

introdued by Derbenev and Kondratenko [30, 7℄ in the proess of obtaining ation{

angle variables for ombined spin{orbit motion by `diagonalising' the Hamiltonian

in Eq. (12) and this aspet was further illuminated by Yokoya in [31℄. A similar

approah an be used on the Hamiltonian in Eq. (16) [13, 28, 31, 32℄. I now give a

rough outline of the basi ideas.

It is assumed that the orbital motion is integrable and one makes an s dependent

anonial transformation so that

~

h

orb

is replaed by

�

h

orb

= �

i

2�

�

Q

i

�

I

i

where the

�

Q

i

are the three orbital tunes and the three

�

I

i

are the omponents of the orbital ation

vetor

~

�

I. Then one desribes the spin motion with respet to a set of orthonormal

axes (a `dreibein') (n̂

1

(~u; s), n̂

2

(~u; s), n̂

3

(~u; s)) attahed to eah point in phase spae

and requires that

~

� � n̂

3

is a onstant of motion. Clearly, n̂

3

(~u; s) must be a solution

of the T{BMT equation at (~u; s)

o

. At the same time the dreibein is hosen so that

that the so-alled synhrotron sideband resonanes omprise just one among several speies of high

order resonanes whih an be lassi�ed by examining the integrals in the systemati and uni�ed

treatments of resonanes in [27, 26℄. However,sine Q

s

is usually small, the synhrotron sideband

resonanes tend to be muh stronger than other high order resonanes so that they are often singled

out for speial attention and treated separately in various ad ho ways. Naturally, the introdution

of oupling and nonlinear �elds does have onsequenies. Coupling modi�es the resonant �

spin

values

(Eq. (21b)) and hanges the strengths of resonant e�ets. Nonlinear �elds an, of ourse, drive

high order resonanes but at high a and for normal levels of nonlinearity, resonanes resulting from

nonommutation dominate.

o

The angle between two T{BMT solutions following the same point on an orbit does not hange in

9



n̂

i

(~u; s) = n̂

i

(~u; s + C) ( i = 1 ! 3) and so that

~

� preesses around n̂

3

at a onstant

rate relative to n̂

1

and n̂

2

. The rate, denoted by ��(

~

�

I), should depend only on the

ations

~

�

I. The vetors n̂

1

and n̂

2

are not solutions of the T{BMT equation. The

vetor n̂

3

has just the properties of the vetor n̂ introdued earlier. This hoie of the

dreibein, whih amounts to a ~u and s{dependent rotation of the axes for desribing

the spin motion, is ahieved by a suitably designed ~u and s{dependent anonial

transformation whih delivers a �nal Hamiltonian (orret to �rst order in ~) with

the `diagonalised' form [31℄

�

h = �

i

2�

�

Q

i

�

I

i

+ 2���

�

I

spin

( 22)

where

�

I

spin

=

~

� � n̂

3

is now an integral of motion, the spin ation, and the

�

Q

i

and

�

I

i

are the orresponding orbital tunes and ations. The

�

I

i

di�er from the

�

I

i

by SG

terms [31℄. Note that the onept of spin tune has now been generalised; instead of

the losed orbit spin tune �

spin

we have a spin tune ��(

~

�

I) depending on the orbital

ations (but not on

�

I

spin

) whih di�ers slightly from �

spin

and whih redues to �

spin

for zero orbital ations

p

. Now, in retrospet, the de�nition of resonane must be

re�ned; we should really use ��(

~

�

I) in Eqs. (21a, b) instead of �

spin

. It should now be

lear why we sought a de�nition of spin preession rate, i.e. spin tune, whih makes

the latter independent of orbital phases and the azimuth s. Spin tune should tell us

something about the degree of long term oherene between the spin motion and the

orbital motion and allow us to express this oherene by means of resonane relations

like Eqs. (21a, b) (with ��(

~

�

I)). But if we work with a `fake spin tune' suh as that

obtained from the one{turn eigenproblem (see footnote k and [33℄) whih depends

on orbital phases so that the `fake spin phase advane' per turn varies from turn to

turn, we an make no statements about long term oherene. With this rede�nition

of spin tune the dreibein (n̂

1

, n̂

2

, n̂

3

) is unique exept at spin{orbit resonanes [31, 34℄

and by this uniqueness the vetor n̂

3

is just the vetor n̂ introdued earlier exept for

a possible di�erene of sign! The exoti (unstable) behaviour of n̂ near resonane is

a manifestation of lak of uniqueness at resonane.

Now I return to the questions of smoothness and existene of a n̂ obeying Eq.

(18). Sine �� depends on orbital ations, n̂ is potentially nonunique at almost all

points in phase spae beause the resonane ondition is satis�ed almost everywhere

if we inlude resonanes of arbitrarily high order. Thus n̂ might not be di�erentiable

in all diretions in phase spae [35℄. However, algorithms, both perturbative and

nonperturbative, for onstruting approximations to n̂ are available [23℄ (see also

Artile III ) and experiene with alulating n̂ by the author and olleagues seems to

indiate that resonane e�ets rapidly beome weak as the resonane order inreases

so that only a limited number of relatively low order resonanes are likely to ause

trouble. Therefore in the remainder of the artile it will be assumed that the spin

�eld n̂ is a legitimate tool in pratie. Nevertheless, the tehnial and interesting

time. See also footnote k.

p

Note that for

~

�

I 6=

~

0, ��(

~

�

I) annot normally be obtained from a omplex eigenvalue of the naive

one{turn eigenproblem disussed in footnote k.
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matters of existene and smoothness are under ative investigation [36℄ and knowledge

gained from this study will be inorporated in our treatment of spin distributions.

An example of the dependene of �� on amplitude an be found in [33℄.

An extension of the numerial work reported in [33℄ but arried out just before

this artile was ompleted indiates that �� atually `jumps over' resonant values as

the orbit amplitude is hanged [37, 38℄. That work is based on the `strobosopi

averaging' algorithm in the omputer ode SPRINT [34℄. But even more reent

results from a new version of the SODOM algorithm [19, 20℄ orroborates these �nd-

ings. This implies, ontrary to traditional expetations based on perturbation theory,

that the spin{orbit resonane onditions of Eqs. (21a, b) is never exatly satis�ed

in non{perturbative alulations. However, near to resonane, n̂ still exhibits exoti

behaviour.

Although n̂ and

~

� both obey the T{BMT equation they are very di�erent objets;

n̂ is a funtion of the dynamial phase spae variables but

~

� is a dynamial spin

variable and by Eq. (14) the Poisson braket fn̂;

~

�g vanishes. Now that we have a

lassial integral of motion for the spin, namely

�

I

spin

, we reognize n̂ as a phase spae

dependent semilassial quantisation axis orresponding to the quantum observable

(~=2)~�

op

� n̂. We also see that the quantisation axis oinides with the diretion of the

equilibrium spin �eld. As we will see later (~=2)~�

op

� n̂ is a key objet in the analytial

theory of equilibrium eletron polarisation and indeed it was originally introdued as

an aid to alulating the eletron polarisation [30, 7℄. The analysis beomes more

ompliated if the orbital motion is nonlinear but in pratie one tries to use an opti

for whih the nonlinear e�ets have been minimised and tries to restrit the beam to

a phase spae volume suh that the motion is almost integrable.

One last point on the virtues of n̂: a alulation of eletron polarisation with the

omputer program SODOM [19℄ whih exploits n̂ agrees well with a alulation using

the Monte{Carlo spin traking program SITROS [39℄ whih ontains no notion of n̂.

The material on spin distributions presented in this setion is appliable both to

eletrons and protons. The appliation to protons is the topi of Artile III so that

for the remainder of this artile I will fous on eletrons and in partiular on the

modi�ations by synhrotron radiation to the onepts already presented.

5 The e�ets of synhrotron radiation

Synhrotron radiation (SR) emitted by stored eletrons has three main e�ets: it

determines the phase spae distribution and it brings about spin polarisation owing

to spin ip assoiated with synhrotron radiation (the ST e�et) but the stohasti

element of SR also auses depolarisation. Thus SR brings polarisation but it also takes

it away! As we have seen already and as we will see below spin motion is irrevoably

intertwined with the orbital e�ets. I will begin by summarising the orbital dynamis

and then disuss the polarisation and depolarisation e�ets in detail.
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5.1 Orbital phase spae

Although SR spetra an be estimated by lassial means [6℄ SR is fundamentally

a quantum phenomenon; it onsists of single photons so that one an only make

reliable preditions by using quantised radiation theory. One then �nds orretions

to the lassial spetrum [40℄. The work of Huang and Ruth [41℄ presented at this

meeting is a good example of reent quantum alulations.

Most of the SR in onventional storage rings is generated in the �elds of the dipole

magnets de�ning the design orbit. A quantum treatment for this ase of the e�ets

of SR on the orbital phase spae distribution was arried out in 1975 [42℄ using the

Hamiltonian of Eq. (10). I will return to this later but here I will follow another route

whih has the advantage of exhibiting the transpareny needed for this artile.

Photon emission in the dipole �elds is largely inoherent and detailed alulations

show that one an onsider the photons to be emitted over short distanes of the

order of �= where � is the orbit radius

q

. Furthermore in pratial storage rings

the energy loss per turn of a single partile is small ompared to the nominal energy.

Thus the dissipative e�et is weak and for example in HERA (Artile II) an eletron

at 27:5 GeV loses about 80 MeV per turn. Then for many purposes it suÆes to

desribe the radiation reation power p(s) from SR using a lassial model in whih

smooth lassial radiation reation power p

l

(s) is overlayed with a `delta orrelated'

(`white') stohasti omponent Æp(s):

p(s) = p

l

(s) + Æp(s) ; hÆp(s)Æp(s

0

)i = R(E

0

;K)Æ(s� s

0

) ( 23)

where the parameter R quanti�es the intensity of the noise and depends on the design

energy E

0

and the urvature K [43℄.

The equations for ~u of deterministi orbital motion derived from a Hamiltonian

are then modi�ed by inlusion of damping and stohasti terms and in the (very

good) approximation that the photons are emitted parallel to the partile trajetory

and negleting interpartile interations the resultant linearised stohasti di�erential

equation desribing motion with respet to the losed orbit an be used to onstrut

the Fokker{Plank equation for the evolution of the phase spae density [43, 44, 45, 46℄

r

. I write this as

�w

�s

= L

FP;orb

w ; ( 24)

where the orbital Fokker{Plank operator an be deomposed into the form:

L

FP;orb

= L

ham

+ L

0

+ L

1

+ L

2

:

The term L

ham

w is assoiated with the original sympleti (i.e. phase spae

density preserving) motion and it ontains just �rst order derivatives with respet to

q

At this point I reommend the reader to onsult the hart of time sales for eletron dynamis

in [17℄. We will need this on several oasions. Indeed, an appreiation of these time sales is

indispensible for understanding the physis of eletron storage rings.

r

Restrition to linearised motion enables me to desribe the hief qualitative features to be diserned

without undue ompliation.
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the omponents u

i

(i = 1:::6). The operators L

0

and L

1

ontain zeroth and �rst order

derivatives and aount for damping e�ets. The operator L

2

ontains seond order

derivatives originating in di�usion e�ets.

A entral property of Eq. (24) is that w(~u; s) reahes equilibrium with w(~u; s) =

w(~u; s + C) within a few damping times. At HERA at 27:5 GeV the longitudinal

damping time is about 7 milliseonds � 350 turns � (design energy)=(energy loss

per turn) [47℄. Furthermore w(~u; s) is gaussian and sine the radiation e�ets are

weak, w(~u; s) is very lose to being a solution of the radiationless transport equation

Eq. (17) but with the radiation e�ets determining the beam size and ausing a tiny

ripple in the emittanes

s

as funtions of s.

Now that we understand the e�ets of SR on orbital phase spae we an move on

to spin.

5.2 The Sokolov-Ternov e�et

Only a very small fration of the radiated photons ause spin ip but for eletron

spins aligned along a uniform magneti �eld, the "# and #" ip rates di�er and this

leads to a build-up of spin polarisation antiparallel to the �eld. Positrons beome

polarised parallel to the �eld. The transition rates for eletrons are [2℄:

W

"#

=

5

p

3

16

e

2



5

~

m

2

e



2

j�j

3

�

1 +

8

5

p

3

�

W

#"

=

5

p

3

16

e

2



5

~

m

2

e



2

j�j

3

�

1 �

8

5

p

3

�

: ( 25)

For positrons, interhange plus and minus signs here and elsewhere.

The equilibrium polarisation in a uniform magneti �eld is independent of ,

P

st

=

W

"#

�W

#"

W

"#

+W

#"

=

8

5

p

3

= 92:38% : ( 26)

For a beam with zero initial polarisation, the time dependene for build-up to equi-

librium is

P (t) = P

st

[1� exp (�t=�

0

)℄ ( 27)

where the build-up rate is

�

�1

0

=

5

p

3

8

e

2



5

~

m

2

e



2

j�j

3

: ( 28)

The time �

0

depends strongly on  and � but is typially minutes or hours.

However, the �elds in storage rings are far from uniform but sine the system

is semilassial, Eq. (25), whih was originally obtained from solutions of the Dira

equation, an be generalised and aording to Baier and Katkov[48℄ for eletron spins

initially aligned along an arbitrary unit vetor

^

� the transition rate is

W =

1

2�

0

�

1 �

2

9

(

^

� � ŝ)

2

+

8

5

p

3

^

� �

^

b

�

( 29)

s

For eletrons I de�ne the emittane of a mode to be the r.m.s. ation of the mode.
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where ŝ = diretion of motion and

^

b = (ŝ�

_

ŝ)=j

_

ŝj. This is the magneti �eld diretion

if the eletri �eld vanishes and the motion is perpendiular to the magneti �eld.

The orresponding instantaneous rate of build-up of polarisation along

^

� is

�

�1

bk

= �

0

�1

�

1�

2

9

(

^

� � ŝ)

2

�

: ( 30)

But instead of spin ip rates we really need an EOM for the polarisation itself and

if we neglet the e�et of stohasti (synhrotron radiation) photon emission on the

orbit and imagine that all partiles remain on the losed orbit (CO), the equation of

motion for eletron polarisation as given by Baier, Katkov and Strakhovenko (BKS)

is [49, 50℄

d

~

P

dt

=

~




o

�

~

P �

1

�

0

(s)

�

~

P �

2

9

ŝ(

~

P � ŝ) +

8

5

p

3

^

b(s)

�

: ( 31)

Note that the T{BMT term

~




o

�

~

P appears here as the output of the radiation

alulation itself.

By noting that the harateristi time for polarisation build up is muh larger

than the irulation time

t

, and integrating the BKS equation (Eq. (31)) one �nds

the generalised Sokolov{Ternov formula for the asymptoti eletron polarisation in

arbitrary magneti �elds along the losed orbit [17℄:

~

P

bks

= �

8

5

p

3

n̂

0

H

ds (n̂

0

(s) �

^

b(s))=j�(s)j

3

H

ds

�

1�

2

9

(n̂

0

(s) � ŝ)

2

�

=j�(s)j

3

: ( 32)

So the polarisation settles down aligned with n̂

0

(s), the periodi solution to the

T-BMT equation on the losed orbit. In rings ontaining dipole spin rotators (Artile

II) the polarization an usually not reah 92.38% sine n̂

0

(s) is then not parallel to

the �eld everywhere. The orresponding polarisation build-up rate is

�

�1

bks

=

5

p

3

8

e

2



5

~

m

2

e



2

1

C

I

ds

�

1�

2

9

(n̂

0

� ŝ)

2

�

j�(s)j

3

: ( 33)

The above formulae show that in the absene of stohasti motion the maximum

attainable polarisation is 92:38% instead of 100%. Why should this be?

At the simplest level the reason is lear: the probability for reverse spin ip is

nonzero (Eq. (25)). Nevertheless, `lay observers' often imagine that spin ip has

something to do with spin's trying to reah the lowest energy level of the two levels

of a magneti dipole in a magneti �eld and that one the spin is in its lowest level

it will stay there. Then 100% polarisation would be ahieved. Also, reverse ip by

radiation emission would defy energy onservation.

However, we are not dealing with spins at rest but with spins `sitting' on relativisti

eletrons whih already have quantised orbital energy levels so that the prohibition of

t

Again, see [17℄ for a ompilation of time sales.
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reverse ip by energy onservation no longer applies. From Eq. (5) applied to eletrons

in a uniform vertial magneti �eld it is lear that the energy hange assoiated with

spin reversal from up to down is (1+a = (1=�1+g=2)) larger than the separation

of orbital energy levels ~!



where !



is the angular frequeny of the orbit. So one

ould naively imagine spin ip ouring without radiation but simply by a hange of

orbital energy level. A related phenomenon involving exhange of orbital and spin

energy has been proposed by Derbenev [51, 13℄ while ommenting on the possible use

of transverse SG fores in storage rings. See Artile III.

Note also that the splitting of spin energy levels is not simply proportional to

g=2 but ontains a Thomas preession term, whih indiates that the spin motion

is oupled to the orbital motion. Furthermore, the average energy of a synhrotron

radiation photon is tens of KeV. This is many orders of magnitude greater than the

separation of spin levels. Moreover, photons emitted during spin ip tend to have

higher energies than those emitted without spin ip. In addition, the polarisation

does not reverse its sign with respet to the magneti �eld at g = 0 but at g � 1:2

[7, 40, 48℄. This results from the fat that (1=�1+g=2) appears in the Hamiltonian

h

dk

int

(Eq. (10))instead of just g=2.

Finally, it is interesting to note that the synhrotron radiation spetrum and the

polarisation e�ets just depend on the urvature (i.e. the geometry) of the orbit [48℄.

So the same e�ets ould be obtained by using eletri �elds to bend the trajetory

instead of magneti �elds.

These omments should onvine the reader that in the laboratory frame we are

not dealing with a simple two level spin system. For further disussions relevant to

this topi the reader is direted to the artiles by W. G. Unruh and J.D. Jakson in

these proeedings and elsewhere [40℄.

5.3 Radiative depolarisation

The stohasti element of photon emission together with damping determines the

equilibrium phase spae density distribution. The same photon emission also imparts

a stohasti element to the ~u in

~

~


(~u; s) and then, via the T-BMT equation applied to

spin motion in the (inhomogeneous) fousing �elds and in a simple lassial piture,

spin di�usion (and thus depolarisation) an our [52℄. The polarisation level reahed

is the result of a balane between the Sokolov{Ternov e�et and this radiative depo-

larisation. In pratie, depolarisation an be strong and it is therefore essential that

it is well understood.

But how an we alulate the equilibrium polarisation? After all, the polarisation

at a point in phase spae is the average of the unit spins 2

~

�=~ ontained in a small

paket of phase spae at that point. Now, for protons, the phase spae density is

onserved along a trajetory so that no partiles are lost from suh a paket but

for eletrons their stohasti motion means that spins are ontinually di�using from

paket to paket. For the orbital motion one then employs a Fokker{Plank equation

for the partile density. But polarisation is not a density so that it is not immediately

lear how to proeed. Moreover the ST e�et must be inluded so that an analogue

of the BKS expression for stohasti orbits is needed. I will mention the best solution
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to this puzzle later but in the meantime I will follow a path whih roughly reets

the way that estimates have been made in pratie.

A lue to the next step is ontained in the above omments about the equilib-

rium phase spae distribution resulting from weak dissipation. There, the phase spae

distribution settles down to a distribution lose to an invariant solution for the dissipa-

tionless problem but with the widths of the distribution determined by the radiation.

Assuming that one has signi�ant asymptoti polarisation the harateristi depolar-

isation time must be similar to the polarisation time, namely minutes or hours. Both

are orders of magnitude larger than the orbital damping times

u

. Thus the analogue

for the polarisation would be that the diretion of the equilibrium polarisation at eah

point in phase spae would settle down lose to the equilibrium solution of the radi-

ationless problem, namely n̂(~u; s). Furthermore, the `spin emittane' i.e. the average

of

�

I

spin

=

~

� � n̂ at eah point in phase spae, would be independent of ~u and s.

As has been ustomary I will now adopt these plausible notions as working as-

sumptions that at equilibrium a) the polarisation is parallel to n̂(~u; s) and b) the

value of the polarisation is independent of ~u and s. In partiular, it is assumed that

the spin tune hardly varies aross phase spae so that there are no `loal' spin{orbit

resonanes and therefore no polarisation `absorbers'. I will o�er support for the �rst

assumption at the end of this artile but in the meantime some support for these

assumptions omes from noting that by integrating the BKS equation along a deter-

ministi synhrobetatron orbit the polarization settles down very nearly parallel to

n̂ [53℄ in analogy with the solution on the losed orbit (Eq. 32)

v

. Furthermore, a

study of a speial but exatly solvable model of spin di�usion [15℄ shows that far from

resonane the polarization settles down asymptotially very nearly parallel to n̂.

This piture was �rst proposed by Derbenev and Kondratenko [7℄. In the absene

of radiation s

n

= (~=2)~�

op

� n̂ is onserved. But in the presene of radiation one has

ds

n

dt

=

i

~

[h

dk

rad

+ h

dk

int

; s

n

℄ : ( 34)

This is evaluated in the equations following Eq. (4.2) in [7℄ and by writing

~

s =

(~=2)~�

op

the essene of the physis an be stated (very) symbolially in the form:

ds

n

dt

=

d

~

s

dt

� ~n+

~

s �

d~n

dt

: ( 35)

The �rst term desribes the rate of hange of s

n

due to pure spin ip at a point

in phase spae (pure ST e�et). The onsequent build{up of polarisation is a `spin

damping' analogous to orbital damping. The seond term desribes the hange in s

n

due to the fat that when a photon is emitted, the partile jumps without a hange

of spin to a new position in phase spae where it �nds a new n̂ whih will in general

not be parallel to the n̂ at the initial point. The projetion of the spin on the n̂{axis

has thus dereased stohastially so that s

n

di�uses in analogy with the di�usion of

u

Time sales [17℄ again!

v

`very nearly' means that the angle between the polarization and n̂ is muh less than the angle

between n̂

0

and n̂.
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the orbital ations. This is where the depolarisation omes in. Thus the e�et on the

polarisation of the stohasti journey of a partile though phase spae is aounted

for by de�ning an appropriate quantisation axis at eah point in phase spae. Photon

emission imparts both transverse and longitudinal reoils to the eletron but sine

a photon is emitted typially within an angle 1= with respet to the diretion of

the eletron, the e�et of the longitudinal reoil (i.e. the energy jump) dominates:

the eletron remains at almost the same point in x and z but an su�er a signi�ant

hange in energy. Then by negleting the e�et of transverse reoil Derbenev and

Kondratenko arrive at the following expression for the equilibrium polarisation along

the axes n̂:

P

dk

= �

8

5

p

3

H

ds

D

^

b � (n̂�

�n̂

�Æ

)=j�(s)j

3

E

s

H

ds

D

(1 �

2

9

(n̂ � ŝ)

2

+

11

18

�

�n̂

�Æ

�

2

)=j�(s)j

3

E

s

( 36)

where h i

s

denotes an average over phase spae at azimuth s and Æ = �E=E

0

is

the frational energy deviation from the design energy

w

. This formula di�ers from

Eq. ( 32) by the inlusion of the terms with �n̂=�Æ and use of n̂ instead of n̂

0

. The

derivative �n̂=�Æ is a measure of the hange of n̂ aused by frational energy jumps

Æ and its presene orresponds to the fat that the main onsequene of a photon

emission is a hange in partile energy. The phase spae average of the polarisation

is

~

P

av;dk

(s) = P

dk

hn̂i

s

( 37)

and hn̂i

s

is very nearly aligned along n̂

0

(s) (see the angle estimate below). The value

of the phase spae average, P

av;dk

(s), is essentially independent of s.

The e�et of transverse reoil an also be inluded but ontributes derivative terms

(see Artile IV, Eq. (2)) analogous to �n̂=�Æ whih are typially a fator  smaller

than �n̂=�Æ and an usually be negleted [54, 55℄. This point will be dealt with again

in Artile IV .

In the presene of radiative depolarisation Eq. ( 33) beomes

�

�1

dk

=

5

p

3

8

e

2



5

~

m

2

e



2

1

C

I

ds

*

1�

2

9

(n̂ � ŝ)

2

+

11

18

�

�n̂

�Æ

�

2

j�(s)j

3

+

s

: ( 38)

Away from the spin{orbit resonanes of Eqs. (21a, b) n̂(~u; s) � n̂

0

(s). But near

resonanes n̂(~u; s) deviates from n̂

0

(s) by typially several tens of milliradians at a few

tens of GeV and the deviation inreases with distane in phase spae from the losed

orbit. The spin orbit oupling funtion �n̂=�Æ, whose square (�n̂=�Æ)

2

in Eq. (36)

quanti�es the depolarisation, an then be large and the equilibrium polarisation an

then be small.

x

For example if j�n̂=�Æj is 1 the polarisation will not exeed about

w

This is sometimes written as Æ= [7℄. See also footnote j.

x

The vetor �n̂=�Æ (whih is still often written as �n̂=�, see footnote j) is sometimes alled the

\spin hromatiity" but it is better to use the terms \spin{orbit oupling funtion" or \spin �eld

derivative" so that \spin hromatiity" an be reserved for the rate of hange of a spin tune w.r.t.

a frational energy hange. In any ase, and as already mentioned, in the full theory, formula ( 36)

must be modi�ed to inlude relatively small terms involving derivatives of n̂ w.r.t. the two transverse

anonial momenta [54, 55℄, and for suh terms the name \hromatiity" is learly unsuitable.
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57%.

Note that even very lose to resonanes, jhn̂i

s

j � 1: the phase spae average

polarisation measured by a polarimeter is mainly inuened by the value of P

dk

in

Eq. (37).

The nie thing about this formulation is that a very ompliated alulation of

the e�ets of radiation has been distilled into a formula involving a few strange oef-

�ients (emanating from the radiation theory) and a lassial solution to the T{BMT

equation, namely n̂ whose behaviour enapsulates all of the depolarisation e�ets.

To get high polarisation, one must have (�n̂=�Æ)

2

� 1 in dipole magnets. If n̂ is

independent of the position in phase spae, the derivative is zero: all points in phase

spae have the same quantisation axis and there is no depolarisation. But storage

ring �elds are inhomogeneous so that n̂ varies aross phase spae. Thus the vetor

�n̂

�Æ

depends on the opti of the mahine. The optimisation of the opti required to make

�n̂=�Æ small is alled spin mathing [23℄. This will be mentioned again in Artile II.

An example an be found in [56℄.

The term linear in �n̂=�Æ in Eq. ( 36) is due to a orrelation between the spin

orientation and the radiation power [17, 57℄. Alternatively, it an be onsidered to

result from the interferene between the two terms in Eq. (35). In rings where n̂

0

is

horizontal due, say, to the presene of a solenoid Siberian Snake [58℄, �n̂=�Æ has a

vertial omponent in the dipole �elds. This an lead to a build-up of polarisation

(`kineti polarisation') even though the pure Sokolov{Ternov e�et vanishes. The rate

is �

�1

dk

.

The expression for �

�1

dk

in Eq. (38) an be found from a purely lassial alulation

of spin di�usion by evaluating the e�ets of the seond term in Eq. (35) or by other

means [30, 28, 43, 23℄ and indeed this was the �rst use for n̂ [30℄. Then we have a mixed

alulation: the spin ip is desribed by quantum mehanis and the depolarisation is

desribed by lassial di�usion. But obviously kineti polarisation will not be found

by that route and the exoti resonane struture examined in Artile IV would be

missed. So it is lear that a quantum mehanial approah is needed to get the full

piture. An observation of kineti polarisation [58℄ would be a nie vindiation of this

viewpoint.

The Derbenev-Kondratenko formula (Eq. (36)) has been rederived in a very ele-

gant way by Mane [27℄. He introdues the onept of generalised spin ip whereby

he alulates the transition rates due to photon emission from `spin up along

n̂(x; p

x

; z; p

z

;�t;�E; s)' to `spin down along n̂(x; p

x

; z; p

z

;�t;�E � �

ph

; s)' where

�

ph

is the energy of the emitted photon. One also needs the orresponding `spin

down' to `spin up' rates. Then by requiring that the polarisation has the same value

over all of phase spae and imposing the onstraint that the total generalised up{

to{down rate equals the total down{to{up rate, and solving for the polarisation one

arrives at Eq. (36)! In this formulation, the onept of depolarisation never arises!

Instead one just has a statistial spin equilibrium. In a perturbative alulation of

h(�n̂=�Æ)

2

i [27℄ one �nds a series expansion in powers of emittanes, i.e. in powers

of ~, in whih eah term ontains a produt of resonane denominators whih impart

the resonant struture to n̂. As the order of ~ inreases along the series so does the

order of the resonanes ontained in the suessive terms.
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Apart from the alulation of Bell and Leinaas (Artile IV), there are two further

quantum alulations whih should be mentioned, namely those of Hand and Skuja

[55, 59℄. They hoose n̂

0

as the spin quantisation axis. When a photon is emitted, the

eletron jumps to a new orbit. By writing the phase spae oordinates as funtions

of the radiation �elds and inluding damping phenomenologially, they alulate the

rates of spin ip along n̂

0

[55℄ and obtain an expression for the equilibriumpolarisation

whih is equivalent to the Derbenev{Kondratenko{Mane (DKM) expression in the

limit in whih the derivatives of n̂ are evaluated in the linear approximation as in the

SLIM formalism [23, 21, 22℄. Thus they only �nd the �rst order spin{orbit resonanes

[23℄. Indeed, sine their (quantum) representation of the orbit has a form similar to

the lassial representation in [60℄ their �nal expression ontains terms whih are

equivalent and idential in form to terms obtained in [60℄ in a model of lassial

spin di�usion. The fat that they only �nd �rst order resonanes an then be traed

to their use of just a �rst order perturbative alulation and the hoie of n̂

0

as

quantisation axis. To �nd the higher order resonanes one should use n̂. However, in

a seond alulation [59℄, again using n̂

0

, they alulated to higher order and although

the outome is not very transparent, the terms beyond the leading order in ~ ontain

high order resonant behaviour. But in the end the moral seems to be that it is more

eÆient to hoose a quantisation axis (i.e. an unperturbed eigenstate), namely n̂,

whih reets the physis and invest the numerial e�ort in working with this. In this

respet the DKM formalism provides a lean pratial framework in whih to alulate

higher order e�ets. Radiation �elds an ause spin ip. Now we an see how, by

treating the external �elds experiened by the spin as funtions of the radiation �elds,

spin preession an be regarded as spin ip as suggested at the beginning.

We have seen that there are several ways to approah the estimation of the equilib-

rium polarisation. In pratie analytial alulations are arried out using the DKM

formalism and this has been a suessful and essential tool for prediting the main

qualitative features of polarisation in eletron storage rings. However, I now present

an approah whih is in many ways more satisfying.

5.4 Phase spae and polarisation evolution equations

Earlier, while disussing the diÆulty of �nding a Fokker{Plank treatment for the

polarisation I promised further insights and they follow now.

We have seen that the orbital phase spae density w obeys the Fokker{Plank

equation, Eq. (24). Then if the ST e�et is ignored and it is reognised that spin is a

passenger subjet to the T{BMT equation it may be demonstrated using a lassial

piture [15, 61℄ that the spin di�usion is desribed by the `Bloh' equation:

�

~

P

�s

= L

FP;orb

~

P +

~

~


�

~

P ; ( 39)

where

~

~


 was de�ned by Eq. (16) and

~

P is the `polarisation density' whih is de�ned

as 2=~�(density in phase spae per partile of spin angular momentum). The Bloh

equation for the polarisation density is linear and it is universal in the sense that
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it does not ontain the phase spae density [15℄. It is also valid far from spin{

orbit equilibrium. So the trik is to work with the polarisation density instead of

the loal polarisation

~

P (~u; s). It is simple to show that

~

P(~u; s) =

~

P (~u; s)w(~u; s)

and then by ombining Eqs. (17) and (19) it is already lear that in the absene of

radiation,

~

P obeys the radiationless limit of Eq. (39), namely Eq. (40) below. The

evolution equation for the loal polarisation in the presene of radiation is obtained

by ombining Eq. (24) with Eq. (39). One �nds that it has a more ompliated form

than Eq. (39) owing to the presene of the seond derivatives in the L

2

in L

FP;orb

.

It also ontains the phase spae density so that it is not universal. But the loal

polarisation an always be obtained instead as

~

P(~u; s)=w(~u; s).

The ST e�et an be inluded by adding in terms from the BKS equation multi-

plied by the phase spae density, together with some terms to represent the interfer-

ene between ST e�et and di�usion[15℄ and in fat the full Bloh equation for the

polarisation density and the Fokker{Plank equation for the phase spae density an

be obtained from quantum radiation theory [42℄.

In the absene of radiation we obtain:

�

~

P

�s

= f

~

h

orb

;

~

Pg+

~

~


 �

~

P : ( 40)

From here it is easy to see, in analogy with the ase of the phase spae, that sine

the orbital damping, orbital di�usion and ST terms are very small ompared to the

remaining sympleti and T{BMT terms, the equilibrium (i.e. periodi)

~

P (~u; s) will

indeed be almost parallel to n̂(~u; s), at least away from resonanes

y

.

The Bloh equation for the polarisation density is free from assumptions of the

kind we needed earlier and in priniple it allows us to alulate everything we need

from srath by looking at the beam as a whole instead of fousing on individual

partiles to begin with. It is learly the best starting point for disussing radiative

polarisation. Furthermore, the spin di�usion part (Eq. (39)) an be set up for any

soure of noise in the orbital motion | we just need the appropriate L

FP;orb

. For

example it ould be applied to sattering of protons by gas moleules.

Conlusion

Spin polarisation in high energy storage rings is an exiting and exoti topi. I hope

that the reader now has a solid overview of the status of our understanding and will

pass on to Artiles II, III, IV and V. An overview of the experimental aspets of

eletron polarization and plans for the future an be found in [63, 64℄.
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