Chapter 5

Introduction to spin-orbit tori

I now come to the second part of this thesis which consists of Chapters 5-10 and
Appendices B-G. It presents the topic of spin-orbit tori as a mathematical theory

and it is based on the map formalism equations of motion {6.1),(6.2).

5.1 Physical context and mathematical approach

I begin with some brief general remarks on the physical context for the orientation

of the reader. More details can be found in [BEH04, Hof, MSY, Vol.

Spin is of central importance for the understanding of the behavior of fundamental
particles and their interactions. This is made clear, for example, in [SPIN0Y] where
up-to-date accounts of experimenﬁal and theoretical work are given. In particular,
the differential cross sections for particle-particle interactions depend on the spin
states of the particles. These interactions are typically studied by colliding a beam
of spin-1/2 particles (e.g. electrons or protons) either with another beam of spin-1/2
particles or with nuclei located at a fixed ‘target’. Various considerations, such as the

need for high energies, often dictate that the particles circulate in a beam consisting
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of a train of separate bunches in a so-called storage ring. Typically the motion of
a bunch for 10° turns around the ring is of interest. The particle interactions to
be studied in such a stdrage ring take place at the centers of detectors mounted
at specially configured interaction points. The task of Accelerator Physics is to
provide and describe the transport of the bunches through the interaction points
and it requires mathematical tools which are different from those needed to describe
the collision processes in the interaction points (the latter tools are from Quantunf
Field Theory). This thesis deals exclusively with the Accelerator Physics aspects
and its tools are from Dynamical Systems Theory. Descriptions of storage rings
can be found in standa.i'd text books. See for example [CT, Wi}. However, to
summarize, the common feature of a storage ring is that the electrically charged
particles are confined by combinations of electric and magnetic fields to move in
bunches on approximately circular orbits in a vacuum tube. The dimensions of a
bunch are millimeters whence they are very small compared to the average radius
of the ring which can be kilometers. A bunch typically contains around N = 104
particles. Accelerator Physics involves various levels of deécription depending on
how accurately one wants to study the bunches. So I now have to characterize
the level needed for this thesis. At this level a phase-space variable % and a spin
variable S provide a classical description of a particle located at & € R® with spin
value S € R®. Experiments aimed at exploiting the influence of spin on particle-
particle collisions usuai‘ly require that the bunches be spin polarized. This means
that the polarization P := (1/N) 2N, S, namely the average.over the spin vectors
5’15 veey Sy of the bunch be non-zero. Thus the task of Polarized Beam Physics is to
provide and describe the transport of bunches through the interaction points such
that |}5[ is ‘sufficiently’ large. Note that in the definition of P the spin vectors have
to be normalized, i.e., |Sj| = 1. Nevertheless for the purposes of this work there is
no need to assume that the spin vectors are normalized. For the purposes of this

thesis I ignore all interactions between the particles, the emission of electromagnetic
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radiation by the particles and the effects of the electric and magnetic fields set up in
the vacuum pipe by the particles themselves. This leads to a classical Hamiltonian
description (for a derivation of the Hamiltonian from Quantum Physics, see [BH98]}.
Furthermore I shall neglect the extremely small Stern-Gerlach force acting from S
onto & [BEHO04] (for details on the relativistic Stern-Gerlach force in Accelerator
Physics, see e.g. [He96]). Then the particle motion is described by the equation for
the Lorentz force and the spin motion by the Thomas-Bargmann-Michel-Telegdi ('T-
BMT) equation [Ja]. Thus the equations of motion for the combined #,3 system are

no longer Hamiltonian (albeit the equations of motion for 4 are still Hamiltonian).

Although dynamical systems are usually analyzed by taking time as the indepen-
dent variable, this is usually not convenient for storége rings since there, the vacuum
tube and the electric and magnetic guide fields have a fixed, 1-turn periodie, ap-
proximately circular spatial layout. It is then common practice to define the angular
distance, § = 2ws/L, around the ring where s is the distance around the ring and
L is the circumference. The equations of motion for i and § are then transformed
into forms in which # is the independent variable. The one-turn periodicity of the
positions of the electric and magnetic guide fields then becomes a 2r—periodicity in 6
of the equations of motion for 7 and S. As a next step one constructs the curvilinear
closed orbit, i.e., the orbit along which the particle motion is one-turn periodic and
one defines coordinates with respect to this orbit. Then 4 consists of three pairs of
canonical variables. For example, two of the pairs can describe transverée motion

and one pair can describe longitudinal {synchrotron} motion within a bunch.- One
of this latter pair quantifies the deviation of the particle energy from the energy of
a ‘reference particle’ fixed at the center of a bunch and the other describes the time
delay w.r.t. the reference particle [BHR]. With respect to the average radius of the
closed orbit and the nominal particle energy, the canonical position variable and the

energy variable are very small.
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Spin and particle motion in storage rings is ustially described using either the
‘flow formalism’ or the ‘map formalism’. In the flow formalism % and S are functions
of §: 7 = @(6), 5 = S{f) and in the map formalism one samples S and 7 at a fixed

@ turn by turn.

In this thesis T focus on the map formalism which I now derive from the flow
formalism. The magnetic and electric fields in storage rings are usually set up so
that the motion of the particles is close to integrable. In the following I shall assume
that it is exactly integrable. Once the spin motion has been classified on this basis,

the effect of 11611—integrabiﬁty can be included as a perturbation. I therefore choose

4 to consist of d pairs of action—angle variables, ie., @ = . |, where c,?ﬁ, J e Rd

and where ¢ — 3 is the case of main interest. Then in the flow formalism one writes

% =a(Jy, $(0o) = o , | (5.1)
dJ - |

&= 0, J{b)=o, - (52)
% = A6,,D5,  S(B) =5, (5.3)

where the d components of &(J) are called the ‘orbital tunes’ and A is a real skew-—
symmetric 3 X 3 matrix, ie, A = ~ Az, A1z = — Az and Asz = — Az, The
function A is derived from the rotation rate vector of the T-BMT equation {BEH04]
and it is 2m-periodic in & and in the d components of ¢. Of course, (5.3) is an
incarnation of the T-BMT equation. Analogously (5.1),(5.2) are an incarnation of
the Lorentz force law. One can call the pair -((I), .,\4) \the ‘spin-orbit system’ in the flow

formalism and it was studied in {[BEH04].

To proceed from the flow formalism to the map formalism 1 write the solution of

59



Chapter 5. Introduction to spin-orbit tori

(5.1),(5.2),(5.3) as

$(0) = o + (6 — o)a(Jo) , (54) |
J(9) = Jo ' (5.5)
§(0) = (8, 66; po, Jo)So , (5.6)

where ¥ is the principal solution matrix for dS/do = A(0, g0 + (8 — B)a(Jo), Jo)S
and where W(8, 0y; go, Jo) is 2m-periodic in the d components of ¢ and ¥ is SO(3)-
valued. For the definition of SO(3), see after (6.2). It follows from (5.4),(5.5),(5.6)
that

U (62, 60; o, Jo) = T (02, 85; b0 + (81 — o) (Jo), Jo)F (61, 603 o, ) ,
whence, for integers m, n,

li(90 + 2‘]1'(')’[, + m)) 90; ¢0) JO)
= U(By + 210, O; do + 2rmio(.o), Jo) W (6o + 21m, Bo; b, Jo), (5.7)

where I used the fact that, due to the 2r-periodicity of A(f,-,-) in 8,
(0 + 2am, O + 2mm; do, Jo) = ${8, Bo; do, Jo) - (5.8)

Without loss of generality one can take 6 = 0 and so, by letting

$(n) = $(2mn) , | (5.9)
J{n) := J(2mn) (5.10)
S(n) == S(2mn) , (5.11)

I obtain from (5.4),(5.5),(5.6) |
p(n+1) =d(n) +2r0(J(n})),  ¢(0) = ¢o, (5.12)
Jn+)=J@n), JO)=d, (5.13)
S(n+1) = U(2r,0;¢(n), J(n))S(n),  S(0)=5,. (5.14)
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The initial value problem (5.12),(5.13), (5.14) characterizes the ‘spin-orbit system’
(@, U(2m,0;-,-)) taken in the map formalism. Letting

w:=o(Jh), ' | (5.15)
Un;z) 1= W (2mn, 0z, Jo) , (5.16)

I obtain from (5.12),(5.13), (5.14)

p(n+1) =¢(n) +2mw,  $(0)=do, (5.17)
S(n+1) = A(¢(n))S(n), SOy =S, (5.18)

where '
A() = 9(2x,0;-, Jo) (5.19’)

and from {5.7) the ‘cocycle condition’
T(n+m;¢) = U(n; ¢+ 2rmw)¥(m; ¢) . {5.20)

Note that A(-) = ¥(1;-). The initial value problem (5.17),(5.18) characterizes the
‘spin-orbit. forus’ (w, A) taken in the map formalism. Thus (5.17),(5.18) are the
basic equations for this second part of the thesis. We will see in Section 6.1 that W
is uniquely determined by w and A, whence I will use for ¥ the notation ¥, 4. In
this work I will assume that A is continuous and accordingly continuity is assumed
in many other definitions as well. For e:\ample the generators of the mvauant spm

fields (see | Deﬁnltmn 6.2) and th t-lansfel fiel j (see Definition 7 2) between spin-

S i Y

orbit tori are continuous functions. In contrast, in [BEHO04] A is of class C" since
T(-, Jy) is of class C* {as well as the invariant spin fields and the ltmnéie?ﬁ&%

Note that assuming mere continuity in the present work is fruitful since T here deal
with the map formalism (in contrast, in the flow formlism of {BEHO04] it is natural

to impose the Cl-property since one has to deal with differential equations).

Although accelerator physicists tend to concentrate on studying spin motion in

veal storage rings, many of the issues surrounding the so-called invariant spin field
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(introduced in Section 6.3) and the spin-orbit resonance (introduced in Sections 7.4

and 8.4) depend just on the structure of the initial value problem (5.17),(5.18) and

can be treated in isolation from the original physical system. This is the strategy to

be adopted here and it clears the way for the focus on purely mathematical matters,

in particular for the exploitation of theorems from @9@3:@%
For example, thﬁ_a:ggtopz_ﬁﬁiiigg;I‘_“_l}cg}‘gg}_v(see also Sec-ﬁon 6.4) facilitates the

study of continuous functions (in particular it allows to apply the so—callet(i quaternion
_formalism to functions like ¥(n; -) in (5.16)). Another example is Fejér’s multivariate

i:Leorem which facilitates th(:,_study of éoncalied quasiperiodic functions (in particular

it allows, via Theorem 8.6, to characterize the set of the so-called spin tunes of second

kind).

Now that the background to this work has been presented as well as an introduc-
tion to the map formalism, I finish this chépter with an outline of the structure of the
following chapters. For thorough overviews of the importance of the invariant spin
field and the so-called amplitude-dependent, spin tune for classifying spin motion in
storage rings see [BEH04, Hof, Vo|. Note that the spin tunes of first kind introduced
n Section 7.4 are the amplitude-dependent spin tunes at a fixed, but arbitrary value

of the ‘amplitude’ Jy.

5.2 Synopsis

Chapters 5-10 and Appendices B-G are structured as follows.

In Chapter 6 I introduce the most basic concepts. In particular, in Section 6.1
I introduce the spin-orbit torus {w, A) where w is the orbital tune vector and A
is a 1-turn spin transfer matrix which is modeled after the situation of (6.19). 1
also introduce in Section 6.1 the symbol SOT (d,w) for the set of all spin-orbit tori
which have the orbital tune vector w € R? and the symbol SOT(d) for the set of
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all spin-orbit tori which have an orbital tune vector in R% I then derive the n-turn
spin transfer matrix U, 4 from w and A and establish some basic relations between
the U, 4(n;-) for different values of the integer n. This leads naturally in Section

6.2 to the definition of the Z-action, L, 4, on I@‘ffﬁrhich is a function associated

with every spin-orbit torus {w, A} € SOT{d,w) encoding the information about the

are discussed too. Also the - Z-action L, on R? is introduced which formalizes the
orbital translations on R? associated with each (w, A) € SOT{d,w). In Section 6.3
I consider a distribution or field of spins constructed by attaching a spin to each
$o € R? at n = 0 and thereby introduce the polarization fields (and, as a special
subclass, the spin fields) associated with every (w, A). I also define the Z-action
Lgﬁr) which governs the evolution of the polarization fields. Polarization fields are
important tools to study the polarization of a bunch (see also Section 5.1), however
this aspect of polarization fields plays no role in this work. Chapter 6 is closed with
Section 6.4 where the impact of ’HQII{?tQP}f_Tllgpl‘)’ on the present work is outlined
and where some 1‘elated§1€epts aﬁd facts are mentioned which are needed in this
work, In particular I show how to exploit the 27r—pqriodici§_3_{ of some funetions and L
point out how Homotopy Theory is related }vitl}____i;_h,e}_SQ,(B_):inde)gs. The SO(3)-index
is based on chﬁﬁaternion formalism of _S3 ‘which is efnployed in this work to deal

Si(__)(3}valu_e_d functions.

with continuous

One is particularly interested in spin-orbit tori for which spin precesses around a
fixed axis and perhaps even at a fixed rate. Such a fixed rate leads to the definition
of spin tune Of_ ﬁlst kind. Moreover to fully exploit those spin-orbit tori one needs
a t;;.ﬁsgo;‘;;lation group which allows toE;;;s_g(;;;fthe spin motion from one spin-
orbit torus to another. Thus in Chapter 7 I introduce the transformation group
(==group action), Ry, on SOT(d,w). The group action Ry, is motivated by some

observations made at the beginning of Section 7.1 of ‘how spin-orbit_tori should be

transfq_l}_l_l__e_c}_“i;mo each other in an efficient way. This leads to the notion of the Ry,
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orbit. Roughly speaking, an Ry ,~orbit of a spin-orbit torus, (w, A), is the set of spin-
[ SEEN, )

orbit tori which can be reached from (w, A) by varying the parameters of Ry, over the
underlying group, Cper(R?, SO(3)). Thus with Chapter 7 I begin to consider the set
SOT(d,w) as a whole and we will see that spin-orbit tori, which belong to the same
Rgg-orbit, share many of their properties. The way in which spin-orbit tanectonés
and polarization fields transform with Ry, from one spin-orbit torus to another is
stated in Theorem 7.3 of Section 7.1. The aim of studying reference frames in which

spins precess around a fixed axis, possibly at a fixed rate, prompts the definition

in Section 7 2 of tnwal almost trivial and weakly tllvlal spin-orbit tort to embrace

) _these cases. Sectlon 7.2 also shows how Homotopy Themy impacts on weakly trivial
spin-orbit tori via the£_§Q3__(_2):_11_1_de};3“’I‘he11 in Section 7.3 I use Ry, acting on trivial,
almost trivial and weakly trivial spin-orbit tori to classify spin-orbit tori into so-
called coboundaries, almost. coboundaries, weak coboundaries and those which are
not weak coboundaries. Thus I deal with four major subsets of SO7 (d,w) (where

sbaisliomi il
“some of them overlap - see the inclusions (7.18)). The terminology of ‘coboundary’
SCehedtsrote

— ]

and ‘almost coboundary’ is borrowed from Dynamical Systems Theory since, given

a spin-orbit torus (w, A) in SOT (d,w), the function ¥, 4 is a SO(S)—cocycie over

the topological Z-space (R?, ] w) Section 7.3 dlsplays the close e connection between

AVI;I(:Qmotopy,T}}lepi_;,_r_’_g_‘l_lv j_‘sf_qa‘ig_gobQup__dal_i_es. _In Sectmn 7.4 I deﬁne for every spin-orbit
torus a (possibly empty) set of spin tunes of first kind (and the associated spin-orbit
resonances) which are reincarnations of the spin tunes introduced hy Yokoya [Yol]
and show that: this set is nonempty iff the spin-orbit torus is an almost coboundary.
Spin tunes of the first kind are always associated with almost coboundaries so that
they are always associated with invariant spin fields. In Section 7.5 I present the
celebrated uniqueness theorem of Yokoya [Yol], which relates the uniqueness issue
of the invariant spin field with the condition of spin-orbit resonance of first kind. In

Sectlon 7. 6 I put the present work, and weak coboundaries m particular, into the
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context of Polarized Beam Physics. Thus I relate the present work with other work of
Polarized Beam Physics. In Section 7.7 I address the question of whether two weakly
j_lii\;ial sg_i_n;or_bi_t.. tori belong to the same Rg.-orbit. In particular the relevance of

the small divisor problem and Diophantine sets of orbital tunes is pointéd out.

In Chapter 8 I widen and deepen the study of spin-orbit tori by using the tool of
quasiperiodic funcE_oEi In particular I show that, off orbital resonance, the ex1stence
Of_JEELEQ__%?E (Lt;;g;pellodlc spin_trajectory ensures the ___eXISt._Q_llpﬁ_!__(r)fjiililr }S_F Then in
Section 8.2 I consider reference frames, called ‘simple precession frames’, in which
spins precess around an axis which can be any spin trajectory and I define a phase
advance for spin motion in such a frame. In Section 8.3 I introduce special simple
precession frames, called ‘uniformn precession frames’, for which the phase advance is
the same from turn to turn and show their connection with the so-called generalized
Floquet Theorem. Armed with the concept of the uilfgm precession frame I define,
in Section 8.4, for every spin-orbit torus a (possibly empty) set of spin tunes of
second kind (and the associated spin-orbit resonances) and show that the spin tunes
of second kind are identical with the spin tunes of first kind in most situations. In
this work the spin tunes of second kind mainly serve to analyze the spin tunes of
first kind. In Section 8.5 I resuine the theme of Section 7.7 and, on the basis of
Corollary 8.12, 1 am able to outline an algorithm employed in the code SPRINT for

computing spin tunes of first and second kind. In Sectlon 8.6 I show how Homotopy

,,,,,,,,,,

how 1t aﬂects the stluctme of the sets = (w, A). Section 8.7 returns to the question,
already addlessed in Section 7.3, of whether the e*nstence of an }SF nnphes that a

spm~01 bit t01us can be[mansfozmedlto become a weakly tuvxal one.

gChr:mptel 9)16001131(21618 the basic Z-actions L, 4 and Lw 1 ) used in Chapters 6,7,8
and introduces further associated Z-actions. In particular, in Section 9.1 it is shown

how the peculiar structure of the cocycle condition {see (5.20) and (6.6)) follows from
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the fact that Ly, is a skew-product of the orbital Z-action L,,. In Section 9.2 I show

that the Z-action L,,4 is an extension of the Z-action Lg ;)1.

I thereby relate the
orbital tlal_}SIatIOIlS on NI‘R‘;to the corresponding orbital translations on the d-torus
T¢. Thus SeMQ gives a brief glimpse into tl1taxi'_ﬁ11_‘f:§1'eat1ne11t of spin-orbit tori. In
Section 9?1 widen the perspective by showing how a single principal SO(S)—bundlo,

(\SOT(d), underlies SOT(d). It leads in Section 9.3.5 to Theorem 9.5a, which is a

R

special case of Zimmer’s Reduction Theorem. As an application of this I obtain

Theorem 9.5b which shows the concept of the invariant spin field in a new light.
The appendices, B-F, provide material needed in Chapters 6-9. While most of the
material of Appendices B-E is standard, these appendices provide sufficient precision
==
and make this part of the thesis essentially self contained. Appendix F contains those
proofs which are not given elsewhere. Appendix G contains a guide which will help

the reader with some subjects appearing in this part of the thesis.

5.3 Scope and limitations

I now mention the possible merits and shortcomings of this part of the thesis.

The intention and flavor of this work is to present a piece of Mathematical Physics.
In fact an abundance of mathematical definitions is introduced, which transfigure the
topic of spin-orbit tori into a mathematical theory. Accordingly, an abundance of
lemmas, propositions, theorems, corollaries is stated and the proofs are, without

exception, intended to be rigorous.

Three important issues related with this work, but.ggt__ covered by it at all, are the

spinor formalism, the synthesis of families of spin-orbit tori into spin-orbit systems

L

and the use of Borel algebras. Note that the spinor formalism deals with spinor valued

functions which are associated with the spin trajectories and spinor valued functions
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which are associated with the polarization fields {in contrast, the present work uses

the 3D formalism where the spin lives in R?). Note also that both associations can be

domam §3 and 1%

‘ge 82 It turns out that that the spinor fonnahsm can be pmsued
along snmlal lines as the quaternion formalism in Sections C.2,C.3 (the latter is based
on the Hurewiez fibration (S%, p2, SO(3))). In fact if in the quaternion _"fgm}g_lwls’;}l one
replaces the Hurewicz fibration (83, pa, SO(3)) by the go;};pléx Hopf bundle (the latter
is a Hurewicz fibration, too) then one obtains the spinor formalism [He| (for Hurewicz
fibrations, see Appendix C). In contrast, the issue of the synthesis of families of
spin-orbit tori into spin-orbit systems seems to have a less geometncal and more

anaiytzcal ﬂavox While in this work the emphasas is on contmuous functions, large

parts of spm—mbit theory can be formulated by using B01e1 measmable functlons
[He]. Such an approach is feasible for the statistical description of pln—mblt tori
(e.g., the study of the polarization) and it allows to apply more tools from Ergodic

Théory, e.g., Birkhoff’s Ei‘g_ggjjg___?l;eol'gn} [EH] '

This work puts some effort into theé?*i?%’?%%?@éﬁ..?f,TSP?_I?'_OI‘_*?_it tori, in particular,

due to their importance, sdme effort into the taxonomy of weak coboundaries. A

minor shortcoming is that many results focus on the generic case whereh(l,w) is

nonresonant. However since the nongeneric case can be reduced to the generic cése:

it would be easy to modify and prove many of my results for the nongeneric case
in Polarized Beam Physics. The ISF-(:onjectule, which, at least to my knowledge

(see also Section 7.6), is unsettled, goes as follows: “If a spin-orbit torus (w, A) is

off orbital resonance, then it has an invariant spin field”. Albeit no attempt is made

in this work to settle the ISF-conjecture, the present work presents some conditions

which transform the ISF-conjecture into equivalent conjectures. For example, by

Theorems 7.9,7.10, a (w, A) € SOT(d,w) withyd = 13

is a weak coboundary iff it has

an ISF. Note finally that numerical procedures exist which ‘solve’ the ISF problem
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_ numerically {see Section 7.6).
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Chapter 10

Summary of spin-orbit tori and

outlook

As pointed out in the Introduction, the second part of this thesis studies spin-orbit
tori in terms of the map formalism equations of motion (6.1),(6.2) which plays a

central role in the mathematical study of polarized beams in storage rings.

From a technical point of view a distinguishing feature of the present work is
to forinulafse all concepts and properties in mathematical terms. Accordingly the
mathematical notion of spin-orbit torus is introduced and a number of properties
of spin-orbit tori are derived. Most of my definitions that are related to spin-orbit
tori are distilled from established concepts in Polarized Beam Physics which are then
translated into the language of Mathematics. The subsets CB(d,w) C ACB(d,w) C
WCB(d, w) of the set SOT of spin-orbit tori have been introduced and discussed in
some detail. I noted that spin-orbit tori {w, A) of interest are almost coboundaries,

i.e., are in ACB(d,w) and they have the form A{¢) = T7 (¢ + 2mw) exp(T 27} ().

To my knowledge the results of the thesis are either new (e.g., Theorem 9.5b

Lt S

about the impact of Principal Bundle Theory on invariant spin fields) or were never
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formulated in mathematically precise terms whence were never rigorously proved
before (e.g., Corollary 8.12 aka the SPRINT Theorem). Note that some results
{e.g., Yokoya’s uniqueness theorem 7.13) were ugomusiy proved before for the flow

formalism (see [BEHO4]).

[ have gathered quite a bit of insight into the invariant spin field (as well as into
the spin tune) which is central for Polarized Beam Physics, as explained in Secf:jgp
_7.6. From Sectmn G. 3 we know that an invariant spin field is tied with the equation

G(¢g) = A(qﬁ 21rw)G(¢ - 2mw). 1 formulated the ISF conjecture which states that
if {w, A) is off orbital resonance, i.e., (1,w) nonresonant, then an invariant spin field
exists. Themem . 9)states that 1f (w, A) is a weak coboundary, then an invariant
spin 7ﬁeld_ ‘exists. Theorem ‘7. IOa states that if Sg is an invariant spin field and
if G is 27r{§éi;l_1h9r__119§op_1_cﬁ__t_hen {w, A) is a weak coboundary. Theorem 8.17 states
that there are spin-orbit tori which have an invariant spin field and which are not .
weak cq_l__)oundaues Flnaﬂy Themem 9.5b shows that the existence of an invariant
existence of an invariant spin ﬁeld to an 803(2)—1educt1011 of the principal SO(3)-

bundle /\S(gf(d)

It is also worthwile to mention that the machinery of Chapter 9 can be applied
to any linear n-dimensional nonautonomous ODE g = Y (t)y since the standard
procedure of making it autonomous, encodes the ODE into a Eé_("{?:):gpcycle over the
time translations whence encodes it into a principal QJL('{L);bundIe with base space

R. This will be addressed in a future publication of the author.

For a detailed outline of this work see Section 5.2. Avenues for further work ave
of course plentiful. In addition to those mentioned in Section 5.3, one topic of further
studies could be the continuation of the work of Section 9.3. In fact, as outlined in
Section 9.3.6, there are further apphcatlons of the punmpal SO(S) bundle Asc)g‘(d) in

waiting which will shed fmthei light into the matter of spin-orbit tori.
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