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Chapter 1

Introduction to spin-orbit tori

in this chapter we make some general remarks for the orientation of the reader.

1.1 Physical context

SOME MORE PHYSICS STUFF WILL BE ADDED TO THIS SECTION

This work studies the combined system of discrete time equations of motion
(2.1),{2.2) which play a central role in the benchmark study of polarized beams in
e e

storage rings and in the present section we say a bit about this context.

Dynamical variables describing the classical motion of a spin 1/2 particle {e.g.,
the proten, electron, muon} are the orbital phase space variable u € B2 and the spin
variable § € B3, where d = 1,2,3. In the situation of polerized beams in a storage
ring # and 8 are, in the flow formalism, functions of the angular pesition around the
storage ring, the azimuth ¢ = 2ws/ L, where 3 is the distance around the storage ring
and L is the circumference. Thus u = u(#), § = 5(6).

Assuming that the orbital motion is integrable one can choose u to consist of 4
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pairs of action-angle variables, ie, u = ( ? , where §,J € B9, Neglecting the
Stern-Gerlach force acting from S onto u, the eguations of motion read as
& .
=), (L1)
dj
d—q =0, {1.2)
a5 =&

where the d components of @(.J} are ealled the “orbital tunes” and A is a real skew-
symmetric 3x3 matrix, i.e., Az = —Ag, A1z = —Ag; and Az = — Az, Furthermore
A(&,{S, j) is 2a-periodic in # and in the d components of ¢. The function A is
determined by the accelerator’s electromagnetic feld {or by somne modeling of that
field) and by the Thomas-Bargmann-Michel-Telegdi (T-BMT) equation [Ja98]. In
fact, cq. (1.3} is an incarnation of the T-BMT equation. Analogously eq. {1.1),(1.2)
are an incarnation of the Lorentz force law. We can call the pair {@, A) the “spin-

orbit system” in the fllow formalism.

T(Mﬁ@m\w write the forinal solution of eq. {1.1),(1.2),(1.3}

$(8) = (6o} + (8 — o) ( (o)) , (14}
Hey =180, (1.5)
50) =fr(a. eu;éwo).iwu))swu), (16)

where 6, is an arbitrary initial azimuth and (8, fy; 6(80), J{f}) € SO(3) {for the
definition of SO(3), see after eq. (2.2)). [t follows from cq. {£.4),{1.5),(1.6} that

B0 + 2m) = $(60) + 2w () , (1.7)

(s + 27) = J{6,} (1.8)

5(0 + 2m) = 0 (ou + 27, 0g; B(60), j(ao)) 5(do) - (1.9)
2
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Fixing 8 we can call the pair {@, T{f + 27-,85;,+) the “spin-orbit system” in the

map formalism. Wesee that Jisa oonstant of luotlon aud, accordingly, the equations

of motion (1.7),(1.8),{1.9) for ¢, J and § can be viewed as the family of equations of
motion (1.7},(1.9) for & and § parametrized by J(Bo) Thus, \:mg the paramcters

B, J, we can call the pair (@{D), ¥ + 27-,8;-, J) the "spm orbzt torus at J*

jn the map formalism {analogously one can define the spin-crbit torus in the flow
formalism}., This pair is the topic of this work and because of its importance we will

use, by ﬁxmg the parameters Bn, J the following abbreviations:

&(n) = $(f + 2un) (1.10}
3(n) = 5(0y + 2mn) (111}
U(n; ) == \if(ﬂo + 2, Bz, J) {1.12)

where n € Z,z € R%. Note that since A(f, B, j} is 2x-periodic in the d components
of &, ‘i’(ﬂ,ﬁo;z, J} and ¥(n;x) are 2-periodic in the  components of 2.

1.2 Synopsis

This work is structured as follows.

In Chapter 2 we introduce the most basic concepts. In pasticular, in Section 2.1
we introduce the spin-orbit torus {w, ¥} where w is the orbitat tune vector and ¥{n;-)

is a n-turn spin transfer matrix which is modeled after the sifuation of Eq. (1.12).

1We also introduce in Section 2.1 the symbol SOT(d,w) for the set of all spin-orbit
tori which have the orbital tune vector w € B and the svmbol SOT(d) far the set of
all spin-orbit tori which have an orbital tune vector in B9, We then éstablish some

basic relations between the ¥(n; -} for different values of the integer n.

This leads naturally in Scction 2.2 to the definition of the Z-action, L.,¢, on

B3 which is a function associated with every spin-orbit torus {w, ¥) € SOT{d,w)

Chapter 1. Introduction to spin-orbit tori

encoding the information about the spin-orbit torus in a very useful form, Some
growp theoretical properties of L, ¢ are discussed too. Also t};:_z:actlmr L;, on R?
is introduced which formelizes the orbital translations on RY associated with each
{w,¥) € SOT{d,w). In Section 2.3 we consider a distribution or field of spins
constructed by attaching a spin to each ¢y € R at n = 0 and thereby Introduce the
polarization fields (and, as a special subclass, the spin fields) associated with every
{w, V). We also define the Z-action Lg;f } which governs the time evolution of the

polarization fields.

Chapter 2 is closed with Section 2.4 where the imp:(lct of Homotopy Theory on the
present work is outlined and where some related concepts and facts are mentioned
which are needed in this work, In particular we show how to exploit the 27-periodicity
of sonte functions and we 15:)1!“ out how Homotepy Theory is related with the SO(3)-
index. The 30(3):index is based on the quaternion formalism of 8* which is employed:

in this work ko deal with continnous SO(3}-valued functions.

We arc particularly interested in spin-orbit tori for which spin precesses around a
fixed axis and perhaps even at a fixed rate. Such a fixed rate leads to the definition
of spin tunc of first kind. Moreover to fully exploit those spin-orbit tori we need a
transformation group which allows us to transform the spin motion from one spin-
orbit torus to another. Thus in Chapter 3 we introduce the transformation group
(=group action}, Ry, on SOT{d,w}. The group action Ry, is motivated by some
observations made at the beginning of Section 3.1 of how spin-orbit tori should be
transformed into each other in an cfficient way. Thit lca(is/lc ds to the notion of the
Ry.-orbit. Roughly speaking, an Ry,-orbit of 4 spin-orbit torus, (w, ¥}, is the set
of spin-orbit tori whichk can be reached by (w, ’I’),\*;Qvarymg the parameters of Ry,
i.c., via varying ever the underlying group, Cpr(R, SO(3)}. Thus with Chapter 3
we begin to consider the set SOT(d,w} as a \‘::f}/o]e and we will see that spin-orbit

tori, which belong to the same Ry,-orbit, shar7 many of their properties. The way
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in which spin-orbit trajectories and polarization fields transform with Ry, from one
spin-orbit torus to another is stated in Theorem 3.3 of Section 3.1. The aim of study-
ing reference frames in which spins precess around a fixed axis, possibly at a fixed
rate, prompts the definition in Section 3.2 of trivial, almost triviai and weakly trivial
spin-orbit tori to embrace these cases. Section 3.2 also shows how Hometopy The-
ory impacts on weakly trivial spin-orbit tori via the SO3(2}-index. Then in Section
3.3 we use Ry, acting on trivial, almost trivial and weakly trivial spin-orbit tori to
classify spin-orbit tori into coboundaries, almost coboundaries, weak coboundaries,
and those which are not weak coboundaries. Thus we deal with four major subsets
of SOT(d,w} {where scme of them overlap - see the inclusions {3.18)). The termi-
nelogy of “weak coboundary” etc. is taken from the fact that, given a spin-orbit
torus {w, ¥} in SOT{d,w), the function ¥ is a continuous SO(3}-coeycle over the
topological Z-space (R, L;). Section 3.3 displays the close connection hetween the
concepts of weak coboundary and invariant spin field (ISF) and the impact of Ho-
motopy Theory on weak coboundaries. In Section 3.4 we define for every spin-orbit
torus a {possibly empty) set of spin tunes of first kind (and the associated spin-orbit
resonances) which are reincarnations of the spin tunes introduced by Yokoya [Yok1]
and show that this set is nonempty HF the spin-orbit torus is an almost coboun?af 2
Spin tunes of the first kind are always associated with almost coboundaries so {h‘i
are always associated with invariant spin fields. In Section 3.5 we present the cele-
brated uniquencss theorem of Yokoya [Yokl], which relates the uniqueness issue of
the invariant spin ficld with the condition of spin-orbit resonance of first kind. In
Section 3.6 we put the present work, and weak coboundaries in particular, into the
context of polarized beam physics. In particular we relate the present work with
other work. In Section 3.7 we addre:;s the question of whether two weakly trivial
spin-orbit tori belong to the same Rg.-orbit. In particular the relevance of the small

divisor problem and Diophantine sets of orbital tunes is pointed out.

In Chapter 4 we widen and deepen the study of spin-orbit tori by using the tosl

Wl
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of quasiperiodic functions. In particular we show that, off orbital rescnance, the
existence of just one quasiperiodic spin trafectory ensures the existence of an ISF.
Then in Section 4.2 we consider reference frames, called simple precession frames,
in which spins precess around an axis which can be any spin trajectory and we
define a phase advance for spin motion in sych a frame. In Section 4.3 we introduce
special simple precession {rames, called uniform prec%s:ion frames, for which the
phase advance is the same from turn to turn and, anned with this concept, we define
for every spin-orbit torus a (possibly empty) set of spin tunes of segdlut kind (and
the associated spin-orbit resonances) and show that the spiﬁ tunes of second kind are
identical with the spin tunes of first kind in most situations. In this work the spin
tunes of second kind mainly serve the purpose to analyze the spin tunes of first kind.
In Section 4.5 we resume the theme of Section 3.7 and, on the basis of Corollary 4.12,
we are able to outline an algorithm employed in the code SPRINT for computing
spin tunes of first and second kind, In Section 4.6 we show how Homotopy Theory
has an impact on the individual values of the spin tunes of first kind, i.e., how it
affects the structure of the setg S¢(w, ¥)/ Section 4.7 returns to the question, already
addressed in Section 3.3, of whether thé existence of an ISF implies that a spin-orhit

forus can be transforimed to become a weakly trivial one.

Chapter 5 reconsiders the basic Z-actions L, and ij,'j ? used in Chapters 2,34
and introduces further associated Z-actions. In particular, in Section 5.1 it is shown
how the peenliar structure of eq. (2.5) follows from the fact that Ly is a skew-
product of the orbital Z-action L. In Section 5.2 we show that the Z-action L.w
is an extension of the Z-action LE,TQ, We thereby relate the orbital translations
on RY to the corresponding orbitat translations on the d-torus T, Thus Section
5.2 gives a brief glimpse into the T¥-treatment of spin-orbit tori: In Section 5.3
we widen the perspective by showing how a single principal SO(3)-bundle, Asors,

underlies SOT(d). It leads us in Section 5.3.5 to Theorem 5.5a, which is & special

case of Zimmer’s celebrated reduction theorem. As an application of this we obtain

(2.
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Theorem 5.5 which shows the concept of the invariant spin field in a new light.

Fhe appendices, A-E, provide material needed in Chapters 2-5. While most of the
material of Appendices A-D is standard, these appendices intend to provide sufficient
precision and to make this work essentially self contained. At the end of this work
is & guide which is supposcd to help the reader with some subjects appearing in the

text.

1.3 Scope and limitations

Ve now mention the possible merits and shortcomings of this work.

The intention and flavor of this work is to present a picce of mathematical physies.
In fact an abnndance of mathematical definitions is introduced, which transfigure the
topic of spin-orbit tori into a mathematical theory. Accordingly, an abundance of
lemmas, propositions, theorems, corollaries is stated and the proofs are, without

exception, intended to be rigorous.

Three important issues related with this work, but not covered by it at all, are the
spinor formalism, the synthesis of families of spin-orbit tori into spin-orbit systemns
and the use of Borel algehras. Note that the spinor formalism deals with spiner valued
functions which are a&ociat‘cd with the spin trajectories and spinor valued functions
which are associated with the polarization fields {in contrast, the present work uses
the 3D formalism where the spin lives in R“")’. Note also that both associations can
be performed via liftings w.r.t. the so-called complex Hopf bhmdle whose projection
map has domain §° and range S§%. It turns out that that the spinor formalism can
be pursued along similar lines as the quaternion formalism in Sections B.2,B.3 {the
latter is based on the Hurewicz fibration {8, p2, SO(3})). In fact if in the quaternion
formalism one replaces the Hurewicz fibration (8%, p2, SO(3)} by the complex Hopf

~

Wm«rﬁi =
res 2
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bundle (the latter is 2 Hurewicz fibration, too} then one obtains the spinor fermalism
[Hei] In contrast, the issue of the synthesis of families of spin-orbit tori into spin-
orbit systems seems to have filef’?w geometrical agg more_ggg!f_timﬂ ﬂimi‘ While in
this work the emphasis is on continuwous func-aonS, im‘ée parts of si)in-orbit theory
can be formulated by using Borel measurable functions (Hei]. Such an approach is
feasible for the statistieal description of spin-orbit tori and it allows to apply more

tools from Ergodic Theory, e.g., Birkhoff's ergodic theorem {EH].

Fhis work puts some effort into the taxonomy of spin-orbit tori, in particular,
due to their importance, some effort into the taxonomy of weak coboundaries. A
minor shortcoming is that many results focus on the generic case where (1,w) is
nonresonant. However since the nongeneric case can be reduced to the generic case,
it weuld be easy to modify and prove many of our results for the nongeneric case
{Hel). The following conjecture, which I call the “ISF-conjecture”, plays a fruitful
role in polarized beam physics. The ISF-conjecture, which, at least to my knowledge
(sce also Section 3.6), is unsettled, goes as follows: “If a spin-orbit torus (w, ¥) is
off orbital resonance, then it has an invariant spin field”. Albeit no attempt is made
in this work to settle the ISF-conjecture, the present work presents some conditions
which transform the ISF-conjecture into equivalent conjectures. For example, by
Theorems 3.9,3.10, a {w, ¥) € SOT(d,w) with d = 1 is a weak coboundary i it has
an ISF. Note finally that munerical procedures exist which “solve’ the ISF preblem

numerically {see Section 3.6).

\S) m,u\\./{zﬂé»(‘f L (/Q /)




Chapter 2

The spin-orbit tori

In this section we introduce the most basic concepts and facts needed for this work.

2.1 Introducing the spin-orbit tori (w, V)

The main purpose of this section is to state Definition 2.1 which introduces the
basie entity of this work, the “spin-orbit torus”. The orbital motion underlying the
definition of {w, ¥) is a translational motion in RY, where d is the number of degrees

of freedom {whenever we write R¥, this implies that & is a positive integer).

As pointed out in Chapter 1, the orbital motion in the present work is assumed

to be mtegrabla,\g) its simplest formulation is by choosing the orbital variables as ;ﬂ @ O

angles §y,..., ¢ which are the components of ¢ € R?. Accordingly the orbital motion
is a constant translation of ¢ per turn. In contrast, the spin lIlO_Fgl 5] modelcd after
the situation of Eq. {1.12), i.e., after the T—BMT equation so our spin variable §
is R%valued and its motion is a rotation which is affected by the orbital motion and
can therefore be very complicated. For more details on the T—BMT aspect see the

remarks after Deﬁmtlon 2. L

O
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In this work the time variable n is integer valued, i.e., the time axis is the sct Z

of integers. Thus the spin-orbit trajectories : & — R have to satisfy the

,

following discrete time equations of motion

Bl + 1) = ¢(n) + 2mw 2.1)
S(n+1) =T ¢{m)5(n), (2.2)

where o € B and ¥(1;-) € G (R, SO(3)).

Here Z denotes the set of integers and Crer{BY, 30(3)) denotes the set of 27—

periodic and continuous funetions from RY into SO{3) {for the ({gﬁmtlon of Crer (B9, X)
with topological space X, see Section B.1). Note that a function on B is called 2a-
periedic if it is 2r—periodic In each of its d arguments. The set $O(3) consists of
those real 3 x 3-matrices R with det{(R) = 1 for which RTR = 3,3 where RT de-
notes the transpose of B and T3x3 denotes the 3 x 3 unit matrix. Asis common, the
topology of SO(3) is defined as the relative topology from B3 when( ti;_gnme com-
ponents of ¥(1;-) are continuous functions from RY into R. Thus these components
are functions in Cpe, (R, R) where Cp {R%, R} denotes the set of 27-periodic and
continnous functions from RY into R¥. That the 2n—periodicity of ¥(1;-) has to be
imposed follows from {1.12}. Loosely speaking, ¥(1; -} is 2n-periodic since ¢y, ..., $4

are angular variables.

The terminology ‘orbital motion’ is common in polarized beam physics and it
should not be confused with the mathematical meaning of ‘orbital’ in the context of
group actions where one deals with orbit spaces (see Appendix A). For the present
work R is the appropriate carrier of the orbital motion but if one would go deeper
into the matter of spin-orbit tori then the d-torus ™ is an i_mportant alternative.
To give a brief glimpse into this matter see Section 5.2 where we employ the orbital
mation on T¥. While for the most part of this work B¥ is the arena of the orbital

motion, the d-torus T plays an ubiquitous role in this work in the study of the sets

10
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Cper{R?, X) as is outlined in Section 2.4.

The system {2.1),{2.2} is autenomous because its r.h.s. does not explicitly depend
on n (it depends on n only via ¢(n) and S(m)!). We summarize the three basic
facts about the system (2.1),{2.2): it is autonomous and nonlinear, it is uniquely
determined by w and ¥(1;-), and the “orbital trajectories” &(-) are unaffected by
the “spin trajectorics” S().

By induction in r one obtains from eq. {2.1},(2.2) that every spin-orbit trajectory

satisfies, forn € Z,

o Y #O+2mmw ) (23)
S(n) Uin; (0)) 5(0)
where, for ¢ € RY,
‘I"(O;{ﬁ) = I3y3,
U g) = UL o+ 2n(n — Yw) - V(1 ¢+ 2n) (L), (n=12,..)
Tl ) = TT{1; ¢ + 2wnw) - - U7 (1 ¢ — 4w} IT{ 0 — 2000} . (n=—1,-2,..)
’ (2.4)

The function ¥ : Z x B! — 50(3} defined by eq. {2.4) is uniquely determined by
w and ®{1;-). Note also that ¥(n;-} € Crer(R?, SO(3)) and that, by eq. (2.4), for
m,n €&, dek,

T{n+m; ) = U ¢ + Zamow)T(m; ¢} . {2.5)

Furthermore eq. (2.5) implies eq. (2.4}

Clearly eq. {2.3) Is the solutfon of the i == 0 Cauchy problem of the system of eq.
{2.1),{2.2). We call S in eq. {2.3) the “spin trajectory over ${6)". I follows from
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eq. {2.3) that, for myn € &,

@{n) _ é{m) + 2n{n — mhw (2.6)
S(n) U(n; ¢fnr) — 2rmw)¥T (m; ¢{m) — 2amw)S(in) o

We are led to:

Definition 2.1 (Spin-orbit torus} Given a w € RY, a pair {w, ¥} is called a d-
dimensional spin-orbit torus if ¥ is a_function ¥ : & x R — SO(3} satisfying eq.
{2.5) and, for every n in &, V(n;-) € Corr{BRE, SO(3)). We cell w the orbital tune
vector of the spin-orbit toris. I denote, for w € RY, the sel of those spin-orbit
lori, whose orbital tune vector is w, by SOT(d,w). The set of ell d-dimensional

spin-orbit tari I denote by SOT(d} and the sel of ell spin-orbil lori by SOT. A
Junction : & — B2 is called e spin-orbit trajectory of {w, U} if it satisfies

eq. (2.1),(2.8). Accordingly ¢ is called an orbital trajectory of (w, V) and S is called

a spin trajectory of {w, ¥) over ¢{0). |

In the remaining parts of this section we give some comments on Pefinition 2,1,

Clearly, for a given w € RY, there are as many clements in the set SOT{d,w} and
as many equations of moton {2.1),(2.2) as there are functions ¥{1;)) in C,.. (RY, SO(3)).
To put this into perspective one has to 1ecall that the spin-crbit tori are modeled
after the situation of Eq. ([.}2}, f.e., after the T—BMT equation. Therefore the
spin-orbit tori obtained from (112} constitute only a smail subset of SOT. Thus in
effect the present work demonstrates that important features of the spin-orbit tori
{1.12) can be studied without using (1,12), i.e., without using 't o T BMT equat.iot/{(:@
at all. For example, while the uniqueness theorem of Yokoya (se% Section 3.5) holds
for a vast set of spin-orbit tori, only a small (but, of qt%}l very important} subsct

of those spin-orbit tori is connected with (1.12) and t(le-T%BMT equation. o7
/\‘

12
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Chapter 2. The spin-orbit tori

Since ¥(n; &) € SO(3), the angle between two spin trajectories over the same
{0} is a constant of motion. Of course the Euclidean norm ]9{n}} of S{(n) is a

constant of motion, too.

It follows from eq. (2.5} that, for n € Z, ¢ € RY, we have the useful formula

TT(n;¢) = T{—n ¢+ 2anw). (2.7)

Picking, for (w, ¥} € SOT{d,w), a ¢y € RY, then m@@; of%otion (2.9)

for the corresponding orbital trajectory ¢{n) = &g -+ 2nnw reads as
S(n+ 1) ="0(1; ¢ + 2anw}S(n) . (2.8)

Of course, every function 5 : Z — B3, which satisfies eq. (2.8), is a spin trajectory

over ¢y of {w, T} (and vice versa). Moreover if 5 : Z — R satisfies eq. (2.8), then

the function z , with ¢(n) = ¢y + 2mnw, is a spin-orbit trajectory of {w,¥).

While the system of equations of metion {2.1},{2.2) for is autonomous

and nonlinear, the equation of motion {2.8) for § is lincar and non-autonomous.
e

Furthermore, two spin-orbit tori {w, T}, (o, ¥} are equal iff @ = w and ¥(1;-) =
w{1;+). However if (w, ¥} € SOT{d,w} and if w,u’ € R? diifer only by an element
of Z7 then, dué to the 2z-periodicity of ¥(n;-}, the spin-orbit tori {w, ¥), (', ) are
essentially the same since the associated equation of motion (2.8) is the same for

both.

To interpreiJDeﬁnition 2.1 along the lines of Section 1.1 in the context of the
map formalism for polarized beams in storage rings, the reader should view ¢(n)
as the value of the orbital angle variable and S(n) as the value of the spin variable
after # “turns” around the storage ring. In this context, ¥(n;-} is called the “n-

turn spin transfer matrix”, This means that n can be as large as 10 whence the
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Chapter 2. The spin-orbit tori

present section is definitely not the tast word to be said about spir-orbit trajectories.
In particular the mumerical calculation of ¥{n;-) for large n is a challenging task.
Furthermore this calculation can be hampered by the circumstance that P(1;.) is

anly approximately known. These circumstanced grant 4 more involved discussion of C)

acolivot »
Tern, 4 J”{Z,m N e (Z!!:é’ﬁ(g?(f) O

2.2 Introducing the Z-action L,y associated with

spin-orbit tori in this work.

every spin-orbit torus {w, ¥}

Since the equations of motion {2.1),{2.2) are autonomous, cach spin-orbit torus (w, ¥}
is associated with a Z-action L, ¢ which determines the time evolution of the spin-
orbit trajectories as follows {for details on group actions in general and Z-actions
in particular, see Appendix A). Defining the function L,g 1 Z x R — RIS, for
neZ,geRI, SR’ by

¢+ 2nnw ) . (2.9)

Fuo(m ) = ( W )S

we obtain from eq. (2.3} that, for every spin-orbit trajectery ( ¢ ) of {w, ¥} and
8

every n € 4,

( ot ) = Lus(m 9(0), 50)) (210)
S(n)
Clearly, by eq. {2.4),{2.5},{2.9), we have, for m,n € Z,¢ € RY, S € R},
L3 (06,5) - ( ¢) , @.11)
s
Low(m -+ n;¢, 8y = Low(m; Low(n 6, 9)) . {2.12}
Los{m +n;¢,8) = Low(m Lo o{m; 4, 5)) . {2.13}
14
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Chapter 2. The spin-orbit tori

We conclude from eq. {2,11},(2.12) that L,y is afeft Zraction on R™** and from cq.
{2.11),(2.13) that L, 4 is ﬁg;tf-action on Rt 3;' Left actions are commonly called
actions. Since L,y is a Z-attion on B3, one calls (R*3, L., ¢) a Z-space. In a more
loose sense, L,y would be called the general solution map of (2.1),{2.2). Note that,
since the group Z is Abelian, the property (2.13) follows from eq. (2.12) confirming
the simple fact that left Z—ac-iions are aiy\'axs_ nght Zi}_:_:_[igl}rs)ri}:}gl ,.Xif:?. versa. Nate
also that L, y(n;") lsv::s:);t“muo‘l;s “hence (R‘”"’, L) is & topological er[.);lce Note
also that, because L, ¢ is a Z-action, we have, for n = 1,2,..., that L,e(n;-} is the
n-fold composition of ., ¢(1;-) and, for » = —1,—2, ..., that L, 5(n;-) is the [n|-fold
composition of L, ¢{—1;-}. While all these details on L, are trivial, the?i;fgend PJJQ

to set the stage for later chapters where we have to study more group actions.

1f w € B? then we define the function L, : Zx R - RY forn € Z,¢ € BY, by

Eo{n;d):=¢+ 2anw . (2.14)

Clearly L, is a Z-action on RY and moreover (B9, L)) is a topological Z-space.

In Section 5.1 it will be shown how the peculiar structure of eq. (2§) follows

-

from the fact that L.,¢ is a skew-product of the orbital Z-action L. ( » 8 ¢l (?FI Y

Given a spimnrbif torus {w, ¥} in SOT(d,w}, it follows fromn {2.5) and Ap-
pendix A that ¥ is a continuous SO{3)-cocycle over the topological Z-space (RY, L))
whence {L,, 7} € COC(R?,Z, SO(3)}. We thus have a natural injection psorq, :
SOT{d) — COC{RY,Z, SO(3)), defined for {w, ¥} € SOT(d} by

psoralw, ¥} = (L, 1) . {2.15)
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Chapter 2. The spin-orbit tori

2.3 Introducing the polarization fields of every spin-

orbit torus (w,¥) and the associated Z-action
PF
Ly

Each spin-orbit torus is associated with a set of functions, catled “pelarization fields”,
whieh are introduced in this section. The time evolution of the polarization fields of

a spin-orbit torus {w, ¥) is determined by the Z-action LE,P 5 } introduced below.

As displayed by Theorem 3.9, in this work the main purpose of polarization fields

is that invariant spin fields {which are special polarization fields) ag/building blocks /
of the group action Ry, on SOT{d,w}. This group action, to b‘e‘li-rEr_o uced in
Section 3.1, allows to study SOT{d,w) as a whole and exploits some fundamental
symmetry properties of SOT{d,w) Ieadiﬁg in partieular to a definition of spin tune
{sec Definition 3.11). Not pursted in this work {and only briefly mentioned in Section
3.6} is a second purposc of polarization ficlds being an important tool in the statistical
treatment of spin-erbit motion [EH]. The statistical treatment is needed for coping

with the fact that a storage ring burch contains many particles {typically 100},

To motivate the concept of polarization field, consider an initial assignment of
spins & : R — R3, L.e,, a spin attached to every point ¢y € R%. Under the Z-action
&y + 2anw

Lgw the point evolves to at time n. Denoting
(r; $0)G{do)
oo+ 2mnw by ¢ and ¥{n; do)G{de) by Sg{r, $) we have
Saln, @) = ¥(n; ¢ — 2anw)G(o — 2anw} . (2.16)

The 2n-periodicity of ' has to be impesed for the same reason as mentioned in
Section 2.1, namely because the components of ¢ are angle variables. We are thus

led to:
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Chapter 2. The spin-orbit tori

Definition 2.2 (Polerization field, spin field) Let (w, ) be a spin-orbit torus. Ve
call a funciion Sg : ZxRY — RB® a “polarization field” of {w, T), if it satisfies (2.16)
Jor all $,n and if & € Cper (R, B3). The function G will be called the ‘generator’ of
So.

We call a polarization field S “invaviant™ if Sg{n,-} is independent of n. A
polarization field Sg with |Sg(n, @) = 1 is called a “spin field™. An invariani polar-
ization field which is a spin field is called an “invarient spin field {ISF)”. 0

Remark:

(1) E follows from Definition 2.1 and eq. (2.16) that if Sz Is an Juvariant polar-
ization ficld then, for n € Z,¢ € RY,
N9
‘¢l9)=

¥l D

U{n; - 2rmw)rG_’(§A — ‘Zme)‘ . {2.17)

This has an interesting implication in the case when the components of w are
rational since then we can choose n in (2,17} sufficiently large such that the
components of nw are integers. Then {2.17) becomes, due 1o the 2a-periodicity

of ¥(n;-) and G, an eigenvalue value problem for G{¢):

G(¢) = ¥(m )C() . (218)

It also follows that if the components of w are not rational then, by rational
approximation of w, one obtains an approximation of an invariant polarization
field by solutions of eigenvalue problems. L3
By ¢q. (2.5},(2.16) we get the following equation of motion for a polarization field
Sa

Sa(n+ 1,0} = ¥(1; ¢ — 25w)Seln,  — 2nw) . {2.19)
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Chapter 2. The spin-orbit fori

If 8g is a polarization field then Sg(0,-) = G() € Cer(RY, B3 and Sg(r,) €
Crer{RY, B®). Clearly, the equation of motion (2.19) for 8 is linear and autonomeus.

Defining the function L¥F) = L(PF) by L(PF) Z X Cpee (B4, B®) — O (RLR3) By

L G) 1= Spln,-) = U(ny- — 25mw) G- — 2anw) (2.20)

it follows casily from cq. (2.5),(2.16) that LY is a Z-action on Cper (R, RY), e,
that

(Crer (R, RY), Lipq‘f)) is a Z-space. Thus by cq. {2.16)

Selm, ) = L83 (n — mi; So(m, ) . (2.21)

Loosely speaking, LIPF} is thlap associated with eq. (2.19). Clearly, every
G € Cper{RY, B®) gives a unique pelarization field Sg for a given spin-orbit torus.
In particular, each ¢-dimensional spin-arbit torus has as many polarization fields as
the set Cper{R9, R7) has clements. We sce that the role which the Z-action L{FF}
plays for Mftim’ ﬁfldi is analogous to the role which the Z-action L, ¢ plays

for spin-orbit trajectorics. Note also that G is a fixpoint of L&PF) iff the polarization

field Sg is invariant. Since L{FT} is a group action of the group Z we easily conclude:

Proposition 2.3 Lei {w, ¥} be a spin-orbit torus. A polarization field Sg of (w, ¥)

is invarient iff

LEPwLe =6. (2.22)

In other wonds, Sg is invariand, iff for all ¢,
G(d) = V{1, ¢ — 2aw)C(d — 2nw) . (2.23)
]

A polarization field Sg is a spin field iff }G(¢)] = 1 for all ¢. Defining the 2-sphere

§? := {r € B3 : |z] = 1} and equipping it with the relative topology from R®

18
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Chapter 2. The spin-arbit tori

we see that the set C,(,.(Rd,Sz) of 27—periodic and continuous functions from RY
into §? is equal to the set of 2n—periodic, normalized {w.r.t. the Eudclidean norm},
and contimtous functions from R? into R, Thus for every spin field Sg we have

Spln, ) € Cpee (B9, 8%). Clearly cach ISF is a polarization field.

Due to Definition 2.2, cvery polarization field Sg fulfills three different conditions:
the “dymamical” condition (2.16), the "kincmatical” condition tirat G is 2r—periodic,
and the “regularity” condition that & is continuous. In contrast to the dynamical and
kinematical conditions, the regularity condition is a matter of choice. The regularity
of & can basically vary between the extremes “no regularity condition” and “G being
analytic”. In this work we choose & to be continuous since the spin-orbit tori are

built on continuity, i.e., the T(n; -} are continuons fungtions.

Since the equation of motion {2.19) for Sg is linear, Lfﬂ: ) (n; -} is a homomorphism

of the additive group . {BR%,R?), ie., for n € Z,G, & € (., {R1, R,

PG + ) = I G) + L0 (m &) (2.24)
Eq. (2.24) allows, by the technique of twisted cocycles [HK1, HK2, Ziml], to de-
fine cohomolopy groups for any spin-orbit torus, which give further insight into
ST {d,w) in general and into the ISF conjecture in particular {Hei}, However this

is beyond the scope of the present work.

2.4 Homotopy Theory relevant for spin-orbit tori

Throughout this work we will see some impact of Homotopy Theory on the theory of
spin-orbit tori and in this section we introduce some basic features (the details are

worked out in Appendix B).

Let X be a path-connccted topological space. In the context of spin-orbit tori, we

are especially interested in X = SO(3) and X = §? {rcealt that spin transfer matrices

19
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are SO(3)-valued functions and that spin fields are §%-vatued functions). The usc
of Homotapy Theory for Cp{R?, X} is twofold. Firstly, we use it by applying the
Homotopy Lifting theorem {scc Lemma B.6 in Scction B.1) which in turn is used
in many of those proofs of this work which involve the sets Coer (B9, X). Sccondly,
Homotopy Theory gives us the useful equivalence relation ~3F on Coer(RY, X}, a8
follows. To explain this cquivalence relation we first note, by Proposition B.4, that
any two functions in Cpe {RY, X} are homotopic w.r.t. X, ie., [R4, X} is a singleton.
In other words, the equivalence relation ~x on (.’W(R‘, X)is usel;ﬁs However,
since the functions in C,(,(R", X} are 2n-periodic, we can associate, as detailed in
Section B.3, every function g € Cpee (R, X) with a function G 1= FAC{g; X} €
€{T4, X) which is uniquely determined by g via the relation G o pja = g. Thus
we call two functions gy, g1 € Crer(RY, X) “27-homotopic w.rt. X, written go =37
g, if FACH(90; X), FAC{g1; X} are homotopic w.rt. X, ie, if FACs{go; X) ~x
FACHg1; X). Clearly ~2F is an equivalence relation on Cp (R X) and we denote
the set of equivalence classes by [RY, X]o;. Obviously the function which maps the
ory-equivalence class of a F' € (T4, X} to the ~¥-equivalence class of F o pygq,
is a bijection from [T¥, X] onto [RY, X]o.. Thus every statement about [RY, Xl

corresponds ko a statement about [T¥, X

The point to be made here is that for the topological spaces X of interest, in
general two functions in C(T9, X) are not homotopic w.r.t. X whence, in general,
two functions in Cpe {R?, X} are not 2&-homotopic w.rt. X, ie., {Rd, X]2c is not a
singleton. In particular we will see below that, for no positive integer d, (&4, SO e

_is% singleton and that, by Proposition B.18¢ and Theorem B.24, {R,§7%);, is not
a singleton for any d > 2. The meaning of this is, loosely speaking, that, among
the functions in Cper(RY, X}, the ones which are especially simple are the g which
are “2z-nullhomotopic w.r.t. X", i.e., for which FAC,(g; X) is nullhomotopic w.r.t.
X (the latter condition means that FACs(g; X) is homotopic w.rt. X to a con-

stant function). Note that, by Propesition B.18c, all 2r-nullhomotopic functions in
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Chapter 2. The spin-orbit tori

Crer(B9, X'} are 27-homotopic w.r.t. X, Le., belong to the same element of [RY, Xjp..
Thus if [RY, X1, is not a singleton then Cp (R, X) contains functions which are not
Zz-nulthomotopic w.r.t. X. As we will sce in this work, the fact that [RY, SO(8}]s.
and, for d > 2, [RY, 5%z, are not singletons, contributes to the structural richness of
the sets SOT{d,w). Note that, in the context of polarized beams in storage rings,
the case d = 3 is the most important one whereas the cases d = 1,2 come next in

terms of importance.

We wrap up this brief section by mentioning several important facts and concepts
valid for the case X = SO(3) and it first of all has to be pointed out that in our
study of SO(3)-valued functions in Appendix B the “quaternion formalism” is em-
ploved which consists in representing SO(3)-valued functions by $3-valued Functions.
For every positive integer d there is a function Inds 4 : G, (R?, SO(3)) — {1, -1}4,
defined by Definition B.14 and called the “SO(3)-index”, which, due to Proposi-
tion B.18e, has the property that, if go,q1 € Cpr{R%,50(3)) and go Eg"b(a) Oy
then Indsa(ge) = Indsalg). Since, by Theorem B.15a, the function Indsg is onto
{1, -1} we observe that {RY,SO(3))sx is not a singleton. Moreover, for d = 1,2,
the function Inds 4 completely determines [R?, SO(3)]z, since, by FTheorem B.22¢, we
have, for g9, 01 € Cer(RY, SO(3)), that go =350 o i Indsulgo) = Indsalg). For
the inost important case, d = 3, the structure of {RY, SO(3)];, is even richer, In fact,
Definition B.21 gives us a function DEG : €y (R?, SO(3)) — Z, which is onto Z and,
due to Theorem B.22f, has the property that, for gy, g5 € Cpe (B3, SO(3)), we have
P =2 o1 ff DEG{go) = DEG{g)} and Indys(ge} = Indag{m). Thus, for d =3,
[R?, SO(3))r+ has infinitely many elements, We also conclude that, for f = 1,2,3,
the SO(3)-index and the function DEG are sufficient to determine the equivalence
elass of every g € Cpe{R?, SO(3)) w.r.t. the equivalence relation =% Whence to
determine the equivalence class of every F' € C(T9, SO(3)) w.r.t. the equivalence

refation eoy.
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Before we state the followmg praposition, note that we consider {1 71} as &

group {1, -1} Thc fo]lo“ ing proposition is tllc most basic result of how Homotopy

Theory impacts spin-orbit tori via the SO(3}-index.

Proposition 2.4 If (w,¥) € SOT(d,w) then, for an arbilrory infeger n, we have
Indy o(B{n;-)) = (Tnds {T(L; )", (2.25)

where (Inds o(P{1;-)))" denoies the n-th power of Inds(¥(1;-}} w.rt the group

madfiplication in {1, -1}

Proaf of Proposition 2.4 Sce Section E.1. 0
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Transforming spin-orbit tori
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In this chapter we study th righg,mup action Ry, on SOT{d,w} for the group

Crer (87, 50(3)) and the associated equivalence relation ~g,, by which two spin-orbit
tori SOT{d,w) are cquivalent iff they belong to the same fy-orbit, The group
action g, is an outgrowth of the observation (sce Section 3.1} that épin-orbit tori
can be transformed into cach other in a natural way. In fact in each SOT{d,w} we
have a large m of pairs of spin-orbit tori whose topelogical Z-spaces (R?3, L, ¢}

are conjugate by conjugating homeomorphisms which form a family Ly labelled by

the 7' € Cpr (B9, SO{3)). In particular we obtain in Section 3.1 a transformation faw

for Spm-orblt tor] and _po

ization fields,

y e
: / 148 / vl Ai 5 ‘The group action Ry,, allows to define the spin tune {spin tune of first kind} in

4 g"(j.?u Z-!-ME?

an elegant way. We will see that two spin-orbit tori which belong to the same g~
orbit, share important properties, e.g., they have the same spin tunes of first kind
{see Proposition 3.12) and either both of them have an ISF or both of them have no
ISF {see Theorem 3.3d}. In other words, spin-orbit teri, whose topological Z-spaces
{R¥+3, I, ¢) are conjugate by a homeomorphism Ly, resemble each other. Thus to a

large extent the study of SOT{d, w) reduces to the study of just one spin-orbit terus
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uf brgdffé*f

This, of course, raises the qumtion/if’an Ry,,~orbit contains spin-orbit teri which

per £4,,-orbit.

are more ‘simply structured’ than others. Indecd (see also Section 3.6} it is widely
believed and based on numerical evidence that, generically, the spin-orbit tori of
practical refevance are “weak: coboundaries” {see Definition 3.6) which means that
each of them lies on the same Rd'w-ﬂl”bl as akly trivial” spin-orbit torus (see
Definition 3.4). Thus, generically, the main ( res of spin-orbit tori can be studied
on weakly trivial spin-orbit tori, which indeed are simply structwred. Note also
that the SO{3)-indices and the $04{2)-indices associated with a weakly trivial spin-
orbit torus carry important tepological information (see Proposition 3.5), It is even
believed that, generically, the spin-orbit tori of practical relevance are not only weak
coboundaries but also “almost coboundaries® {sce Definition 3.8). As their name
suggests, almost coboundaries lie on the same Ry, orbit as “almost trivial” spin-orbit
tori. Most importantly, almest coboundaries are those spm orblt ton which carry
spin tunes {in fact, spin tunes of first kind - see Deﬁmtmn 3. 11} “Cohoundaries”

{see Definition 3.6) are those almost coboundaries which are on spin-orbit resonance

of first kind. C01 oundarles, by definition, lie on the same R, -orbit as “trivial”

spin-orbit ton, w ch indeed arc the simplest spin-orbit tori of all {see Definition

3.4),

3.1 Introducing the transformations of spin-orbit

tori and the group action Ry, on SOT{d,w)

In this section we introduce the group action Ry, and the associated equivalence

relation ~vg,.

The motivation for Ry, comes from the practical need to transform spin trajecto-
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Chapter 3. Transforming spin-orbit tori

ries in order to simplify {analytical and numerical) computations. The archetypical

way to transform a spin trajectory goes, in the context of spin-orbit tori, as fol-

De.
a

lows. Let a spin-orbit torus {w, ¥) be given with a spin trajectory S{) over some gy,
Then a function ¢ : & — SO(3) transforms S(-) into the function §' : Z — B3 via
§(n}) == {T(n)S{n) (using 17 instead of ¢ is just a convention). Of course, since 5(-)
satisfies the equation of motion {2.8), one observes that 5(-) satisfies the equation

of motion

Sn+1) = Fn + DT ¢ + 2an)t{n)S () , (3.1

where n € Z. Clearly 5(-) has many features of a spin motion, e.g., [S'{n)| = |S{n)}
is independent of n and 5'{n) is uniquely determined by S$'(0) and n. Perhaps

e -

&o S{)I':n ﬁ;

~ gt fe

surprisingly however, in generat $'() Is not a spin trajectory of any spin-orbit torus!
This follows from the fact that ¥(1; ¢y +2rnw) is always an w-quasiperiodic function
of n whereas ¢¥(r + 1)%(1; ¢+ 2mnw){n} in general is not a quasiperiodic function
of i at all, since ¢ may not be quasiperiodic. Note that quasiperiodic functions play

a major role in Chapter 4 and are defined in Section C.1.

Part d) of the following proposition now comes as a relief.

Proposition 3.1 o} Let T € Cpere(RY, SO(3)). Then the map Ly : R — RS,
defined by

178

is @ homeomorphism onto B*® and its inverse L7' is defined by L3¢, 5) =

(‘.jn T(é)s)x ie, L;l = Lyr.

b) Let (0, %) € SOT(d,w) and T € Cper(R%, SO@)). Then, forn € Z,p € BRY, S ¢

)

Chapter 8. Transforming spin-orbit tori

)

T W(n;¢) =TT + Zinw){n; YT() .

B3,

' Lro Lug{(n;-}o L7 (
‘)dw ? ( w\i T)

Moreover (w, T') € SOT (d,w) where

yyf) ;-{:)d ;(r

¢
s

&+ 2anw
TT(¢ + 2anw)¥{n; $}T{NS

) {3.3)

(3.4)

Furthermore, Ly is a conlinuous Z-map from the topelogical Z-space (RH3, 1, 4) fo

the topological Z-space (R, L, 1), i.e., forn € Z,

Low(n) = Lro Lua(n;yo L7 . (35)

Thus the topological Z-spaces (RT3, L, o) and (R, L, 4] are conjugate. <<—

¢) (Transformalion rule of spin-orbit Irajectories) Let {w, ¥) € 8OT{d,w) and T €

#()

Crer{RE, SO(3)). If ( s is a spin-orbil trajectory of the spin-orbit torus (w, ¥),

then ( f;(()) is a spin-orbit trafectory of the spin-orbit lorus (w, ¥’} where T’ is
given by eq. {3.4) and where, forn € 2,
$(n)

( ) = Lr{g(n}, S(n)) = ( 7o) S{n)) - (3.6)

d) {Transformetion rule of spin irajectories} Let (w0, ¥} € SOT{d,w} and T €

a (Jﬁ Py ,55[5,? Crer (BT, 50(3)). Let also ¢p € RY and let t : Z — S0{3) be defined by i(n) =
T+ 2rnw). If S(+} is a spin irajectory, over ¢y, of the spin-orbit torus {w, V)
the;ﬁ S'(), defined by S'{n) 1= 1T(n)S{r), is a spin trajectory, over ¢y, of the spin-
orbil torus {w, '} where ¥ is given by (8.4}

¢ln)
5'(n)

Proof of Propasition 8.1: See Section E.2.
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Chapter 3. Transforming spin-orbit fori

With Proposition 3.1b we see, for every w € RY, that every T € C...{R9, SO(3))
associates any (w, ¥) € SOT(d,w) with onother (w, T') € SOT(d,w). This \-.'e,aet{

into the following definition:

Definition 2.2 Lef w € RY. We define the funciion Ry, : Cper(BRY,SO{3)) %
SOT(d,w) — SOT{d, ) b@aﬂhﬂm (w, V) € SOT(d,w),T ¢
Coer(RY, SO(3)), end where the funetion ¥ : £ x RY — SO(3) is given by eq. (3.4).
Nole that, by Proposition 3.1b, Ry, is indeed a function from Cp.{R%,50(3)) x

SOT(d,w) inte SOT{d,w). If Ry(T;w0, %) = (w, V') then we call T o “lignsfer_
field from (w, ) to {w, ¥'}". &]

The following theorem states the basic properties of Ry,

Theoremn $.3 a) Let o € RE. Then, for T € Crer(R4, 50(3)), (w0, ¥) € SOT(d,w},

\?D: LroL.g{m Yo L7 . (3.7}

Furthermore Cper{®%, SO(3)) is a group under pointwise multiplication of SO(3)-
valued functions and Ry, is a right Coer (R, SO(3))-action on SOT(d,w).

&) {Transformation rule of spin-orbit irajectories) Lel (w, ¥) € SOT{d,w) and
T € (R, SO3Y). Jf z{(i is @ spin-orbit {rajectory of the spin-orkit forus

—

(o, T}, then ( ;(()) ), defined by (2.6), is a spin-orbit trajeclory of thclspin-arbit

torusHIM?;M_( uw',ﬁf%

R e

¢) (Transformation rule of polorizetion fields) Let (w, ) € SOT(dw) end T €
Crer (R4, 50(3)). Let also S be a polarization field of the spin-orbit forus {w, ¥).
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Chapter 3. Transforming spin-orbit tori

Then &, defined by

S'(n,9) = TT)So(n. &) (38)

is a polarization field of fhe%m‘nfarbz't torus Ry {7
TTG. Thus for everyn € E,G € CK;(RJ,RE)_Jy

\i's_mrd the generator of 8 is

L 6) = TL{ (w TG) - (3.9)

If the polarization field S is invarignt, then so is &', If the polarization field Sg is
a spin field, then so is S'.
“Thtee o ﬂ-“é;"?s/ o T
. [ i ff‘ d) Let {w, ), (w, '} € SOT(d,w)j}glq?_l_g__t(_:jﬁ;:e?@i&i{%& Then either both
vietney | spin-orbit tori have an ISF or por® of them.

e} Let (0, ), {w, ¥") € SOT{d,w) and T € Crer{RY, 5O(3)). Then Ran(Tiw, ¥) =
(w0, ) iff

F(1) = T7(6 + 2y {1 YT(S) - (3.10)

§) Let (,9),(w, ¥) € SOT(d,w) Pelong fo the same’ Ra-orbil] Then, for ev-
ery integer 7, ¥(n;-), ¥(n;-) have the same SO(3)-indes, i.e., Indy (T(n;-}) =
Inda {0 {n;-)). If d=1,2 then, for every inleger n, ¥{n;- '1";"5(3) W)

A d=t2 2

Proof of Theorem 3.3: See Section E.3. 0

I {w, 0), (w0, ) € SOT(d,w} lieon the sam@ pc_);hxf{thcn we write {w, ¥) ~q,s
{i, ¥'). H follows from Theorem 3.3a that ~,,, Is an equivalence relation on SOT (d, w).
It also follows from Theorem 3.3a that, for cach T € Cpr(RY, SO(3)), the function
Ra.{T;") is a bijection from SOT{d,w) onto SOT{d,w). Clearly each Ry.{T5")

transforms spin-orbit tori into spin-orbit tori and the associated transformation of

-
| o 0o9) shfogpmt elog o

(3,- ) K/wnj{'é-) ﬂe fwnd

L.«,«j, (A%




Chapter 8. Transforming spin-orbit tori

spin-orbit trajectories and polarization fields is given by parts b),c} of Theorem 3.3

respectively,

Since €. (R?, SO(3)} is a group under pointwise multiplication of SO{3}-valued
functions, the constant function in C,., (B4, SO(3}) whose constant value is Fyg, is
the unit element of the group. If there is no danger of confusion, we denote the unit
element by I3.3. Furthermore the inverse of f € Cp(R?, SO(3)) is the traﬁs%{c%fﬁj
since (fTf)(¢) = T (¢} = Esxa. Since the group SO(3) is not Abelian, go-fs the
group Cp{RY, 5O(3)).

As announced at the beginning of Chapter 3, spin-orbit tori on the same Ry,
arbit share some important properties and with Theorems 3.3d,f we have got a first
glimpse an that and more in that vein will follow. This raises the following issuc.
While, by Proposition 3.1b, spin-orbit tori on the same Ry.-orhit have conjugate
topological Z-spaces (R4, L,y ) this does not exclude more general conjugacy re-
lations in SOT(d,w). Although we here cannot pursue more general conjugacy
relations, it. is in fact conceivable that there are pairs of spin-orbit tori in SOT (d,w)
whose topological Z-spaces (R%+3, L,) are conjugate but which do not lie on the
same Rg.~orbit. Nevertheless it is questionable i those pairs of spin-orbit tori would

share properties like the one in Theorem 3.2d.

Since the group Cuer (RY, SO(3)) is not Abelian, it is casy to sce that Ry, is@
a left Cpe (RY, SO(3))-action on SO;E&-,:?]-I_che;er, as every right action has its
*dual’ left. action, we could use the left Cp., (RY, SO(3))-action Ls,., on SOT{d,w)
defined by Ly, (Tiw, ¥) i= Ry{T7; 02, T) and the subscquent theory would be just

‘dual’ to the theory bused on Ry,,. Nevertheless we stick, for convenience, with Ry,

cluo

- {1} That Ry, is so useful in this work is g[antﬁ’ to the fact that the equations

Remark:

of motion (2.1}, (2.2} are autonomous. In a more gencral situation where the
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s jluJ? e & B enled
-acccler;:lr is not a storage rin}Leq. (2.1}, {2.2) maybe generalized to a non-

autonomous system of the form

oln + 13 = ¢(n) + 2nw , S(n+ 1) =¥(1, n;6(m)S(n) . {3.11}

Accordingly the definition of SOT{d,w) would be modified and the group
action Iy, would be modified to a right G-action where G consists of functions
T: 2 x B — SO(8) where T(n, -} € Cer(RY, SO(3)). ]

= K.‘L{?A
3.2 Infroducing weakly trivial spin-orbit tori

As mentioned at the beginning of Chapter 3, simply structured spin-orbit tori will
play an important role in this work and the following definition specifies what a

“simply structured” spin-orbit torus is.

Definition 3.4 (Trivial, almost iriviel, weakly rivial spin-orbit forus) A spin-orbit
lorus {w, ¥} is called “trivial” if U{n; @) = Iaxs. The set of irivial spin-orkit fori
in SOT{d,w} is denoted by T{d,w). A spin-orbil torus (w, V) is called “elmosi
trivial” if ¥ is/S0s(2)valued and if, for every integer n, Y(n; ¢} is independent of
¢ where S03(2) € SO(3) is defined by Definition B.2. We denote the sel of almest
trivial spin-orbit tori in SOT(d,w) by AT{d,w). A spin-orbit torus (w, T} is cailed
“weakly trivial” {f W is SOx(2)-valued and the sei of weakly frivial spin-orbit tovi in
SOT{d,w) is denoted by WT{d,w). 0

The fact, that (w, J3x3) is a spin-orbit torus, is obvious since, for ¥ = [, eq. {2.5)
is just the identity fsuz = s,

We now draw some simple consequences. Firstly, for each w € R?, there exists

exactly one trivial spin-orbit terus {w, ¥}, i.e., T{d,w} = {(w, fax3)}. Secondly

T{d,w) € AT{d,w) C WT{d,w) C SOT{d,w). (3.12)
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ﬁ\'\. o [/L) Zt A
— /{”“ LJ
Tllil‘d]}' every \\.‘eakly trivial spinAGrbit. torus has the constant ISF ,5 563 = f‘.?,’l(“l(l

8 = —¢* where ¢! denotes the i-th unit vector (sce Definition B.2).

For the following propesition, we note that the topology of SO3(2) is defined as
the relative topology from R3*3 (see also Definition B.2). Thus if {w, ¥) € WT{(d,w)
then, for every n € Z, the function ¥(n;-) helongs to Cp,{®?, 50,(2)) whence has a

unfque phase function {which is an element of Gy, {(R9, R)) and has a unique S0;3(2)-

part of a real number = by E_..":j, we obtam

Proposition 3.5 a} (Struciure of weakly trivial spin-orbit tori} Let {w, ¥} € WT(d,w).

Then, for cvery positive infeger i, Tf e f{l/

U{n; 0} = exp (J[m‘\\ﬂ¢)> wn{n — 1(1-!- 2r iy(é + anw)]) +{3.13)
-0

where N := Indy 4(¥{1;}}, 9 :zé@{l -5 and J is defined by eq. (B.1). Alsa,
f [nf (S /t’:/JU!K
—y

Inds o(%(n;-)) = nIndz s(T{1;-}} .

for gueryn £ 2 z2, -
teot el 4 ve. ¢
{3.14)

Thus defining f : Zx B — R by f(n,-) : ﬂ(n Y}, we have f(l }-" ()

and, for everyn € 4,
¥(n; 8) = exp(T[NNT$ + 2 f(m, B)]) - (3.15)

Moreover Uln;+) is 2m-nullhamotepic word SO(3) iff Indya(¥(n;-)) = (L,.., )7, ?
Furthermore the SO{3)-index of ¥in; ) reads as Inds (T (n;-)) = ((—1)"™, ., {(~1)"¥)T.
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Chapter 3. Transforming spin-orbit tori

B} (Structure of almast irivial spin-orbit tori) If {w,0) € AT(d,w), then, for n €
Z,$ € R,

Win; ¢} = ¥{n;0) = exp{T2anv) , (3.18)

where v := PH{T(1;0)) (recall Definition B.2}. Moreover if {w, ¥} € AT(d,w)
then, for every n € Z, Indy{¥{n;")) = 0 end PHF{T{n; )} is the constant func-
tion in Cpe, (R4, R) whose value is Lnv] where v = PH(I(1;0)). Furthermore, a
(o, ) € AT(d,w) is frivial iff PH{¥(1;0))=0.

&) {The one-furn criterion) Let {w, V) € SOT(d,w). Then (v, ¥) € WT(d,w) iff
U(1;) is SOa(2)-valued. Moreover {w, V) € AT(d,w) iff ¥{1;-) is SOs{2)-valued

and constant,

@) Let (w0, 0), (1w, ') € WT'(d,ws). Ifn is an cven infeger then U{n;-) o350, Wn;-).
=30 L5 ) i Indaa( (15 ) = Inda o(W'(1; ).
)= ﬁso(s) ¥'{n;-).

Ifn is an odd integer then T{n;-

For every infeger n, {w, ¥) ~y, (w, V) implies T{n;

Proof of Proposition 3.5: See Section E.A. a

Note that the last claim in Proposition 3.5a confirms Proposition 2.4, Note also
that, by Proposition 3.5¢ and eq. (2.4}, there are as many weakly trivial spin-orbit
tori in every SOT (d,w) as there are elements in Cp (RY, S03(2)) and that there are

as many atmost trivial spin-orbit tori in every SOT{d,w) as there are elements in

[0,1). Clearly, the cardinalitics of WT{d,w) and AT (d,w) are the same.

s
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Chapter 3. Transforming spin-orbit tori

3.3 Imtroducing weak coboundaries as special co-

cycles

Recalling Section 2.2, given a spin-orbit torus {w, ¥) in SOT (d,w}, the function ¥ is
a continuous SO(3)-cocycle over the topological Z-space {RY, L,). This terminology
comes from Neonabelian Group Cohomology and Dynamical Systems Theory and,
in fact, from this terminology we also borrow the term “coboundary” which will be
introduced now (the weaker notions of “almost coboundary” and “weak coboundary™

is my terminology).

Definition 3.6 (Coboundary, alinost coboundary, weak coboundary)}

A spin-orbit torus {w, V) € SOT(d,w) is called @ “coboundary” if it belongs to the
Ry.,-orbit of the itriviel spin-orbit torus (w, Izx3). We denote the set of coboundaries

in SOT(d,w) by CB(d,w}. A spin-orhit torus (w, V) € SOT(d,w) is celled on

We denole the sei of almost coboundaries in SOT(d,w) by ACB{d,w)}. A spin-orbit
torus (w, ¥} € SOT(d,w) is called @ “weak coboundary” if it belongs to the Ryp-
orbil of a spin-orbit torus in WT{d,w). We denote the set of weak coboundaries in
SOT{d,w) by WCB(d,w). O

Recalling Section 3.1, ~y,, is an equivalence relation on SOT(d, w) whence, by Def-

initions 3.4,3.6,

T{d,w) C CB(d,w), AT(dw)C ACB(d,w), WT(d,u)C WEB(d,w) (3.17)
CB{d,w) C ACB(d,w) C WCB(d,w) C SOT{d,w) . (3.18)

For the relevance of coboundaries, almost coboundaries, and weak coboundaries, see

> Section 3.6.

b=
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Proposition 3.7 a} Lel {w, V) € WEB(d,w) and T € Co0r{R7, SO(3)) with (w, V") :=
Ry (T, ¥y € WI(d,w). If N = Indaa(V'(1;-)) then
Tndy 4(T{n; -3} = {({=1)"™, ., (~1)"™T for arbitrory integer n.

b) Let {w, ¥) € ACB(d,w). Then, for every n € &, ¥(n;-) is 2a-nullkomatapic w.r.L.
SO(3} and Inds (¥ (m; )} = {1, ..., 1T

FProof of Proposition 3.7: See Section E.5. 0

Lemma 3.8 @) Let R be in SO(3) end Re® = €®. Then R € SO4{2).

b) A spin-orbit torus (w, ) is weakly frivial iff U(1; ¢)ed = 3.

Proof of Lemma 3.8: Sce Section EL6. 0

The following theorem expresses the most important property of weak cobound-

aries.

Theorem 3.9 Let (w, ¥) € SOT{d,w). Then, for every T € Cper{RY, SO(3)), we
have
Ry{Tiw, W) € WT(d,w) iff the third column, Te®, of T is the generalor of an ISF

v
¢90‘w< @ '//’1 ey
Proof of Theorem 8.8: See Section E.7. O
Fheorem 3.9 shows that the existence of an ISF is a necessary condition for a
spin-oebit torus to be a weak coboundar); owever Theorem 3,10, below, shows tﬁat
it is not always a sufficient conditiori? Note also that, since, as pointed out after

Proposition 3.5, there are {uncountably) many weakly trivial spin-orbit tori in every
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Chapter 3. Transforming spin-orbit fori

SOT(d,w), it follows from Theorem 3.9 that invariant spin fields are important

building blocks of Ry, for every (d,w).

As we just Tearned from Theorem 3.9, every weak coboundary has an ISF, We

now addeess the converse question: is a spin-orbit forus 2 weak coboundary, if it has

an ISF? A partial answer is given by the following theorem which uses some concepts

introduced in Section 2.4 and which are borrowed from Homotopy Theory.

Theorem 3.10 Lel G e CK,.(R‘.@‘?))GM let (w, V) € SOT{d,w) suck that G is the

!

a) G is 2u-nullhomotopic w.r.t. 8% then (w, ¥) € WCB(d,w) and a T € €er (R%, S0(3))
erists such that Ry (1w, ¥) € WT{d,w) end G = T¢>, F

b)Ifd = 1 then {w,¥) € WCB(1,w) and a T € Cix(R, SO(3)} exists such that
Ry ofT50, U} € WT(1,w) and G = Te.

c) Ifd =2 then a T € Coer(R%, 50(3)) exists such thal Ry {Tw,¥) € WI{2,w)
and G =T¢" iff G is 2x-nullhomotopic wr.f, 8.

Proof of Thesrem 8.10: See Section E.8. [}

Let G & C.,,E,(Rd,@and let {w, ¥) € SOT{d,w) such that G is the generator of
an ISF of (w, ¥). Tt is clear by Theorem 3.10a that if (w, ¥) is not & weak coboundary,
then & is not 2a-nulthomotopic w.r.t. §2. That this situation does oceur, is the

content of Theorem 4.19 {of course, due to Theorem 3.10b, this situation only occurs
fd>2). = '
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“

3.4 Introducing spin tune and spin-orbit resonance

of first kind f,'"

A’C;-w __L/(\ &,v(‘(u‘,m_)Deﬁnitioxl 3.11 {Spin tune of first kind, spin—q;éz'f resonance of first kind) Lel
: /f Lot e senid e / {w, ) € SOT{d,w). Then the subset Zy(w, ¥} of [0,1) is defined by

SOy [L) By, 1) 1= {PH{U(L;00) : (w, ¥} € (@(d,w)&(w, ) g (0, TV} (3.19)

We call v @ “spin tune of first kind of {0, TY” if v € Si(w, ¥).

We say that (w, ¥} is “on spin-orbit resonance of first kind” iff 0 € S){w, ¥). We
say that {w, ) is “off spin-orbit resonance of first kind” iff Syilw, ¥) is nonemply
and 0 & Sy{w, V). [}

Pefinition 3.11 will be discussed, in the physics context, in Section 3.6.
&4 p#ﬂa’( - T

It is clear that if (w, ¥) € AT{d,w)} then, since {w, ¥} ~y,. {w, T}, PH{¥(1;0}) €
Zi{w, T). Of course, =y (w, ¥} is nonempty iff {w, ¥} is an almost coboundary. Thus

{w, I} has no spin tune of first kind iff {w, ¥} is not an almost coboundary.

By Proposition 3.5 it is clear that there is a vast supply of spin-orbit tori which
lmut’? /fpfj ) have spin tunes of first kind. On the other hand i{

on 73.77};% will find a vast

supply of spin-orbit tori which have no spin tune of first kind {sce Remark 6 in
. Section 4.5).

In Section 4.4 (sec Proposition 4.9a) we will observe that the scts Z{w, ¥} have
a simple structure. This result, as several others, goes beyond Chapter 3 since it

relies on the machinery of quasiperiodic functions worked out in Chapter 4.

£
Dﬂ{“ 12 ” Proposition 3.12 a) Let {w, ¥), (w, ¥} € SOT{d,w). If (1, F) ~ap (w, V'), then
. IQGM [)\f 2 £ 7 S 1) = B, B). I (0, 0) € ACB(d,w) then (w0, B) ~a (0, ¥) iff Falr, 1) =
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-

?
G e
e 22

celebrated theorem gives a partial answer {its importance is pointed out in Section
3.6).

Zyw, 7).

e e

b) A (w, ¥) € SOT(d,w) is on spin-orbit resonance of first kind iff {w, ¥) € CB(d, w).
Alw, ¥) € SOT{d,w) is off spin-orbil resonance of first kind iff {w, V) € (ACB(d,w}\
eB{d,w)). )

‘Theorem 3.13 (Yokoya's unigueness theorem)} Lel {w, ) € SOT(d,w) and let DP{ ? .
(1,w) be nonresonant. Let {w,'D) heve an ISF S; and an ISE which is different
from Sg and —~5¢. Then (w, V) is on spin-orbit resonence of first kind.

L e 25 DAL Doy o

e e,
cq-\,ﬁ&"

¢} Let (w, T}, (w, ¥') € SOT{, uﬁ;unth {0, ¥Y g, {w, ). Then either both spin- Proof of Theorem 3.13: See Section E.10 0O

orbit tori are coboundaries or };gne of them, and either both are almost coboundaries

C
e £,
LA

O
o

or yofie of them, and either both are weak cobounderies or’wm,/ of them.

i
nedbr neilles i 3.6 Putting weak coboundaries into perspective
d) Let (w, T) € SOT(d,w). Then (w, V) € ACB(d,w) iff there exisis a (w, V) € l _On bedes @ (;V"’":f"}/ &
SOT(d,w) such tha@is independent of & and (w, WY ~qy, (w, T). 0  We now can begin to put things into perspectue{ Based on numerical and experi-
V/ ' 7 C ) l @(ﬁl ® mental evidence from storage rings, it is widely behe\;lmghat the practlcally relevant R W IR J
Proof of Proposition 3.12: Sec Scction E.9. o spin-orbit tori are almost coboundaries {whence weak coboundaries) which 1;:;;tr011g
Propositions 3.12a, 3.12¢ give us again properties shared by spin-orbit tort which . motivation for many of the concepts introduced in Chapter 3. Much of the mumer-
belong to the same Ry,-orbit. g‘D—D o ’u-;/ Mence CORles from the code SPRINF wluch among other things, contains
) N N e i 2 numerical procedu.re whlch transforms a given almost coboundary into a weakly
Concerning Proposition 3.12d, we note that, by eq. (2.4), ¥(n; ) is independent {f, Vi E ¢ ? trivial spin-orbit torus and then transforms this weakly trivial spin-orbit torus into
of ¢ for all integers n iff W{1; ¢) is independent ?f ¢- Moreaver it is casy to sce that ' o an almost trivial spin-orbit torus which then yiclds a spin tune of first kind (for more
if ¥(1;¢) is independent of ¢, then the function W{r) of n is a group homomerphismn details on this code, see Section 4.5). .
from the additive group 2 into the multiplicative group SO(3), i.e, T(n + m) = 2 DPAIOD L
L(n)T(m). In particular this is the ease for almost trivial {w, T). Nevertheless one knows of counterexamples, since one has discovered [BV], by
mumerical means, spin-orbit tori which do not have an ISF, i.e.,, which, by Theorem O -
h P”\) ]z\z : 3.9, are not weak coboundaries {and these results were subsequently confirmed by o rj’ AL {
3.5 Yokoya’s uniqueness theorem L ULA &54,-(' 7 analytical means). However, T am not aware of a spin-orbit torus off orbital resonance ) z
(ﬁ 4 ’7?{ / " Which does not have an ISF. It is thercforc uscful here to state the following con- Mj/‘ "/ /}"" A
If a spin-orhit torus has an ISF S then also —S8g is an JSF. Thus for spin-orbit tori jecture, which I call the “ISF-conjecture™ “If a spin-orbit torus (w, T} is off orbitat / /d {’J -g (( f
which have an ISF, the question arises {A{ they have »94 more ISF's. The following O 0 resonance, then it has an ISF”. While, at least té my knowledge, the ISF-conjecture ' A
Qelal Rephose ? et =30
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Chapter 3. Transforming spin-orbit tori

is unsettled, it is definitely true that spin-orbit tori exist off orbital resonance, which

are not weak coboundaries (se¢ Theorem 4.19).

Spin tumes of first kind are important tools in the simulation and analysis of
polarized beams in storage rings since spin-orbit resonances of first kind impose
scrious Hinitations on the polarization in a storage ring. On the other hand, by
Theorem 3.13, we sce that, off orbital resonance and off spin-orbit resonance of first
kind, the invariant spin field is unique up to a sign, ie, only two ISF’s exist in
that situation. Thus in this case one can expect that the invariant spin field is an
important charaeteristic of {w, ¥} and so it perhaps comes as no surprise that, off
orbitat resonance and off spin-orbit resonance of first kind, the invariant spin field
allows to compute the maximal possible polarization in & storage ring [BEH, Hol].
This makes the invariant spin field an important tool in the statistical treatment of

spin-orbit motien.

It is here the right place t?)_}ma.ke also some remarks on the relation of the eon-

cept of spin tune of first kind with other works. Let {w, T} € WCB(d,w) and T' €
Cper{BY, SO(3)). Then, in the context of the flow formalism, T is called, in the termi-
nology of [BEI], an “invariant frame field” of {0, U) if By (T w, W) € WI{d,w) and
T is called a “uniform invariant frame field" of {0, ) if Ry (Tiw,F) € AT{d,w).
The point to be made here is that in Yokoyas fundamental paper [Yok1], uniform
invariant frame fields are used (in the context of the flow formalism) to define spin
tunes so that indeed spin tunes of first kind are reincarnations of Yokoya's spin
tunes. In consrras-%the spin tuncsjdeﬁned for the flow formalism in [BEH] and their
counterpatts in the map formalisin {introduced in Section 4.4 of the present work),
are the spin tunes oi: second k.lllg )Vhi(‘h are based on the tool of quasiperiodic fune-

tions and are nonetheless essentially equal to the spin tunes of first kind. In fact,

by Propasition 4.9a, the spin tunes of first and sccond kind are identical for almost

cobomndaries. In this work the main purpose of the spin tuncs of sccond kind is to
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Chapter 3. Transforming spin-orbit tori

enhance our knowledge of the spin tunes of first kind, Note also that [Yok1] builds
on earlier work by Derbenev and Kondratenko [DK72, DK73} and that {BEH] can
be roughly characterized as refining [Yok1j by employing quasiperiodic functions. In
turn, the present work refines [BEH] by employing group actions allowing thus to

systematically build up a transformation theory of spin-orbit tori.

3.7 Transformations between weakly trivial spin-

orbit tori

Clearly each SOT ;}, w) is the disjoint union of the Ry, -orbits. Thus of obvious

interest is the issu' , how this foliation looks L&, e.g., how it depends on d and w.

o
Sinee (recalt Section 3.6) we are mainly interested in almost eoboundaries (or, stightly

UInore generally, weak coboundaries), we will only study the subsct of SOT(d,w)

{which consists of the /4,,-orbits of weak coboundaries. Thus we have to deal with

the following question: when do two weakly tvivial spin-orbit teri in SOT(d,w)
belong to the same Ry.-orbit? Perhaps surprisingly, this question can be pursued
rather easily. As a matter of fact we only treat t}%g g:ix ease where spin-orbit
tori are off orbital resonance {the case on orbital resonance can be tackled by the
same techniques). Therefore in this section we state and prove Theorem 3.14 which
gives sufficient and necessary conditions for two weakly trivial spin-orbit tori to be
on the same [tz,,-orbit. We also point out (sce Remark 2} how these conditions are
related to small-divisor problems and Diophantine sets of orbital tunes. Corollary
3.15 then shows how things further simplify if one of the spin-orbit tori is almost
trivial. In Sections 4.4, 4.5 we will, by using the machixz:_ag_gf_ quasiperjodic functions,
obtain results velated with, and going beyond, Théc‘);em 3.14 and Corolla@). 1
particular in Section 4.5 we will see the practicalmportance of the matcrial-—ﬁén

the present section.
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Chapter 3. Transforming spin-orbit torf

Defining
i o 0
JF=]l0-1 0 |, (3.20}
¢ 0 -1
and using
FIFr=-7, (3.21)

we obtaim

Theorem 3,14 Let {1,w) be nenvesonant and (w, ¥;) € Wi (d,w) where i = 1,2.
Thus, by Proposition 3.5a, we have, for g € RY, i = 1,2,

Tt ¢) = exp(T [T 6+ 20 /il )]} {(3.22)
where My = Inda(W5(%4)), fi = PHF(¥{1;)). Then, abbreviating the zeroth
Fourier coefficient by fio = (1/2n)" 02::.“ 02: Fi(@)doy - - doy and defining f; :=
fi— fio € Crer{RE, R), the following hold:

a) If T € Coer (RY, SO5(2)) such that Ry {Tiw, W) = (w, T2} then, affer abbreviating
N = Indy{T), g:= PHF(T), we get

My = AL, (3.23)
{fl,{) — f'_),o — NTw) eZ R (324)

and, for all ¢ c RY,
9l + 2w}~ a(g} = h(9) - fold) . (3.25)

IfT € Cuer(RY, SO4(2)) such that Ry (T T w0, ¥, = fw, Ty) then, afier abbreviating
N = Indy(T), g .= PHF(T), we get

AMy=—3L, {3.26)
(fio+ foa—NTW)eZ, (321
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and, for all $ ¢ RY,

98+ 2mw) - 9(¢) = Fi(#) + F(8) . {3.28)

B} If (w0, 1)~ (w, Ta) then a T' € Cpe (RY, S04(2)) exists such that either
Rags(Tse0, ) = {rPa) or Rapl 175000 81) = {w, V).

e] {0, Uy) g {w, W) iff the following eriterion holds:

Either
My = M, and g € €. (R4, R), N € Z2 exist such that (3.2{), (5.25) held,
or

My = -3 and g € Cpe e (R4, R), NV € Z2 exist such thei (3.27), (3.23) hald.

In the former case Ry (T, U1} = (1, Ty} where
T{g) = exp(T|N"¢ + 2mg(2)]} , (329

and in the latter case Ry (T 7" w, ¥4} = {w, ¥a) where T" is given by eg. {3.29).

Proof of Theorem §.14: See Section E.11. n
Note that the nontrivial part of the proof of Theorem 3.14 is part b).

Remarks:

(2) Perhaps the most impo:
. _Aegy f‘({ .
the spin-orbit tort {iw, ¥1), {w, ¥s} do not belong to the same By -orbit. To

e

make this point clear, let {1, w) be nonresonant and let us adopt the notation

of Theorem 3.14.

(mortg?t conclusion from Theorem 3.14 is that Pg;j;ﬂg[ig:aiiy’
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AR — A #£0, fip— fon € Yo, and fio+ fop # ¥, then, by Theorem 3.14c, ] i.e., either T € Cor(RY, SO4(2)) or T = T with T' € (. (R4, 50:(2)). O
one has {(w, 1) £y, (w, T2) {recall the definition {C.1) of ¥,). In addition, &

small divisor problem enhances this effect as follows. Even if M; — My = 0 and Note also that Theorem 3.14c confirms Proposition 3.5d.

O ho=fu € Y"’W in general one cannot solve eq. (3.25} for g since the Fourier (\ j The following corollary reconsiders the situation of Theorem 3.14 in the special
cocfficients of a provisionat g are in general hampered by a small divisor problem Y l(/F case when the spin-orbit torus {w, ¥2) is akmost trivial.

preventing them to decay sufficiently fast to make g an element of Cper (R4, R) .

{note also that these Fourier coefficients are, except for the zeroth Fourier Corollary 3.15 Let (1, w) be nonvesonant and {w, ¥,) € WT{d,w), {w, ¥2) € AT{(d,w).

coefficient, uniquely determined by f;, fg) Analogously, even if My + Al =0 Thus, by Proposition 3.5, we have, for ¢ € RY,

and fig+ fap € ¥, )f{i{, in general one cannot S:.Z‘\{i?’cq. (3.28} for g due to g{;{?{ 221

Wy {1: 0} = exp{T[MT g+ 2 ) 3.30

@ an analogous smalt divisor problem. Note howev ‘fone restricts w to some 1156} = exp{T M9+ 2 A6 (3:30)
Ao . N

appropriate Diophantine sets, then one can solve eq. (3.25),(3.28) (whence, in U{1;4) = exp(T2nv) (3:31)

that case, (w, V1) ~a. {w, Tz)). For further details on Diophantine sets and  where My == Indo(¥3(1;2)), fi == PHF(U(1;)), v 1= PH(W,(1;0)) € [0,1). Then,

related references, see {DEV]. abbreviafing the zeroth Fourier cocfficient of fi by

We conclude, for nonresonant {1,w), that the group action Ry, is notﬂlslti\f_e fio = (1/2ﬂ)d gh . sz Fi{9)ddy - - - dgy and defining fl =fi—fip€ cpfr(Rd: R),
{recall the definition of ‘transitive’ in Appendix A}. This comes as a relief since ﬂ IWOM o ? the following hold:

~, would be pretty useless if all spin-orbit teri in SOT{d,w} would lie on the i ?
same fy,-orbit. Note also that, even without Theorem 3.14, it is obvious that i ':/ "H‘ e

“? T ? / j ) (o, 53) ond 0, ) ) If T € Cper (B, 503(2)) such that Rao{Tiw, ¥1) = (w, Vo) then, after abbreviating
fivdent 7 the Ry -orbits of {w, 1) and {w, ¥y contaipin—orbit tori. y

N = IndAT), g ::\fﬂfﬂ;ﬁ), we gei

Of course, by the definition of weak coboundarics, we also conclude for ngures-
(1) that, genericalls” weak coboundaries in SOT(d, uf 4’ "H'T’s My =0, (#32)

onant (1,w) that, generjcatly; weak coboundaries in w} de'ngt helong
s Y (fio—v— NTW)eZ, (3.33)

to the same Rgy,-orbit.

and, for ali g € RY,
{3) Let us again adopt the motation of Theorem 3.14 and let (1,w} be nonres-

onant and {w, ¥} ~g. (w, ). Theorem 3.1db does not claim that every g(¢ + 2nw) — glg) = Al). (339
T € Cper(RY, SO(3)) with Ryu(T50, U1} = (w0, ¥y) is either in Cp (R, $05(2))
or of the form T = T°7' with T' € Cper(B%, 504(2)). However the proof of
Theorem 3.14b.imp1ies that, if {w, ¥4}, {w, ¥} are not coboundarics, then e
ery T € Cper(RY, SO(3)) with By (T;w, T3} = {w,T2) is of this simple form, (fio+v—-NTwleZ, {3.35)

I T € Crer (RY, SO3(2)) such that Ry, {TT" 5w, 1) = (w, 1) then we have eq. (3.38)
and, efter abbreviating N := Inda(T), g == PHF(T), we get
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Chapter 3. Transforming spin-orbit teri
and, for all ¢ € RY, we get eq. (3.54).

b} (w, U1} ~g, (w, U2) i the following criterion holds:

Either
My=0andge Coer(R4R), N € 27 exist such thel {8.32), (3.94} hold,
or

My =0 and g € Cpur (R, R), N € Z7 exist such that (8.34), (8.35) hold.

In the former cose Ry, (Tiw, 1) = {w, Uo) where T is given by eg. (329} and in
the latter case Ry (T T w, ¥1) = (w0, Ta} where T is given by eq. (3.29).

Proof of Corollary 3.15: See Section E.12. O

45

/?Q.,«,[ef'fé (

1

s
-

/'f’ Laf(:‘

tole, s e 9&*/ N/ ‘éfw-f’f-”-’:{j notl 2 dec
, |

Chapter 4

Quasiperiodic functions as tools

for studying spin-orbit tori

Quasiperiodic functions on Z come up naturally for spin-orbit teri since, as already
pointed out at the beginning of Section 3.1, the expression U(1; d5-+2wnw), occureing
in the spin equation of motion (2.8}, is an w-quasiperiodic function of n:&&te that
quasiperiodic functions are defined in Section C.13; In Sections 4.1-4.4 we develop
the basic machinery of quasiperiodic funetions needed for spin-orbit tort, While some
of the results of Sections 4.1-4.4 are interesting per se (notably Theorems 4.1,4.3,4.5),
their main purpose is to improve, in Sections 4.5-4.7, on the themes which we started
in Chapter 3. Thus the tranformation theory of spin-orbit teri, developed in Chapter
3, stays in the foreground also in the present seciion. In particular we stick with our
credo mentioned in Section 3.6, that the emphasis is on weak coboundaries.

——
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Chapter 4. Quasiperiadic functions as tools for studying spin-orbit tori

4.1 Relations between polarization fields and spin

trajectories
The following theorem is about the characteristic curves of polarization fields.

Theorem 4.1 a} Let (w,¥) € SOT{d,w). Let Sg be a polarization field for this
spin—o-rbif torus and let ¢y € BY, Then the “characteristic curve” S : Z — RS,
defined by S{n) := Sg{n, ¢ + 2rnw), is a spin trajectory over ¢y for (w, ¥). If the
polarization field Sg is invariant, then S(n) = G{gy+ 2mmw) and the spin frujeciory

S is w-quosiperiodic.

b} Let (w, ¥} € SOT{d,w) and lef (L, w) be nonresonant (for the definition of ‘non-
resonant’, sce Section C.1). Let {w, V) have, for some dy € RY, an w—guasiperiodic
spin trajectory S over ¢o. Then (w, ¥) has @ unigue invarioni polarization field Sg

such that, for all integers n,
S(n) = G{¢y + 2wnw) . (4.1}

If in addition S is normalized 10 1, i.e., |S(n)| =1 then Sg is an ISF of (w, ¥).

Proof of Theorem 4.1: See Section E.13. l}

Note that by Theorem 4.1, and off orbital rescnance, a nonzero w—quasiperiodie spin
trajectory over ¢y exists for cvery ¢, if a nonzero w-quasiperiodic spin trajectory

exists over some ¢g.

Since for every spin trajectory S we have that [S] Is constant, it follows from
Theorem 4.1b that if, off orbital resonance, at least one nonzero w-quasiperiodic

spin trajectory exists, then (w, ¥} has an ISF.

o
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In spite of Theorem 4.1b, every spin trajectory S over & ¢y s the chpract 1st c

cu:\e of infinitely many polarization fields. In fact, every polarization fé S(,fwlrﬁ:h

.
7@

2. } f,,'> J satisfies G{dn) = S(0} also satisfies, for overy integer », S{n) = Seln, dh+ 2anw) =

T 40)G(do). However it follows from Theorem 4.1b that, in the special case when
(1,07) i;nonrcsonant and 5 is w-quasiperiodic, there is among those infinitely many

Aj 2w polarization fields Sg, which satisfy S(n) = Seln, ¢o + 2Zanw), only onc that is
invariant.

O Recalling Section 3.6, C_(i:io not pursu /t;)s-ol\e the ISF-conjecture. Thus hy

D Theorem 4.1b we leave open the qumtlolmﬁmnzg 0 wquasiperiodic spin trajectories

SN aT
xist off orbital resonance. K -

"y However, as mentioned in Scction 3.6, ‘most’ folevany spm- {b]t tori are al-

most coboundaries whenee, by Theorem 3.9 and Theorem 4. la

(L@bjf‘ j; gee /){V‘_ At‘?

a Since for every spin trajectory S wishaveZtift [S] is constant, it follows from
Theorem 4.1b that if, off orbital resonance, at least one nonzero w—quasiperiodic
‘\)OU\F spin trajectory exists, then {w, ) has an ISF.

nONZErs W

quasiperiodic spin trajectories.

Moreover, it foltows from the proof of Theorem «4.1b that the invariant polariza-
tion field Sg is uniquely determined by S(0). One takes advantage of this fact if

one computes the ISF by the technique of stroboscopic averaging (for remarks on

stroboscopic a\eraglng, see Section 4.5 / 7
/’é { o

{ ook o
ot ole p¥a l ngp/ﬂ‘v/[?\

S 4.2 Simple precession frames L
/’z’.af(o /J. Jor

in the present section, at the concept of the snnple precession frame. W’e recall from

Definition 3.2 that if {w, 1), {w, W) € SOT(d,w) and T € Cpr(RY, SO(3)) such that
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

RT3, %) = (10, 9") then eq. (3.4) holds. Thus pickinga ¥ € RY, the function
t: & -» SO{3), defined by #{n}) := T{¢y + 2anw), satisfies

T(n + D do + 2anw)i{n) = ¥'{1; do + 2anw) . {1.2)
Let in addition {w, ¥') € W¥{d,w). Then by Lemma 3.8b, eq. (4.2} implies
#n + 1)e* = T{1; gy + 2mnw)i{n)e® {(4.3)

Comparing eq. (2.8},(4.3), we find that the third column of £ is a spin trajectory of
{ts, ¥} over ¢o. This leads us to the following definition,

Definition 4.2 {Simple precession frame}

Let {w, V) € SOT{d,w) and let ¢y € RI. A funetion t : & — SO(3) is called
a “simple precession frame {SPF} of {w, V) over ¢y” if its third column is a spin
rajectory over ¢o, i.e., if eq. {{.8) holds for all integers n. &

By the remarks before Definition 4.2 it is clear that if T € Cp (R, SO(3)) and

R3,(T;w, ¥) € WT{d,w) then T{ds + 27nw), as_ a function of n, is an SPF over .

¢o. Thus the “characteristic curves” of T are SPF’s {for more details (_Jn_this,' 500

Theoremn 4.3 below).

If ¢ is an SPF over ¢y then, by eq. {1.3), & = {T{n + 1)¥(L; ¢ + Zamwit{n)e®,

fénce, by Lemma 3. Sa, a function X : Z — [0, 1} exists such that for all n

( ( w tT(n + L)L o + 2rne)t{n) = exp(zT,\(n)J)

I/ Nl e

gﬁ”‘v Clearly Me We call A the “differential phase Tunction” of £. We see that £
“transforms” U{I; ¢y -+ 2anw) via cq. {4.4) into the matrix exp(2wA(n)J) which has

a simple block diagonal forim and this is the origin of the term “simple”. Defining
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

the function pr: Z — [0, 1} by

0 ifn=0
)= MO+ + M- 1)) ifrn>0 . (4.5)
f=M-1)— ... — An}} frn<@
we obtain, by cq. {2.4),(4.4), that, for n € ,
B do) = () exp(2ap(n) 7 )70} {4.6)

Note that N is umquelv determined by &\na eq. {4.6) and satisfies [p(n+1} —
;z(n}j /\(n} so that we call y the “mtegra! phase function” of £, Clearly a function
t: ?f—» S0(3) is an SPF over ¢y iff a function u : Z — R exists such that eq. {4.6)
l;ofﬁs for all integers n.

.~ Remarks:

(1) Let {w, ) € SOT{d,w} and Iet ¢y € B% If f is an arbitrary function f :
7 — R and if R is a constant SO{3}-matrix then, by using eq. {2.5),{4.4), the
function {, defined by f{r) := ¥(n; de)Rexp(—TF2a f(n})), is an SPF over ¢y
with the differential phase function Mn) = [f{n + ¥) — f{n)]. We see by this

construction that, for every ¢, a large abundance of ?P 's, o
Dfloed @ oyt

({r‘x 7. -3 {'“ <A
We here discuss a sometimes useful property o‘l’ SPP’s.

t(w 0) € 8OT(d,w)
and let ¢ be an SPF of {w, ¥) over some ¢ with differential phase function
Z — S0(3) be defined by
t{n) = Hn + j). It follows from cq. (4.3} that for all integers n

{2

et

. Let j be an integer and let the function ¢ :

Eln + 16 = t{n + 1 + )¢ = Bl ¢ + 2a{n + wdi(n + et
= T(L; ¢y + 2nln + fa)i’(n)e,

whence, by eq. (2.8}, the third column of # is a spin trajectory over ¢p4 2irjw.

Thus ¢ is an SPF over ¢y + Zijw. We also obtain from eq. (4.4) that for all n

50
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Chapter 4. Quasiperiedic functions as tools for studying spin-orbit tori

T+ 130( L dp+ 2 (n+ 7)) () = T (n+ 14+ 7)T{L; do+ 2a(n+ i w)t(n+ 7)
exp{2aX{n + j}.7), hence the differential phase function A of ¢ is given by
X(n) == Mn + 7). If £ is wquasiperiodic and { is an w-generator of { then
- + 2mjw) is An w-generator pf ¢ whence ¢ is w—quasiperiodie. (3]
C 4

Since an w-quasiperiodic SPF # is SO(3)-valued, it follows from Definition C.1 Q&){ & t/» o
that ¢ has an w-generator { which is R®¥®-valued, albeit in general not SO(3)-valued. g; ? W& oo
Nevertheless, the situation simplifies when (I,t) is nonresonant, as Part b} of the

following theoremn shows.

Theorem 4.3 @) Let {w, ¥} € WCB(d,w) and (w, V') := Ry.{T;w, ¥) € WT(d,w)
with T € Cue, {RY, SO(3)). Then, for an arbitrery ¢o € R? the funetion t :  —
80{3), defined by i(n) 1= T(¢o + 2znw), is an w-quasiperiodic SPF of {w, ¥) over

¢o. Furlhermore the differentiol phase function X of ¢ sutisfies, forn € Z,

AMn) = 1%1";?'9 + NTw + f{1, ¢ + 2anw)}
= {“Ef“ 7w + f(1, do + 2anw)] (1.7)
and the integral phase funclion g of t salisfies, forn € &,
wiy = 12590 4 g = 2B g, )

where Ny, = Indo( ¥ (15 ), f{n, ) := PHF({n; ).

b} Lel (w, 0} € SOT({d,w) and let (1,w) be nonresonani. Let also (w, V) hove SO—’([G’ W
an w-quasiperiodic SPF t over some ¢y. Then a,i%T € Coer(RY, B3 erists ") ivrub:{s /
such that, for all infegers n, t{n) = T(do + 2nnw). Moreaver T € Cper(RY, Sg{f)) Q R P pn
Furthermore, {w, D) € WCB(d,w) and Ry(T;w, U} € WT{d,w). '

~ A oope
RS r(’»ﬂi) gpl

Lk v

Proof of Theorem 4.3: See Section E.14.
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

o s
As mentioned in Section 3.8, ‘most'éelewﬁ spin-orbit tori are &g cohoundaries
whence, by Theorem 4.3a, Irfac‘f'e quﬁisiiierimlic SPF’s. However as Theorem 4,19
crbital resonance which are not weak coboundaries

_ whenee, by Theorem 4.3b, ha‘%le ne w—quasiperiodic SPF.
I3

4.3 Uniform precession frames

In this section we infroduce “uniform precession frames” which are special SPF's.

As we shall see in the next section, uniform precession frames lead to the definition

Definition 4.4 (Uniform precession frame}

Fet (w, P} € SOT{d,w) and let ¢y € RY. Let also T be a simple precession frame
of {w, T) over ¢ and let its differential phase function be denofed by A. Then £ is
called a “uniform precession frame {UPF} over ¢y” if AM(n) is independent of n. The
constant value, sgy v, of A is then called the “uniform precession rate (UPR)” of .
Thus by eq. {4.4)

Fin + D1 do + Zenw)i{n) = exp(2aed) 4.9)

and, by eq. ({.5), the integrol phase function it of t reads as p(n) = {nv] and whenee
byeq (4.6) )

(o).

Uln; o) = H{n) exp{FImny {4.10)

We denote {JyE‘q(w lI’:’¢{| the sel of those UPR’s
UPF ever q’m a/;_';d.we\deﬁne Zafw, T) = Uy ensZalts, U, 90).

hich correspond to an w—quasiperiodic
il

é: Z — SO(3) is a UPF over ¢, iff a
T eq. {4.10) holds for all n € Z.

It follows from Definition 4.4 that a functi

v € [0, 1) exists such that ¢ither eq. {4.9)




e

; b) Let (w, W) € ACB{d,w) and (w, ) :=

Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

Of comrse any UPR is uniguely determined by the corresponding UPF but the

converse is not irue, i.e., different GPF’s can have the same UPR.

Remarks:

(3) Let (w, ¥) € SOT{d,w) and let £ be a UPF of (w, ¥) over some & € R%. Let v
denote the UPR of ¢ and let § be an integer. From Remark 2 we know that the
function # : £ -+ SO(3), defined by #{n) := {{n + ), is au 5PF over &g+ 2njw
and that its differential phase function N is given by ¥{n} = Mn + )} = v,
where A is the differential phase function of . Thus A has the constant value
v whence ¥ is a UPF over ¢y + 277w with UPR v. It also follows from Remark
2 that ¥ is w-quasiperiodic if ¢ is w—quasiperiodic. Thus, for every integer f,
Z{w, ¥, o + 2tji) = Zalu, ¥, ). CW, e ({ Aretf ven> ¢

{4) Let {w, ¥) € SOT{d,w) and & € R%. By Remark 1 we know that B{-; ) is ﬁ’ ’{ﬁ’i
an SPF over ¢y with the differential phase function Mn) = 0. Thus ¥(;dg} is h ;,/y ...x/rs-
an UPF over ¢ with UPR_E._

/

04.6-3 Bl ¢
wa SPF

Theorem 4.5 a} Let (w, V) € SOT{d,w). If v € Zafw, U, ¢u) for some ¢y € R?
then every spin trajectory of {w, ¥} over ¢y is (w, v)—guasiperiodic.

Ry T, %) € AT{d,w) with T €
1y ¢o € R? the function t 1 Z — 50(3),
an w-quasiperiodie QPE over ¢ with UPR

Crer{RY, SO(3)).
defined by Hn) == T{¢y + 2anw), is
v=PH({V'(1;0)).

Then for an arbi

%

¢} Let (w, ¥) € SOT{d,w) %and let {1,w) be nonresonani. Let {w, ¥) have
an w-quasiperiodie UPF.E over some do € R with UPR v. Then a umque T e

Coer{RY, B¥*3) erists such that, for all integers n, £(n) = T{gg+2rnw). MoreoverT €
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

Coer(RY, SO(3)).  Furthermore, (w, V) € ACB{d,w) and {w, V') = Ry (T, V) €
AT(d,w) with PH{¥{1;0)} = v € Z(w, T).
.‘:::‘-“h—-——-um,—u—‘

Proof of Theorem 4.5: See Section E.1b. 0

7 St é Ln?&’/¢~';/;...f
As mentioned in Section 3.6, ‘most' relévant spin-orbit tori are aimost coboundaries
whenece, by Theorem 4.5h, a\‘c w-quasiperiodic UPF's. However, as mentioned
after Theorem 4.3, there arc spin-orbit tori off orbital resonance which have no w—

quasiperiodic SPF whence have no w—quasiperiodic UPF.

Theorem 4.5a allows to do spectral analysis of spin trajectories as follows. In fact
if » € Solw, ¥, o) and S is a spin trajectory of {w, V) over ¢ then, by Lemma C.4d
and Remark 1 in Seetion C.3, the spectrum of each component S; of § s a subset of

Viwsy {the spectrum of & complex vatued function on Z is defined in Section C.3).

The following theorem (Theorem 4.6} reveals the structure of the sets Za{w, ‘I’@?
{and this in turn will reveal, in the next section, the structure of the sets Si{w, ¥)).

To prepare for the following theorer let {w, ) € SOT{d,w) and let ¢ € RY,

We first recall from Definition C.I that, for w € RY,
{mTw+n

relation ~, on [0,1) by which elements 2,1, €

Y, is defined by ¥, =
:m € Z%,n € Z}. Tor the following theorem we need the equivalence
[8,1) are equivalent iff there exist
{e,y) € {1, -1} x ¥, such that v» = &1y + y. The equivalence class of a v € 0,1} is
denoted by {¥].,. Clearly

Me={v+tyelpD:ec{l,.-1Lyell}
={levtyl:ec{l, Ly} ={lev +wj:e e {1, -1}, c 29} . (L.11)

To get a feel for the equivalence relation ~,, we now show that if » is in Za{w, ¥, dg)

then

[V € Selo, W) - (1.12)

e
gri‘fg [aF 22N isc’.{’?/ jpj”f ‘({f) L/U u[k' M Pq T

Cera i 2l Loy
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Chapter 4. Quasiperiodic functions as fools for studying spin-orbit tori

In fact if ¥ € Ep{w, ¥, ¢p) then by Definition 4.4 an w—quasiperiodic UPF £ exists over
¢o which has UPR v. We pick a y € ¥, and define the function # : Z -+ SO(3) by
t'(n) := t{n) exp(—T2Zany). Clearly ¢ is an w-quasiperiodic function. Furthermore
for n € Z we have, by eq. (4.9},
£7{n + 1Y0{1; 6 + Zrnw)t'(n}
= exp(J27(n + U} (n + DT({L;do + 2nw)t(n) exp(--J2any}
= exp(J2w(n + 1)y) exp{2avT ) exp{—T 2any) = exp(J2a(v + y}) .
Thus t' is an w-quasiperiodic UPF over ¢y with UPR |v+yJ. We define the function
" Z — 50(3) by ¢'(n) = H{n)exp{T 2eny)J", where 7' Is given by eq. {3.20).
Clearly " is an w—quasiperiodic function. Furthermore for n € Z we have by eq.
(4.9)
UTn -+ 1YWL ¢y -+ 2mne)t{n)
= J exp{—T2a{n + Dyh{n + 1YU(1; o + 2anw)i{n) exp{T 2rny)F’
= J'exp(—T2x{n + Dy} exp2avT ) exp(T2any) T’ = T exp{T2w{v — )}’
= exp(T'T T tnlw — 1)) = exp(—T2ly - 1)) = exp(T2a(-v+ 1),
where in the fifth equality we used eq. {3.21). Thus ¢ is an w-quasiperiodic UPF
over ¢g with UPR |~v + »]. We have therefore shown that if v € Za(w, ¥, ¢p)
and € € {1,-1},y € ¥, then |ev + y] € Sofw, ¥, 40} s0 that, by eq. (L11}, the
inelusion {4.12) holds, as was te be proven. While obtaining (4.12} was clementary,
the following theorem strengthens this inclusion to an equality. Since the proof of
Theorem 4.6 involves tether sophisticated properties of quasiperiodic functions, this

indicates that eq. (4.13) is a much deeper property than (4.12).

Theorem 4.6 (Structure of Sp{w, ¥, ¢g)) Lek (w, U} € SOT(d,w) and let ¢y € RY.
Ifir € Zo(es, U, ¢y then

Zalw, U o) = Wl (4.13)
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Proof of Theorem 4.6: See Section E.16. O

4.4 Introducing spin tune and spin-orbit resonance

of second kind

Tnt this work the main purpose of UPF’s and UPR’s is to enhance our knowledge of
the spin tunes and spin-orbit resonances of fivst kind. The following theorem gives a
first glence at the relation between spin tunes of first kind and UPR’s, in partieular

between =) {w, ¥) and Za{w, ¥, do).

Theorem 4.7 a) Let (w,T) be a spin-orbit torus. If v & Ex{(w, ¥} then v, C
2w, B). Morcover, if y € {[0,1)NY,) then jyl., = 0,1} N ¥, Furthermore either
(0, DN} CE(w, T) or S, ¥)N Y, =0. Y
A ot 24
O% Foref | 2w §-ores
b) Let (i, ¥) € SOT{d,w). Then for all & € R4

Zi{w, ) C Salw, T, ¢a) - (4.14

Fdpgy

77
¢} Let (w, T) € SOT{d,w) and let (1,w) be nonresonant. Then, for all gy € e,
Z{w, ¥) = Zh{w, T, 89).

Moreover, if Zs(w, T) is nonemply, then, for all &y € RY, 5 {w, &) = Sp{w, ¥, ¢o)-

d) Let {0, D), (w, V) € SOT{d,w) with (w, T) ~y, (w, V) and let ¢ € Be. Then
Zpfw, V', o) = Zalw, Ty o) '

Proof of Theorem {.7: See Section E.1T. [m]
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In the case of most practical interest, i.c., when {w, ¥} is an almost coboundary,
the sel sefs ts S1{w, ¥) and Ep{w, T, ¢o) are equal by Theoren){g% The following defini-

tion of spin tune of second kind transfers the spin tune definition in [BEH] from the
[ Lede)fp

Definition 4.8 (Spin tune of second kind, spin-orbit resonance of second kind} Let
{w, W) € SOT{d,w). Then {(w, V) is said to be Cwell-tuned” if ofl Zafw, T, ¢y} are

nenemply and equaf where ¢0 varies ever RY, OIherwzse (w ) is said to be “i-

flow formalism to the map formalism.

ane equm! to u.g(w, 'L') where again q&o varies over RY, For a well-tuned spin-orbit

torus we call the elements of Eafw, ¥) spm tunes of second kind”,

If the spin-orbil torus is well-tuned fhen it is said to be “on spin-orbit resenance
of second kind” if O is a spin tune of second kind end it is said lo be “off spin-orbit

" resonance of second kind” if 0 is not a spin tune of second kind. [

Proposition 4.9 ¢) Let (w, ¥) € SOT{d,w). If (w, T} € ACB{d,w) then {w, T} is
well- tune&’ and the spin funes of first and second kind are the same. If;/;aq{w )
then =, {uw, 111)
then, for all &y € RY, Sh(w, T) =

[Vla- If {w, ¥) is well-tuned and 1fu is a spin tiine of second kind

(w@'%)ng)

b} Let {w, T, (w, 7"} € SOT(d,w) and (w, T} € ACB(d,w}. Ther cither Z1{w, T} N
Zilw, T') = B or Si{w, V) = S (w, ). In the former case (w, ¥) by, (0, V') and
in the lalter case (10, ¥) ~y,, (w, ¥, {w, ¥} € ACB(d,w).

e} If {w, ¥) is a spin-orbil torus end if (1,w) is nonresonant then the following hold.
The spin-orbit torus (w, T} is well-tuned iff (w, ¥) € ACB{d,w). If {3, ¥) is well-
tuned then Z,(w, ¥} = Saiw, ¥).
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Chapter 4. Quasiperiodic funetions as tools for studying spin-orbit teri

d) For every spin-orbil torus {w, ) the following hold. If v is a spin tune of second

kind of (w, ¥) then each spin trajectory of (w, ) is {w, v)-quesiperiodic. Ifv is a spin

tune of first kind of {w, ¥) then each spin trajectory of {w, V) is (&, v) -quasiperiodie.
e

e} A {0, T) € SOT(d,w) is well-tuned iff the Sx{w, T, ¢} have ¢ common element

when ¢ varies over R,

1) If (w, ¥} € SOT{d,w} then the following hold. The set Ey{w, V) and the seis
Solw, U, ¢y}, where ¢y veries over RY, have munfab!y manry elements. The spin-

orbit torus is ill-funed if Z5(w, ¥) has uneountably many elements.

g} If (w, 0), (w0, U € SOT(d,w) with {2, V) ~y,, {w, V) then the following hold.
Either both spin-orbit fori (w0, ¥}, (w, U} are well-funed or both of them are ill-tuned.
Morcover if the spin-orbit tori {w, ), {w, V') are well-tuned then they hove the semne

spin tunes of second kind.

Proof of Proposition 4.9: See Section E.18. 0

Remark:

{5) An important conclusion from Prop-osmon 4. Qa/s that generieally-two almost
coboundaries (w, ), {w, I} € ACB(d, w),xid/ ot belong ko the same Rg,-orbit,
as follows. In fact, picking v € Z,{w, ¥),+ € Ey{w, T*) such that o], # [].,

# 1=

we have, by Proposition 4.9a, that Z{w, ) = [/], Z1fw, ¥) whence,

by Propoesition 8.12a, {(w, ¥} ., (0, ')

We now address the topic of spin-orbit resonances of first and second kind.
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Chapter 4. Quasiperiodie functions as tools for studying spin-orbit tori

Proposition 4.310 a) If a spin-orbit torus is on spin-orbit vesonance of first kind
then it is on spin-orbil resonance of second kind. If a spin-orbit torus is off spin-orbit

resonance of first kind then it is off spin-orbil resonance of second kind.

b) Let (w, ¥) be a spin-orbit torus. Then {w, V) is on spin-orbif resonance of second

kind iff all of its spin irejectorics are w-quasiperiodic.

¢) A (w,¥) € SOT(d,w) is on spin-orbit resonance of first kind iff Sifw, ¥) =
0,1} N Y, Furthermore a (w,¥) € SOT{d,w) is on spin-orbit resonance of first
kind iff (w, ¥} kas & spin tune v of first kind such that m € Z%,n € Z exist with

v=mTw+n. (4.15)

d} A (w, ¥) € SOT(d,w) is on spin-orbil resonance of second kind iff, for all ¢y € BY,
Zaw, T, ¢} = (0,1} NY,. Ruthermore a {w, ¥) € SOT{d,w) is on spin-orbit reso-
nance of second kind iff it has a spin lune v of second kind such thot m € Z28,n € &
which satisfy eq. {§.15).

e} If {w, ®),{w, ') € SOT{d,w) are on spin-orbit resonance of first kind, then
(0, ¥) ~a w0, ¥).

£ If (0, 9), (w0, V) € SOT(d,w) with {w, ¥) ~g. {w, V) then the following hold.
Either both of (w, ), (w, V') are on spin-orkit resonance of second kind or none of

them. Furthermore either both of them are off spin-orbif resonance of second kind or

’npe/of them.

g} {Yokoye's unigueness theorem revisited) Lel {w, &) € SOT(d,w)} and let (1, w) be
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Chapter 4. Quasiperiodic Tunctions as tools for studying spin-orbit tori

nonresonant. Let (w, ¥) have an ISF Sg and an ISF which is different from Sg and

—8g. Then (w, W) is on spin-orbit resonance of second kind.

Proof of Proposition 4.10: See Section E.19. &}

4,5 The SPRINT Theorem and a corresponding

spin tune algorithm

A‘/{ ol

We now r}ﬁg};ne the theme of Section 3.7 and pose the questim}( undeeeltfehr circum-
stancesﬁévl ::.':éﬁkly trivial spin-orbit torus is an almost coboundary. As a matter of
fact, ag in Secction 3.7, we confine to the case off orbital resonance for which Theo-
rem 4.11 answers the question. @ heorem 4.11 we then prove the “SPRINT
Theorem” (Corollary 4.12) and demonstrate its practical importance by outlining,
after Corollary 4.12, an algorithm, used in the code SPRINT, to mﬂ?}ﬁ?ﬂ‘}_‘}f_@“}

ind.

ff_ ﬁrst Var‘u_i SGCO{ld

Theorem 4.11 Let {1,w) be nonresonant and {1, ¥1) € WT{d, w). Thus, by Prope-
sition 8.5a, eq. {3.90) holds for ¢ € B3, where My := Indo{%:(1; )}, 1 :@FQJ;(I; -
Then, ebbrevialing the zeroth Fourier coefficient of fi by '_(

Jro = {20 [75 - [ f{G)dn - -dda and defining fi == fi — fre € Crr(R', R},
the following hold:

a} {2, 01} € ACB(d,w) iff the following conditions are satisfied: My = 0 and a
9 € Coee (R4, R) exists such that eg. (3.34) is true for ol ¢ € R

b) Let Ay = O and let 9 € Cpee(RY,R) exist such that eq. (3.34) holds for all

GO
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

¢ € BE (thus, by Theorem 4.11a, (v, € ACB(d,w)}. Then picking e N € 9 and
defining T € Cp.r (R4, 505(2)) by eq. (5.29), the following held. TI}g s!in_-g@_'

(w0, W2) 1= Ry (T, 1) is almost trivial and, for ¢ € R, we have

Ta{1; @) = exp{J 2m1n} ,

(4.16)

where ve 1= | fro— N7wl. Morcover vy € Zy{w, Uy). The spin-arbit torus (w, ¥y} =

Ry (T T"w, W)Y is almost trivial and, for ¢ € B9, we hove

VoA end

(G a, )
“ 3 “, .

T3(1; ) = exp(J 2713}, {4.17)

where vy = [— fio + NTw]. Moreover v € Z1{w, ¥,).

¢) Let (w, 1) € ACB(d,w). Then {w, ¥y) is well-funed and

(1ol = Exfw, 01) = Eafw, U1} (4.18)
Proof of Theorem 4.11: See Section E.20. 0
Remark:
-~

(6) Clearly, those spin-orbit tori in Theorem 4.11a, with Afy # @, are not almost
coboundaries. Another consequence of Theorem 4.1la is the following. Let
(1,w) be nonresonant and let {w, ), {w, ¥a) € WT{d,w) such that My, My # |
0 and M2 — M3 # 0 where M; := Inda(¥y(1;-)) (i = 1,2). Thus, by Theorem ‘,
3.1de, we observe that {w, ¥,) s, (w,Ta). Moreover, by Theorem 4.11a,
(e, ¥4}, (w, Tp) are not almost coboundaries whence E‘;(c‘;, T) = Efw, ¥y} =
§. Therefore {w, ¥y), (w, ¥a) provide an example of two spin-orbit tori in the
sanie SOT(d,w) and with identical =) but which arc not on the same Ry,
orbit. Thus this example Sfm:;:;n general, the converse of the first claim
in Proposition 3.12a is not 't.me. o
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

The following corollary to Theorem 4,11 we call the “SPRINT Theorem™ since
it presents the facts used by the code SPRINT for the numerical ealculation of spin
tunes {of first and second kind) via stroboscopic averaging (for details on this code,
see the remarks after Corollary 4.12}. Note that the notation ¥y, My, fi, f10 used in

Corollary 4.12 serves to facilitate the comparison with Theorem 4.11.

Corollary 4.12 (The SPRINT Theorem} Let {w, ¥} € ACB{d,ws) end let (1,w) e
nonresonant. Let us choose a T € Cper(RY, S0(3)) such that {0, V) 1= Ry(Tiw, T} €
WT(d,w). Thus, by Proposition 8.50, eq. (3.50) holds for & € RY, where A, =
Inds{Uy (L)), fi == PHF(U(1;-)). Abbreviating the zeroth Fourier cosfficient of
fi by frg = (Uf20) J27 oo 27 [u8)dy - - - dia, the following hold:

p»“/

r .
e A J:}f/é,-\/ gl
a) The spin-orbit tori {w, ¥) and (w, Ty} ar‘pf"welf-tuned and their spin funes of first

and second kind setisfy

(Higlle = Silw, ¥) = S{w, ¥) = S{w, ¥} = Sa(w, ¥1) . {4.19)

b) We heve M, =0 and, for ¢ R, n=1,2,..,

n—}
Ty (m¢) — exp (JE.T > hlg+2n jw}) . {4.20)

j=0

') Moreover, the zeroth Fourier cocfficient of fi reads as
1 n—1
” fip= lim ;;2 Hil2mjw) . (.21
i

¢} The function  : & — SO(3), defined by t{n} := T{2anw), is an w-guasiperiodic
SPF of (w, V) over 0 € RY and for n = 1,2, ... we have

n-1

T 0) = t{n) exp (J’er Soh (2ﬁjw)) (o).

j=0

(4.22)
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Chapter 4. Quasiperiodic functions as toels for studying spin-orbit tori

The function S : £ — $?, defined by S(n) := ¥{n;0){(0)c' is @ spin trajectory of
{0, 0} over 0 € BY. Morcover forn=1,2,...,

n—1
exp(izfr Efl(‘z.-rjw)) = {e! + iy (n)8(n) . (4.23)
=0
O !(';'j
where, as comnion, | denotes the complex root of —1 lying in the upper complex plane.
Proaf of Corollary 4.12: Sce Scction E.21. i}

Corollary 4.12 is of great practical interest for the numerical calculation of spin

b.() V\ [epac88, spind8, Hof, Vog, spm?DGGb, spm?O()Ga] Mote that SPRINT also employs
a second methed, which is due to Yokoya {Yok2] and different from stroboscopic
averaging, but which is of no relevance for the point we want to make hereﬁ Thus
in the following paragraph I sketch, by wsing the notation of Corollary 4.12, that
particutar algorithm in SPRINT which computes, via stroboscopie averaging, spin

tunes of first and second kind. Note that SPRINT performs this aigorit.hm not

VES
f!{ ()ra [’w‘ f

constitute the spin-orbit system to be dealt with in & storage rmg). Tlus :mportsmt

circumstance, which is explained in Remark 7 below, is essential for putting the

algorithm into perspective.

Now 1 outline the algerithm as it is used, up to some modifications which do not
miatter here, by the code SPRINT. Let {w, ¥) € SOT(d,w) be an almost cobsundary
and let it be off orbital resonance, ie., let {1,&)} be nonresonant. On one hand,

the algorithm computes, via the technigue of stroboscopic averaging, an ISF Sg

U\)ln H{fh
f“’ ‘?n’l\]w

b\)h),

of {1, 7). As a matter of fact, the algorithm merely computes Sg at t‘}ég. points
¢ =0 and ¢ = 2aNw for sone sufficiently latge positive integer iV, i.e.,‘acomputcs
S
the points G(0) and G(2zNw) in 8% From that, by a simple orthonormalization
P, R Ay

procedure, the algorithm computes a T € Cr-{R?, SO(3)) whose third column is
63
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

. As a matter of fact, the algorithm mezely computes T at the points ¢ = 0 and
¢ = 2aNw, i.e., computes the points T(0) = ¢{0) and T(2aNw) = {{N} in SO3).
Nate incidentally that, by Theorem 3.9, one has Ra{Tiw, ¥) € WT(d, w).\gy let
us abbreviate {w, ¥} := Ry.{Tiw, ¥} € Wf(d,w),'fﬁef%é(aii% in the situation of
Corollary 4.12. On the other hand the algorithm computes in a recursive way, via spin
tracking, the points S(1}, ..., ${¥} in §? where S{n} := ¥{n;0)1{0)e’, Now Corollary
4.12 enters the game since the algorithm uses the data t{N'), S(V) to compute a spin
tml-t; as follows. If ¥ is sufficiently large {order of magnitude N = 160009), then, by
Corollary 4.12b, we have

N—

Nfige Z Hf2aja),
whence by Corollary 4.12¢,

x-1
exp(i2aN | fio]) = expli2rN fie) & exp (i‘lﬁ Z f;(??rjw))

j=0
= (! +ie?)TH(N)S(NV) .

Thus for large N we have a (unique} » € [0, 1) such that

(' + ie?YTHT{NIS(NY, (4.24)

{1.25)

exp(i2nNyv) =
Lf!,B_! BV,

whence v is an approximation of | f10]. Solving therefore eq. {4.24) for v € [0, 1) the

algorithm obtains an approximation of | fi0]. However, by Corollary 4.12a, | fi0] is

a spin tune of first and second kind of {w, ). Thus v is an approxin:

e

ion of a spin

tune of first and second kind B%u, ¥) which completes our outline of the algorithm.

In retrospect we sce that tht;\a] orithm, being a blend of concepts and facts
g\)ll‘i&;f(l\'), S(N) and applies (4.24). The

tratking, i.c., by solving the equations of

established in Chapters 3 and 4, com’
computation of (), ${¥} Is done by

64




(\ﬂfn 56/;;() et Z{{“ xd v (t';f W‘Vﬂﬁp’y\ /ii'yyp V .

Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

motion (2.1),{2.2} in & recursive way. Notc that stroboscopic averaging is a certain

way of summing up spin tracking data. L'_) Md:?’/\.{’,l’& é\ j o
st ads. perlior

Remark:

{7) We recall from the Introduction {sce Scction 1.1) that, in the situation of
a storage ring, one is not only faced with a single spin-orbit torus but with a
continuous family of spin-orbit tori labelled by an action-parameter J, i.e., with
a spin-orbit system. Then the spin tune | fi ] unfolds into & family of spin tunes
paramterized by J. This funetion | fio} of J is catled the amplitude dependent
spin tune {ADST) and experience,shows that it is piecewise continuous in J.
The piecewise continuity in J is‘_oﬁ't‘-'o the continutity of & in J and ko the fact
that T is constructed In a way such that it depends piecewise continuously on
the parameter J. The latter is adﬁe;e:fj -thank;;the stroboscopic averaging
technique, by constructing the above mentioned ISF Sg {whose generator G is
the third column of T') such that G is & piecewise continuous function of the
parameter .JJ and by performing the orthonormalization procedure, which leads

from @ to T, in & piecewise continuous way.

Of course, the code SPRINT has te discretize the continuous J-values into
a grid, and, once having choosen this grid sufficiently dense, SPRINT nicely

exhibits the piecewise continuous dependence of | fi o] on J.

4.6 'The impact of Homotopy Theory on spin tunes
of first kind
In this section we state and prove Theorem 4.17. Parts ¢) and d) of this theorem

display how Homotopy Theory has an impact on the individual values of the spin

tunes of first kind. In fact, in the situation of Theorems 4.17¢,d, Z;{w, ¥} partitions
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Chapter 4. Quasiperiodic fiunctions as tools for studying spin-orbit tori

into sets in a way, such each of these sets is assoclated with a certain subset of
[®7, SO(3}zr. For more details and the practicat implications of this, see the remarks
after Theorem 4.17. Recall that [RY, SO{3)],, is defined in Definition B.18.

Definition 4.15 Let {w,T) € SOT(d,w) and 5 € {1, -1}". Then S§{w, T) is de-

fined b .
e MQ&Z/nce}j

EHw, U} = {PH(V'(1;0)) : {w, V") = Ryo(Thw, T} € AT (d,w),
T € Crer(R?, SO(3)), Indau(T) = s} .
Clearly for every (w, V) € SOT{d,w) we have
S, V)= | =v). {1.26)
sefl, -1}
With x € B, 5 € {1, —1}* we define

V= {m'x+n:imeZ neZs={{-1) ...} ¥y,

mTxy+n
2

yhalf o { in € Eome B {1, (™) £ (L, DY,

where Yy s given by Definition C.1. [}

Proposition 4.18 If {w, ¥) € WCB{d,w} and s € {1, -1} then there exists T €
Crer{RY, SO(3)) with SO(3)-index s such that By, (Tiw, ¥) € WT{d,w). If(w, T} €
ACB{d,w) then, for every t € {},—1¥, =i{w, V) is nonempty.

FProof of Proposition £.16: See Section E.22. 0

If Z){w, T} is nonempty then, by Proposition 4.16, each Z§{w, T} is nonempty
which raises the option to see some structure in =§{w, ¥) leading us to the question

/i%e Z${w, ) overlap or don't, i.e., the question if the union on the rhs of eq. {426} O
is disjoint or not. Theorem 4,17 gives us conditions under whick the Z5{w, ¥) indead

don’t overlap. For the implications of this, see the remarks after Theorem 4.17.
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori
Theoremn 4.17 Let {w,¥) € SOT(d,w} and let (1,w) be nonresonant. Then the
following hold,

a} Let (w,¥) € ACB(d,w) and let T}, Ty € Cpr(R%, SO3)) such that (w, ) =
Ry (T, ®) € AT{d,w) where i = 1,2, Abbreviating vy := PH{U{(1;0)), where
i=1,2, and s = Indy {ITT) then cither (1 — ) € ¥2 or (i + ) € ¥,

b} Let (w, ¥) € ACB(d,w). If one picks, by using Proposition 4.16, av in E&l""'l)(w, )

then one obtains, for every s € {1,—1}9,
EHeon W) C{ev+y:yeYiee {1, —1}}. {4.27)

¢} IS (w, TINYRe — 8 and 5,8 & {1, -1} with s # ¢ then Z{w, TINZi{w, T) = 0.

d) Let {w, U) have an ISF Sg and let il also hove an ISF which is different from Sg
and —Sg. Then Z{w, V) # & and, for s £ ¢, Z}{w, ¥)N E{w, T) = 6.

e} Either 2, (, ¥) C YU or Z){w, V)N YA = 0.

Remark: The burden of the proof of Theorein 4.17 is on the preof of Theorem 4.17a.

Proof of Theorem 4.17: See Section E.23. ]

Since Theorems 4.17¢.d give us conditions under which the Z§{w, ¥) don’t overlap
they display at the same time how Homotopy Theory impacts the spin tuncs of
first kind, as follows. Let {w, ¥) € ACB(d,w) and 5' £ 5% such that Z5'(w, ¥) N
Z{w, ) = B. If 15 € Ef (w, ¥) then, by Definition 4.15, a T; € Cp.(RY, SO(3))
exists with Inds (T3} = s* and such that (w, ¥;) == Ry.(Tiw, T) € AT(d,w) and
v; = PH{T{1;0)) where i = 1,2, Since 5! # s* we have Indso(Th) # Inds4(To)
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit teri

whenee, by Proposition B.i8e, T} #iﬁ)(a) T, e, Ty, Tp are not 2a-homotopic w.r.t.
= Rl :

We now discuss some aspects of the situation, in which the Z§(w, ¥) den't overlap,
that are not only of theoretical but also of practical interest. Let {w, U} € ACB(d,w)
such that the Zj(w, ¥} don't overlap. Then the elements of =Wy, ¥) are rather
exceptional as follows. We recall from Definition 4.15 that for each clement v of
Sty 1) & P € Cpur(RY, SO(3)) exists with Fndaa{T) = (1, ..., 1)7 aud such that
{0, ¥') 1= Rao(Tsw, ) € AT(d,w} and v — PH(P'(1;0)). Note that, by Definitions
B.12,B.14, every liiting of T wrt. {8% ps, SO(3)) is 2 function T € G (RY,$9),
i.e., is 2x-periodie. Thus in computer codes which compute T' in the guaternion
formalism, i.e., which deal with T, the elements of Egi"“’”(w, ) require a 2a-periodic
T whereas each dlement of Z,{w, ¥} \55”'""”0.;, T} requires a 7" which is not 2x-
periodic. In ather words, the spin tunes of first kind which are associated with 27-
1@9{1}9?’ s, are rather cxceptional. This phenomenon, which occursin a similar way
also in the spinor formalism {the latter formalism is meationed in Section 1.3), was
ebserved in [Hof, Scction 4.1},[Yok2] and accordingly the present section is inspired
by these two works.

4.7 TFurther properties of invariant spin fields

Lemma 4.18 Let G € Cper(RY,§%) bie of class O and lef w € RY. Then o (w, ) €
SOT(d,w) exists whick has an ISF Sg generated by G.

Proof of Lemma 4.18: See Section E.24. u}

We now resume the theme of Theorem 3.18.

1,{  dpe .
ACATT) T Theorem 4.19 Let w be in B such that (1,w)} is nonvesonant and d > 2. Then

) (‘.g,(.é

Pl
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Chapter 4. Quasiperiodic functions as tools for studying spin-orbit tori

there exists a (w, ¥) € (SOT{d,w)\ WCB(d,w)}) which has an ISF Sg. For every

such spin-orbif torus, Sg and —8g are the only ISF%.

Proof of Thearem 4.19: See Section E.25, m
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Chapter 5

Reconsidering the Z-actions L, g

(PF)
and LWI,

In this section we reconsider the Z-actions L,y and Lf‘fg } introduced in Section 2,

5.1 Carving out the topological Z-spaces (R?'3, I, ¢
as skew products of the topological Z-spaces

(R7, L)
Proposition 5.1 Let (w, ¥} be a d-dimensional spin-orbit torus. Then the function
B RH S RY, defined, for ¢ € R, S € RY, by h{dhay o, 04, 5) = (D1, erny 62)T, s
a confinuous Z-map from the topological Z-space {R*V3, L. s) to the topolsgical Z-

space (R, 1,). Moreover, the topological Z-space {BRH3, L) is a shew product of
the topological Z-space (BRI, L),

Proof of Propesition 5.1: See Section E.26. i}
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With Proposition 5.1 we can now put eq. (2.5) into perspective. In fact, while
in Section 2.1 we derived cq. {2.5) from eq. {2.1},(2.2) we now derive cq. (2.5) in a
different way. Since, by Proposition 5.1, (R¥+3, L, g) is a skew product of (R%, L,;)
we can apply Remark 1 in Section A. According to Remark 1 in Section A we get,
forneZ,¢c BRI, SRS,

L(n;
Lug{r,5) = (73 9) 1)
E'(n; 9, 5)
where the function LY : Z x R4 s B3 satisfies, for m,n € Z,¢ € B9, S € R?,
L'{n+m;¢,8) = L'(n; ¢ + 25muw, I'{(m;6,5)) , (5.2)

where we also have used eq. {2.14). Imposing the condition that L'{n; ¢, 8} is linear
in S weget,fornc & cRY,SeRY,

L'(n;¢,S)= L"(n;9)5, (5.3)

where I is a function from Z x B¢ into the set of real 3 x 3 matrices. It follows
fromt oq. {5.2),(5.3) that, for m,n € 2, € RY, S ¢ R?,

n+my¢) = L"(n; ¢ + 2mmw) L (ms ) {5.4)

which is indeed eq. (2.5) expressed in terms of L. We conclude that cq, (2.5} follows
from the facts that (B4*3, L4} is a skew product of (R, L)) and that L.,¢{n; ¢, S)

is linear in S.

5.2 Carving out the topological Z-spaces (R*3 L, 1)
as extensions of the topological Z-spaces (T¢ x

R, L3

As mentioned in Section 2.1, the spin-orbit motion in B3 is closely related to an

associated spin-orbit motion in T x B? which is characterized by the Z-action L}
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on T4 x RS that is defined in Proposition 5.2b, In fact while the emphasis in the
present work is on orbital motion in RY, a deeper study of spin-orbit tori will stronger
focus on orbitat motion in T and therefore the present section give a brief glimpse

into this.

The d-torus T is defined by Definition B.2. Proposition 5.2, stated below, ex-
hibits the relation between L[(‘,T.g, and L, ¢. But before we come to that we define the
map psq: BFP  TIx R for g € RY, S € D, by

L p.a(¢) _ exp(ig)
P‘S.d(‘:” S} = g g l (55)

will turst out to be a Z-map from (BRI, L, ) to (TVxR3, LT}). Note that, choosing
the product topology on T¢ x B3, we see that p; 4 is a continuous. Moreover, psq Is

onto T9 x R3.

If {w,?) is & d-dimensional spin-orbit torus then U(n;-) is 2r-periodic whence
it has a unique factor T'(m;-) wrt. (BRY psg, T, ie, ¥ Zx T — SO(3) is the
unique map such that for n € Z,4 € RY,

Un ) = Vmpaald)) . (5.6)
Note that ¥{n; -} is continuous. We can now state the proposition.
Proposition 5.2 a) Lel w € RY and let the function 157 : £x T — T4 be defined,
forneZ,z T4, by
T
Iy 2) = (cxp(i?ﬁnw])z;, ...,exp(i%nwd)zd) . 5.7

Then IV is a B-action on T¢. Moreover (77,157} is a topological Z-space and
Pi4 is a continuous Z-map from the topological Z-space (R, L.} to the topelogical
Z-space (T, Lf,n). Furthermore the topolagical Z-space (RY, L} is an eztension of
the topological Z-space (T2, LT,
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b) Let (w, V) be a d-dimensional spin-orbit lorus and let the function ng, cExTx
R = ™ x R3 be defined, fornc 2,2 T, S € B3, by

@ — 15%n;2)
Lig(n;z, 8} W )8 {5.8)

where W' is related to © by (5.6), i.e., cach W(n;-) is the factor of W(n;-) w.r.i.
(Rd, Py T‘j)-

Then L1} is a Z-action on T! x R®, Moreover (1% x R, L1} is a topological Z-
space and p; 4 is a continuous Z-map from the topological Z-space (RH3, L, ) to the
topological Z-space {19 x B3, Lﬂ,) Furihermore the topological Z-space (RM3, 1, )

is an extension of the tepalogicel Z-space (1% x B3, ..f}, .

¢) Let {w, T) be a d-dimensional spin-orbit torus and let (T x B%, L) be a topological
Z-space. If the map psq is a Z-map from the topological Z-space (RM3, L,5) to the
topological Z-space (T x R, L), then L = Lﬂ,

d} Let (R93, L) te a topological Z-space, let {w, V) be a d-dimensional spin-orbil
torus and let the map ps.q be a Z-map from ihe topological Z-space (RT3, L) 1o the
topological Z-space (T¥ x B3, L)), Then a N € Z2 exists such that, forn € Z,6 €
R4, S5 e B3,

¢+ 2mnw -+ 2anN

L(ﬂ;é, S) = ‘If(n‘¢)s

(5.9)
Conversely, if N is an arbitrary element of 27 and if o function L : Zx RV  Ri+3
is defined, forn € 7,6 € B4, S € B, by (5.9), then (R¥3, 1) is a topological Z-space

and ps 4 is a Z-map from the tapological Z-space (R33, L) to the topological E-space

(T x B3, Lﬂ,) maoking the former an extension of the lailer.
Proof of Proposition 5.2: See Section E.27, 0
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Due to Eq. (E.107) in the proof of Proposition 5.2b and due to Scction A the
function ¥ in Proposition 5.2b is a continuous SO{3)-cocycle over the topological
Z-space (T¥, LY.

5.3 A principal SO(3)-bundle which underlies SO7 (d)

The theory of spin-orbit tori developed so far in this work will in the present section
be reconsidered in terms of the principal SO{3}-bundle Asor(g), defined by (5.12).
For every (w, ¥) € SOT(d) we recall from Section 2.2 that ¥ is a continuous SO{3)-
cocycle over the topological Z-space (RY, L,). In Section 5.3.1 we will show that
this allows us to encode {w, ¥) into & group homomorphism, 3,4, from the group 2
inte the automorphism group it gunsomy{Asore) of Asoren. This technique was
apparently introduced, in thf; context of Bynamical Systems Theory, by Zimmer in
the 1980's [Zim2] and further developed by Feres and coworkers in the 1990's [Fer,
Section 6]. Thus for brevity I call this technique the 'Feres machinery’. The Feres
machinery shows us in Sections 5.3.3 and 5.3.4 how, via &, ¥, the associated bundie
Asor@[R3, L), which is defined by (5.33), carries the two basic Z-actions, L,y
and LE,’:; ? of spin-orbit theory. We thus fulfill the motto, mentioned at the beginning
of Section 5, of reconsidering L,y and Lffg ?. Furthermore we prove in Section 5.3.5
a theorem, Theorem 5.5a, which is a special case of Zimmer's celebrated reduction
theorem. In particular our theorem shows the relation between invariant spin fields
and invariant SQO3{2)-reductions of Asor(s. Note that a reader who is interested in
Bection 5.3.5 can skip Sections 5.3.3 and 5.3.4. Clearly the present seetion widens the
perspective since it demonstrates how the principal SO(3)-bundle Asor g underlies

the theory of spin-erbit tori.

The facts and features of principal bundles and their associated bundles which

are needed here are presented in Section Db where we follow the elegant treatment
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of Husemoller’s book {Hus) which uses Cartan principal bundles {another textbock

which uses Cartan principal bundles is [Mac]).

5.3.1 The principal S0O(3)-bundle Agorq

The principal SO(3)-bundle Asore we introditce in this section is a product principal

bundle and its underlying bundle is defined by
1
€0 1 = (&Y x SO@3), 1530 RY (5.10)
where the function pgéﬂ @ * RY x 50(3) — R¥ is the projection onto the first
component, i.e., pgérm{(ﬁ), R) := ¢ for ¢ € RY, R € S0(3). Clearly, by Definition
B.1, 6-{5131’!{0') is a bundle and, since pgérm is onto RY, it is a fiber structure. Of

course §§%Tm is a product bundle. To ‘unfold’ the bundle ffglgn.m inte a principat
bundle we define the right SO(3)-action Rgg,ﬂ 4 ON RY x SO{3) by

Rz, R) = (¢, RR) (5.1}
where ¢ € BY, R, ¥’ € §0(3). Clearly (B? x 30(3),3‘(312)7@) is a topological right
S0{3)-space. We thus arrive at the quadruple

AsoTtd 1= (E,f,%—,—m. Rgcj)r(d)) = (R x S0(3), p,(g!c)n*(d)n R, Ri%-r(d]) (8.17)

In Section D.6.1 it isshown that the tepological right SO(3)-space (RIxS0(3), ch),,.( d])
is principal and that Aseria is a principal SO(3}-bundte. Note that ’\.(‘;C))‘J’(d) is called

a product principal SO{3)-bundle.

Following Section D.6.1, we denote the set of morphisms from é-glc)ﬁ{d') to it-
self in the category Bun of bundles by 9Jtor3un(§(g?ﬁ(d)). Note that, by definition,
Dor pun(Eoeyr () consists of the pairs (i, @) for which ¢ € C(RYx SO(3), R x S0(3}}
and ¢ € C{R? RY) such that

@ 01’.(;13)1@ = p-(S‘lt}}T(d) op. (5.13)
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Following Section D.8.1, we denote the set of morphisms from Asorw) to itself in the
category Bun(SO(3)) of principal SO(3)-bundles by Morpunisopn{Asora). Note
that, by definition, Mor gunso@y{Asor ) consists of the pairs {v, ®)in ﬂﬁaryun(§(5]é7(m)
for which ¢ is a SO(3}-map from the right G-space (& x 50(3), Rg,):md]) to itself,

It follows from {D.79) that Morpunsopy{Asorw) has the following simple form:
Mot pungsopnAsoria) = {(tp. @) € CRY x S0(3), B x S0(3)) < ¢(&4,RY) :

&)
flam
Note that if (p, ) € Morpuisopn(Asorin) then by {5.14} the functions @, f are
uniquely determined by ¢ and ¢ is uniquely determined by 2, f. Given {p;, @) €
Worpanisoapidisorg) for i = 1,2 and writing, by (5.14), vi(¢, B) = {F:(6), fil$) R),
the composition law of Bun(SO(3)) gives the merphism {2, )¢, @) = (p2°
@1, 0 Gr) € Mornungsopn(Asortn) where for ¢ € B, R € S50(3)

{FZo@)9) L (5.15)
FACAGIEAGS

Denoting by HAutpensoay{rsor@) the set of isomorphisms in Mor punisopnirsore)
it follows from (D.82) that

(v o€ R R e SO@)p(e, R = ( ) fec{®y, 30(3))} . (5.14)

('{72 o ‘:91)(¢v R) =2 (@1(¢)1 fl(é)n)) = (

AutpunsoapAsord) = {{(p, @) € C(R? x SO(3), R x SO(3)) x HOMEORA, R} :

Fld}
feR)

where HOMEO(RY,RY) denotes the sct of homeomorphisms from RY onto ieself.

(V¢ e RY, R e SO@))w(, B} = ( ) f e CRY, 30(3})} » (516}

Note that, for every category, isomorphisms from an ohject to itself are called auto-
morphisms, which explains the notation At gunisopntdsorie)- Note that
At pungsorn{Asoria) has a canonical group structure where the muliiplication is

given hy the composition law of Bun{S0{3})).
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Fotlowing Section D.6.5 we now encode the spin-orbit tori in SOT({d) into sub-
groups of %ut gunisoen(Asore). Recalling Section 2.2, we have the function psor
SOT(d) — COC(RY, Z,50(3)), which is defined for {w, V) € SOT(d) by (2.15).
Since psorqy is an injection it allows to encode spin-orbit tori into cocycles. More-
over, recalling Section D.4, we denote by HOMz(Asor) the set of group ho-
momorphisms from % into HutgunsompyAsora) 5o Section D.6.5 gives us an in-
Jection pragsom 1 COCRY,Z,S0(3)) — HOMz{Asor) which is defined for
{1, f) € COC(RY, Z, SO{3)) by

prezsopll, =2, (5.17)
where, for n € 2,
() = (w(n; ), lni )}, (5.18)
and where, for n € Z,4 ¢ R, R € S0{3),
H{n; ¢} '
( ;¢| R) = . 5.19
T oy =

Note that the injection pgeg g0 is a special case of a more general constriletion
which is outlined in Remark 1 of Section D.6.5 and which is based on the cross
sections of the bundle ‘f.ggf(ay 1t follows from (2.15), (5.17),{5.18) {5.19) that for
{w, ¥) € SOT(d}
(P4 .2,5003) © Psoraiw, ¥) = prez.s0 (L ¥) = By, {5.20)
where, for n € #, .
Pualn) i= (puadni-), Lu(n: ), {5.21)

and where for n € Z,¢ € RY, R € SO(3)

. . Ly(n;¢) _ [ ¢+
Paplmd, R) ( 'I’(n;é)R) ( AR ) . {5.22)
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Since psorg and prez sogm are ene-one, it follows from (5.20) that every spin-orbit
torus {w, T} € SOT{d) is uniquely characterized by the group omomorphism @, ¢
whence {w, ¥) is encoded in the subgreup $u9(Z) of Yuipunsopn{Asori). We
call the group homomorphisms &,,4 ‘tied’ to SOT(d). Equipping Z with the dis-
crete topology we conclude from Section D.6.5 that pasz so@ is a bijection onto
HOMz(Asor(). Thus, given a $ € HOMz{Asor) and since prag som) is a bi-
jection onto HOMz(Xsorn), eq. (5.17) halds where (I, f) € COC(RY, Z,S0(3)) is
defined by {/, f} == p;,z,so(a)(@)' It is easy to see by {5.17),(5.18) {5.19) that D is
tied to SOT{d) iff I(}; ) s a translation on R® and f{1;¢) is 2x-periodie in ¢. Thus
not every group homomorphism in HOMz{Asor ) is tied to SOT{d).

To discuss Ry, in the context of Asorq), let {w, ¥),{w, ¥') € SOT(),T €
Coer{RY, SO(3)) and Ry, (T;w, ) = (w, T'). Thus by (3.4) we have, for n € Z, ¢ €
RY,

V(5 8) = T7(Lufns ) U(m; $Y7(6) (5:23)
It follows from (5.20) that
(Pre 2,500 © Psor@Mw, ¥') = praz som(Luw, ¥} = e, (5.24)
where, for n € 2,
Pogr{n} = (pow( ), Lol )}, (5.25)

and where for n € Z,4 € R, R € SO(3)

Lu{n; ¢} La{ni¢)
war{i; &, R) = = , {5.26
P lin ) ( Vi AR ) ( rf(Lw(n:sﬁ»wnm)T(@R) #

where in the second equality we used {5.23). We define 27 € C(RY x SO(3),R? x
SO(3) for ¢ € B*, R € SO(3) by

wr(éhR) = (T(Z) R) : (5.27)
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Using (D.12),{D.141) the gauge group of Aggr(s reads as

Baupnsomi Asore) =
fo € C{R? x SO(3), R % SO(3)) : {1, idgs) € AutgungsopnlAsoria)}
= fy e C(R? x S0(3),R? x SO(3)):
&
fle)nr

whence ¢r € Gaupunsoapiisor) and ®r == {pr, idga) € Hut pungso(Asor@)-
We define & € HOMz{Msor(g) for n € Z by

(V¢ & R% R e SO3))p(6, R) = ( ) ] € CRY, S0(3)} ,{5.28)

¥'(n) := O5'B(n)Pr = (pr, dua) uw{n; ), Lol N{er, idgs)
= {7 o puu(m Yo, Ly ), {5.29)

where we also used {5.21). We conclude from (5.22),(5.29), {D.146) that for n €
Z,oe R, R e S0(3)

, Lo{nig)
J Ry = y Ll
e (( TT(LAm@)@(n;@T{@R) :9)
B L{n; 8} e
= (( P AR ) L ,¢)) : (5.30)

We conclude from (5.25),(5.26),(5.30) that ®,,4+ = &' whence we have shown that the
transformation via Ry, (T} corresponds in Autpunisom{Asorw) to & conjugation
by @r. Tnother words, an the level of Asor(q, the gauge group Baupunsopp(Asorm)
takes over the job from the group Cp{RY, SO{3)).

5.3.2 The bundle /\qu—(d]{R:},L(‘?D)} associated with Ageyg

In this section we introduce the bundle Asgrn[R%, L2 which in the ensuing

seetions will be the substratum by which Mgpr(g carrics the Z-actions L,¢ and
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ngj’. We define the topological left SO{3}-space (R, L2 where the function
L8P : 50{3) x R? — R is dcfined by

L89(1; ) := RS, (5.31)

with § € B3, R ¢ SO(3} and where RS is the matrix product of R and S. Fol-
lowing the standard technique of constructing associated bundles, which is outlined
in Section D.2 and, for the case of product principal bundles, in Section D.6.2, one
defines the function Rgc))f(d) 1 SO(3) x BT x SO(8) x B® — R x SO(3) x B® for
$eRLR R € SO(3), SR by

$
(2) — SOT(HV ¥ = ’
RSOT(,})(}?I ¢, R, 5) = ( L{SD)(R'"LS) = RR , (56.32)
' R-18

and observes that {RY »x 50(3) x R"‘,ngzgn.@) is a topolegical right SO(3)-space.
Penoting the orbit space of (RY x SO(3) x B3, ngérm) by E‘{sag,q.m, ie., in the
notation of Section A, E‘(;g,.m = {R? x 50(3) x R%)/ Rg‘)”@ and the canonieal
surjection: BE x SO{3) x B3 — Eg%,m by P(S?n'( &> One obtains the bundle:

3 3 3
Nsor@lR®, L6 = 68 = (BShri PSbran RY) (5:33)
where the continuous function F?t}n(d} : Eggﬂm — R4 is the unique functiom:
Eggﬂﬂ —l‘Rd which satisfies
(3} (2) — @
Psoren © Psor = Psord - (5.34)

One calls £, the “bundle associated with Asoz(s via the topological left SO(3)-
space (B3, LB3D))", Note again that the above properties of the associated bundle

follew from Sections D.2 and D.6.2.
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5.3.3 How}\soﬂd) carries the Z-action L,y

We now have all ingredients at ouwr disposal to apply the Feres machinery. As
outlined in Sections D3 and D.6.4, this machinery provides us with a canonical
left Aut punisopp{Asoren)-action, Lgf)J’T(n)' on Eg%,.{ 5 and this will altow us in the
present section to recover L, e. Specializing {D.41} to the present case it is shown in
Section 1.3.1 that the function L-(S%T( 5 ‘.?Eutgun(m(g})(,\,gmm)xEé?,TM - E.g':f‘_}‘)f(d)
which is defined for (i, #) € Hutpunsopn{Asor) and ¢ € R, R € S0(3),5 € R®
by

L e, 5 6o (60 B S)) = Pobra (06 R),S),  (5.35)

is a left Q[?1tgun(so(a))()tsof(d))—action on Egic)n'(d) whence (Eggq'{d): Lfslg)’.‘l’(d}) is a left
Aulpunisopy{Asor@}-space. Note that by Section D.3.1 Lgc)n'( d)(‘-"v -} is a home-
ontorphism onto Eg:)n'{n)' With now showing that the bundle ffs%r(d) is trivial we
construct a left At punieon (Asor(g)-space which is conjugate to (Egg?’(d}v Lgc)n’(d))'
Specializing (D.84) to the present case we define the function ’gc)m e R x 50(3) x

R - BRI3 for g € BY, R € 50(3), S € B® by

) _ ¢ [ @
Tsor(® ,8) = ( LR, 5) ) = ( RS ) {5.36)

and conclude by Section D.6.2 that there exists a unique function rffc)md] : Eg‘g;m -

B*3 such that

@ {2) _ (1}
Téord @ Psori = Vsord) {5.37)

and that rg%ﬂ 4 is & honecomorphism onto R4+3, Defining the bundle

{4 d+3 (1) d
fgcn’[d) = (R + :Psm(d]:R ) + (5-38)

where ])f;g,ﬂd}(ﬂ”, 5} == ¢, we know from Section D.6.2 that (i"?g,ﬂd),idnd) is an

isomorphisnt from {g’,ﬂ i to fgi?n( o in the category Bun of bundles. Thus the bundle
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'5§3c)rrm is trivial. Speclalizing (D.102) to the present case we define the function

£ 10y ¢ Autpunson (sorn) X REZ — B2 for (2,@) € Aubpunsom(dsora)
and 9 e RE, S e R¥ by

LG a(0.59.5) 1= 1 r i (ESh o 3 (102 (0,5))), (6:39)
whence
E{;gn-w(% F)o r.(s‘zc})’f(a') =T ‘(szc}yr(d} o L.‘s?}r(d}(% ). {5.40)

Since ng,ﬂd) is a left Awlgunisom{Asor)-action on E?é'r(d) and r.(ch))T( g 58 bi-
jection onto B4*3 it follows from {5.40) that f,f;lgn.( o is a left Autpunsom{Asora)-
action on R and that the left Autp.usoEp{Asoris)-spaces (Eggf(d')' L.(;}ﬂm),
Rt3, e are conjugate. Note also that since Ly ©, % -} is a homeomor-
SOT(d) SOT(d)
phism onto ES) and & is a homeomorphism ente R¥*3, it follows from
SOT(d) SOT(d)
5.40) that L& L@ 1) is a homeomorphism onto B3, In fact we will now see
SOTENP ¥
that i\(':‘lc))?'(d) has a very simple structure. Specializing (D.104) to the present case
we obtain for {i2, 9} € Autpunisoun{dsor@) ad ¢ €RY, R € 50(3), 5 e B

B (00756, 8) = rihr g (0(8, B), LSO $)) = v5) ool ), R'S)
(5.41)

Of course if (0, 3) € Autnunisopn{isoria) then by {5.16) we have for € R4, R €
50(3)

AeR

where f € C{R?, SO(3)). Thus by {5.36),{5.41) we obtain for
(g, @) € ﬁUtBun(SO{ﬂ))(‘\SOT(d)) and ¢ € BLRe 50(3),5 € 1%? the simple formula

w(¢,3)=( #9) ) ) (5.42)

L2051 6,9 = 1l 1o (@(0), J($IR, R7'S) = ;’:ff;)s) - (5.43)
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Note also that {5.43) confirms our assertion that z’.(s"c)ﬁ{d') {0, 4; -} is & homeomorphism
onto R4+, T bring spin-orbit theory into the picture we now pick a spin-orbit torus
{w, ¥) € SOT{d) and conclude from {5.21},(5.41) that for n € Z,0 € R4, S e R
B (B (n)i 6, 8) = E8 o oun(n ), Lo ()6, S)
= 8 Wun(m 6, B, RT'S) | (5.44)
where @, is given by (5.22). It follows from (2.9),(5.22),(5.36), (5.44) the remark-

able result that forn € Z,¢ € RY, 5 € B3

L8 7o (Pue ()6, 9) = r83 ron@uw(n 6, R), R1S)

_ P+ Zirnw
= TSty (® + 2w, (m YR, R1S) = Yoty
= Louln; 6, 5). {5.45)

Having thus recovered L, we put this into perspective by defining the function

f_,_,,q, 1Ex E?g'?'(ﬂ} — Eé?._),nd) forneZ,ze Eéséﬂd) by

Foa(it 2) 1= Ly i (Puuln)i 2) . (5.46)

Since Lf‘flt’))‘f(d} is a left Mutpu,(sopy{Asor)-action on E.(S%’T(d) and since $, ¢ is a

group homomorphism into Hul gunsompiAsore) it follows from (5.46) that f,.g,‘;.
is a Z-action on E‘?&T(d). Since Lgén.(d)(@w,.y(n);-) is continuous, it follows from
(5.46) that L, ¢{n;.) is continuous whence (E?&T( ™ Lo} is a topologicat Z-space.
Furthermore we conclude from (5.40),(5.45),{5.46) that forn € Z

7 21y 2 2 1
Low{n;)o rfsc}ﬂ(d) = Lfsc)n‘(d}('t’w.‘i‘(n); Jo T(SC)W(d) = r(SéT(d) o Lfgéﬂd}(@m,q.(n); 4
= réorn © Les(ni) - (6.47)

In other words, since rg"ér(d} € HOMEO(E.{;"“',TM,R“*), (5.47) tells us that the
topological Z-spaces (Eggﬂ an L,,y) and {(R%*3, L, o} are conjugate. This fact demon-

strates how Asgry carries Ly ¢ in a canonical way and it thus establishes Asorgg
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as an appropriate principal bundle. Note also that specializing (D.40} to the present

case we observe, for every integer n,

(Lo (n; ) Ealis-)) € Morpun{€Snrn)

and, by Remark 1 in Section D.3.1, obtain that (L, (n;-), Lo{n;-)} is a fibre mor-
phism on 5-%7('1) so that (5.47) reveals a close relationship between spin-orbit tra-

jectories and the fibre morphisms on the associated bundle.

5.3.4 How MAgpryy carries the Z-action Lg’;)

In the previous section we empleyed the canonical left %ut puntsoqy(Asora}-action
L.(slc)n’(d) and in the present seetion we build up on that. In fact, as outlined in detait
in Sections 12.3.2 and D.6.4, the Feres machinery provides us with a canonical left
Kut panisoapirsora)-action, ng,ﬂ 4 O theset T'{£1) of cross sections of the asso-
ciated bundle and it will allow us in the present section to recover L‘(‘,’,’f’ . Specializing
(D.46) to the present case it is shown in Scction D.3.2 that the function Lgt)”m :
Hulpungsopp{Asora) * TED) — T{ED) defined for {p, @) € Autpunsoppi{isorw)
and o € T{E®), 4 € R by

(L?ém(r,a, & a))w) = 18 (e @o(@ (@), (5.48)

is a left Rut pynisomy(Asore)-action on T(ED) whence (I‘({‘”),L_‘;é,rm) is a left
Hutgunsoa{Asoria)-space. Clearly ng.,ﬂd} builds up on Lhy,. Specializing
{D2.167) to the present case we define the function rg?”m : T{E®) — D(EW) for

o € P{E®) by

3 2
r.{SC)?T(d)(U) 1= r.(s‘c)ﬂ(d) 0. (5.49)

It is shown in Section D.6.4 that rgg,,.m is a bijection onto F{¢). Specializing

{D.110) to the present case we define the function i.i%,rm : Aut pynisopntAsoren) X
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D(E®) — P(EM) for (o, @) € Autpungsomy(Msorea) and o € T{ED) by
LSOT(J]{‘.’—’;S’-’a U) = rsor(d)(L;:))r(d)(ﬁos oA (rsm(d)) 1(0'))) , (5-50)

whence in analogy with (B.111)

i‘fs%r(d)(‘P; @)o r.g%r(.{) = nge'g}r,—(d) ;c})r(a)(‘ﬁs 7} {5.51}

Since Lgc)rr(d} is a left Antpunsoy{dsorw)-action an T{E®) and r‘?c)m 4 5 2 bijec-
tion onto T{(EY) it follows from (5.51) that Egéﬂﬂ.) is a left vt pynsopp{Asora)-
action en P{¢®) and that the left Autpunsom{Asorw)-spaces {T{ED), Lm T
(P{e, L.{;c)ﬁ{a’)) are conjugate. We will now sce that fggﬂ( g has & very simple
structure. In fact specializing (D.113) to the present case we obtain for (i, ) €

ﬁufgun{so(g,)}()lsm(d)) and g € F(fu)), g e Rd
(oo ein) @ = i rglomiote @) . G52

Recalling Definition B.1 we have for o € T'(£) that pg?,,( 5 ©@ = idgs whenee for

¢ € B we have
&
o) = \ 5.53
(¢) ( o) ) {5.53)

where & € C{R?, R®). We thus cbtain by specializing (D.114} to the present case the

simple formula

(i?,’m.,)(sa,é;d) @ = (#2991 @ote ()

= ¢ , (5.54)
fe~H(eele™ (o))

where f € C{R?, SO(3)) is determined from ¢ by {5.42). To bring spin-orbit theory
into the picture we now pick a spin-orbit torus (w, ¥} € SOT{d) and define the
function L(P” ZxTED S TEW) for n€ Z,0 € TED) by

I8P (ns0) == L1 g (Pun(n)io) . (5.55)
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Since flg?wm is a left Autpunsopn{Asor)-action on T{£9) and since P,y is a

group homemorphism inte Autpungso@p{dsor@) it folows from (5.55) that L (PF)

is a Z-action on I{¢(?) whence (I{¢W), L {PF)) is a Z-space. We conclude from
(5.21),(5.22), (5.45),{5.52),{5.53), {5.55) that for n € Z,¢ € RY, 0 € T{£1)

(FEDm o) = (EZ 7 (Buosn); o3H8) = (EEh 7 (s (03 ) Fuse{s )i 0))(0)
= L8 o (Pus(ni), Lug(n s o{lue(—n36))

= L8 e (o), Lo (5 % Lo (=105 8), 5 Luna (—m 8)))

= E o (o), Do (5 Ys 6 — 2mea, (6 — 2mnew)

= Lf;mm(‘bw&(n); & — 2nw, 6(d — Tinw))

- ( ¢ ) . (5.56)
Bin; ¢ — 2anw)d{d — 2rnw)

Since by {5.53) the first component of no o € I'(¢™) carries any information about o
it is not a surprise that the Z-space (I'{¢¥), L(PF)} is conjugate to a Z-space which
does not carry the redundant first component of {5.53). In fact we define the function
rSr s CRY B - T ) for G € C(RI,R®) and 6 € RY by

(0, SN = ( cf@) : (5.57)

Note that r&)ﬂm is a bijection onto l"(f‘(;g,ﬂd)). For o = r‘ggﬂd}(G} we hase by
{5.53), (5.57) that G = & whence we conclude from {5.56),(5.57) that for G €
CRIBY and ne 2,0 € BY

(PF) (4} = ¢
( o rsm<a;(f")))‘¢) (\p(n;qﬁ—?.frnw)G((b"??mw))

- ("(;c}n'(-ﬂ (\D(n; - = Zanw)G(- — QWHW))) {#}),
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so that by (5.50),(5.55) for G € C(RL, BN and ne Z

rfsm{ﬂ.) (tlf{n, —~ 2an Gl ~ Qan)) (PF’(H r?é,rm(G))
= SDT(d) (Tuie(n); ’"sor(d) (&)}
=B (L‘” @B SV B ra(OD) -

{5.58)

Defining the function ro : ORI, RY) - T by r® = (& Yte
SOT(") SOT(d} SOT(d * SOT{d}

rfggfm we observe that ’".sc)n'( 5 15 & hijection onto I‘({f.,-a{‘;,,(n.]) and that by {5.58) for

GeC®I R andneZ
B{n;- — Zanw)G{- — 2anw)
= (o) (r?é,{n (22rca ot e '(r‘;ém,(c)))))
= 08 (Ereol @i (D) (5.59)

By (2.20) we have for 7 € Cp(RY,R®) and n € Z that ¥(m;- — 2mnw)G{ —
wnw) = LY, F’(n 3} whenee by (5.58) we obtain the remarkable result that for
GelCp(RIBY and n e Z

LE6) = (1) (L‘” @(@w.«,(n),rg?m(c))), (5.60)

which tells us how Asorg carries L( in a canonical way. In particular since
L(Szt)?’f(d) acts on F(§§gﬂd)) we see in (560) a close relationship between polarization

fields and cross sections of the associated bundle.

5.3.5 Reducing the structure group SO{3)

The meost important objectives of the Feres machinery are the reduction theorems

and the rigidity theorems [Fer] and in this section we will be concerned with the
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former (the latter are beyond the scope of this work). The reduction theorems deal,
in our context, with the reduction of the structure group SO(3} of Asor(g to a closed
subgroup of SO(3) and its impact on the dynamics, i.e., on SOT{d). This leads us
to Theorem 5.5.

Let H be a closed topological subgroup of SO(3). Recalling Section D.5, a prin-
cipal H-bundle, 3, is called & H-reduction of Asor if the total space of S isa closed
topological subspace £ of the total space R x SO{3) of Asorqy and i X has the

form
3= (B pSh | B R, R |(H % E)) (5.61)

Note that. two Fi-reductions of Asorg are different i their total spaces are ditferent.
The set of all H-reductions of Asor is denoted by REDy{Asoru). The condition
that } is a principal H-bundle is a strong restriction on the possible forms of E and

the following proposition gives an account of this.

Proposition 5.3 Lct H be a closed topological subgroup of SO(3}.
If f € C(RA, SO(3)/H) then Ep g, defined by

Epu = {{¢,R) € R x 50(3) : (g} = RH]}, (5.62)

is o closed subspace of R? x SO(3) where RH = {RR' : R’ € H} and where the
space SO}/ H is defined in Section D.5. Moreover, if f € C(R?,SO(3)/H) then
the quadruple:

1\‘[;171—\7‘150"“_3()‘) = (Ef.”:pgéhr(d} Ej)p{,Rd, Rgéq—(d} (H = Ef'y}} y (5.63)

is a H-reduclion of Asoria. Furthermore jmv&o,m,,, is a bifection from
C(RY, SO{3)/H) onto REDy(Asorw)- In perticular, every H-reduction of Asoren
is of the form (5.65).
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Proof of Proposition 5.5: See Section E.28. 0

While Proposition 5.3 states a one-one correspondence between RED{Asor)
and C{R?, 50{3)/H) there is also a onc-one correspondence between REDu{Asora)}
and the cross sections of the associated bundle Asor [SO(3)/ H, Lsom,#] where the
left SO(3)-action Lepgy is defined by {D.62). In fact it follows from Theorem D.2b
in Section D.6.6 that the function MAIN, or o i1 : TAsorISOR)/H, Lsogynl) —
REDy{ sor), which is defined by (D.159), is a bijection onto REDu#{Asor(a)-

Huowever we here do not need MAINy ., 1 but rather focus on J\!A“}T\')Gon i
The following proposition builds up on the fact that SO3(2) is a closed topological

subgroup of SO(3) (see Definition B.2).

Proposition 5.4 a) The function F : SO(3)/50(2) — §?, defined for R € 50(3)
by
F{RS0:(2)) 1= LOPN R e?) = Re® (5.64)

is a homeomorphism onto 8 where RS03(2)) := {RR' : I € S0:(2))} and where
L9P) s defined by (5.91). Moreover for Se S, R, € 50(3)

F(Lsogysoun{R RSOy(2))) = LY (R F(RSOL2))), (565
FYISO(R; 8)) = Lsogysoa{ R FHE) {5.66)
where Lsogysosa 15 defined by (D.62).
b} For cvery | € C(RY, SO(3)/S0x(2)) we have
Eysoum = {(9, R) € R x S0(3): (F o f){¢} = Re’} . {5.67)

The function AIAI"\rf\SDI(.{).SOS(E) H C{Rd’S2) — RBDSOS(Q)(ASDT(,{)), dEﬁﬂEd, far
G e CrY,82), by

“’IAhv/‘.ﬁ‘oﬂd;'so.!@)(c) = "‘f“"s‘_‘?‘!‘\rhse:ar(‘n.5'03(?)(}?Mi ° G) 1 {5'68)

is a bijectior onto REDgp,)(Asor) where ITATH AcorunS0st) 15 defined by (5.65).
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Proof of Proposition 5.4: See Section E.29. 0O

\We recadl from Proposition 5.3 that J\TXFN,.SM ot 15 @ bijection from
C{R?, SO(3)/H} onto REDgp,m{Msor) whence every H-reduction of Asorey s

of the form A‘Im’,\sm( 050s2{f). We now define REDj e (Asor(n) by
REDier(Msoria) = {MAIN oy ()  f € Coer(RY, SO(3)/H)} . (5.69)
i {1, ®) € Hubpunsopy(rsorw) and if f € C{R?, 50(3)/H) then, recalling Sec-
tion D5, lm\’;sm{ .21 () 15 called invariant under {ip, @} if the total space, Epm,
of A’Eﬁﬁﬁso,m,”(f) is invariant under ¢, ie., ¢(E7x) = Epy where By is de-
fined by (5.62). Furthermore if (w, ¥} € SOT(d) and f € C(R?, SO(3)/H)} then
ﬂmf,\sm( a0 {f) is called invariant under the group &, (Z) if it is wariant un-
der each ®,e{n). Of course, by the special structure of Z and since $, ¢ is a group
homomorphism, ;m’)‘w,m_y{ F} is invariant under the group $,,9(2) iff it is in-

variant under &9 (1}, Le., I 9, 9{L; By} = By where @g Is defined by (5.22).
Part a) of the following theorem is & special case of Zimmer’s reduction theorem

{Fer].

Theorem 5.5 Let {w, V) € SOT(d). Then the following hold.

a} Let H be a closed lopological subgroup of SO(3) and let f € C(RY,S0(3)/H).
Then the H-reduction erhmw),ﬁ(f) of Asor( ¢ invariant under the group
B,,y{Z) iff, for cvery $ € RY,

FLo1;8)) = Lsogyn (¥ 9); Fé)) . (5.70)
where Lso(;;}ﬂ; is d&ﬁﬂeﬂ‘ by (D.ﬁgj.
b) Let G € Cper(RY,8?). Then the SO3(2)-reduction ImIASOT(EJ'SOJ(Q)(F—‘ o )
of Asor s inveriant under ®,o(Z} if S¢ is en inveriant spin field of {w, ¥). In
particular {w, ¥} has an invariant spin field iff Asor hes e 2x-periodic S04(2)-

reduction which is invariant under &, (Z).
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Proof of Theorem 5.5: See Section E.30. g

Note by (5.63),{5.67) and Theorem 5.5b that if {w,¥) € SOT{d) and Sz is an
invariant spin field of {w, ¥) then the total space of the invariant SO03(2)-reduction
;m\ﬁw,m,mm)(ﬁ'*‘ oy} of ASOT{d) has the form

Br-1eg 50, = {(8, 1) € RY x S0(3) : G{¢) = Re’} . {5.71)

Thus (5.71) represents the invariant spin field Sg by a subset of R? x SO(3), i.e., we

have a ‘geometrization’ of invariank spin fields.

Another aspect of Theorem 5.5 is the following. While, by Theorem 5.5b, invari-
ant spin fields are linked to 2#-periodic invariant SO3(2)-reductions of Asora, it is
easy to show, by Theorem 5.5a, that spin-orbit resonances of first kind are linked
to 27-periodic invariant H-reductions of Asor) where H is the trivial subgroup of
S0{3).

5.3.6 Closing remarks on Asor(g)

This completes the coverage of principal bundles since our only objective in this
regard was to show how the principal SO{3}-bundle Agor() underlies the theory of
SOT(d).

Following the Feres machinery one could extend our study. However this would go
beyond the scope of the present work.gn I just mention four points. Firstly, by using
the linearity of LO™(R; S5} in S, one ecan extend the structure group from SO(3)
to GL{3} and study, by a ‘prolongation’ of the principal SO(3)-bimdle Asore to
a principal GL(3)-bundle, the Z-actions L,y and ijﬁ{ ¥ in terms of vector bundle
techniques (GL{3) denotes the group of real nonsingular 3 x 3—matrices). Secondly,
one can go beyond Theorem 5.5 to study invariant H-reductions of Agor(g) in 2 more

general way by asking what closed subgroups H of SO(3} allow for 2a-periodic H-
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reductions which are invariant under a given spin-orbit torus in SOT{d). For such
a study the "algebraic hult' is an important tool which was introduced by Zimmer in
the 1980's. Fhirdly one can apply rigidity theorems which allow to discuss properties
which are stable (=‘rigid"} under the extension of the time group Z. Fourthly, the
choice of Asor(g is not unique. For example an alternative choice is to employ ™
rather than BY in the definition of the total resp. base space of the principal SO{3}-
bundle. In fact this alternative choice is very convenient when one would go deeper
into the matter of spin-orbit tori but for the purposes of the present work the choice
T

of Asoryy is sufficient and leads to analogous results as if one would use T° instead

of Y.
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Summary of spin-orbit theory and

conclusions

As pointed out in the Introduction, this work studies the combined system of discrete
time equations of motion (2.1),{2.2) for spin and orbit which plays a central role in

the benchmmhsj’ldy of polarized beams in storage rings.

From a technical point of view a distingnishing feature of the present work is
to formulate alb concepts and properties in mﬁggﬂiﬁg}u terms, Accordingly the
mathematical notion of spin-orbit torus is ingroduced and a number of properties
of spin-orbit tori are derived. Most of the definitions I employ are Hations of
established concepts from polarized beam physics into the language of mathematics.
To my knowledge some of the results are completely new {e.g., Theorem 4.17 on the
iwgﬂ{omotopy Theory on spin tunes) and some results which are not new (c.g.,

Yokoya's uniqueness theorem 3.13) were never formulated in mathematical precise

terms whence were never rigorously proved before.

Froma mn@ oint of view a distinguishing feature of the present werk is
to employ a transfoFmation theory of spin-orbit tori (see Section 3} with the purpose
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to clarify established concepts like ‘spin tune’.

For a more detailed outline of this work see Section 1.2, Avenues for further
work are of course plentiful. In addition to those mentioned in Section 1.3, one topic
of further studies could be the continuation of the work of Scction 5.3. In fact as
outlined in Sect__iqn 5.3.6, there are further applications of the principal SO(3}-bundle
Asorg in \\féﬁz“\i}}\ﬁdl may shed further light into the matter of spin-orbit tori.
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Group actions

If X is a set, (7 a group with identity eg and L: G x X — X a function satisfying,
forg,he G,z e X,

Liegiz) =1z {A.1)

Li{gh;z) = L{g; L{ls =)} , (A2)
then L is called a left Graction on X and the pair (X, L} is called a left G-space.
(-spaces are often called “transformation groups’. Note that the group law of &' is
written multiplicatively in (A.2) and it is obvious how (A.2) would read if the group
law of G is written additively (the latter convention is common if the group G is
Abelian}. It follows from (A.1),{A.2) that each L{g;-} is a bijection from X onte X.
A left G-action L on X is called ‘transitive’ if for every pair of clements z,yof X a
g € G exists such that L{g;z) = y. If G, G are groups and © : G — G’ is a group
homomeorphism and if (X, I') is a left G"-space then {X, L} is a [eft G-space where
we defing, forge G,z € X,

L{g;z) := L' (P{g)7) - {A3)

In this work a topological group is defined in the common, broad sense as in {Hus]. If

X is a topotogical space, G is a topological group, and (X, L) is a left G-space such
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that the L is continuous, then {X, L} is called a topological left G-space. Of course
in that case each L{g;-) is a homeomorphism from X onte X. In the important
subease when the topology of G is discrete (e.g., when G = Z) the condition that L

is continuous is equivaient to L{g;-} being continuous for all g € G.

If (X, L), {X', L) are left G-spaces and if f: X — X' is a function satisfying, for
geG,ze X,

f(Ligz)) = L{g; f{z}}, (Ad)

then f is called a G-map from (X, L} to (X', L'}. G-maps are often called “equivari-
ant’. One calls {X, L}, (X", I') “conjugate” if the G-map f is a bijection onto X’. In
the special case G = Z the function f is a G-map iff (A.4) holdsjust forg =1,z € X.
If the G-map f is onto X then the left G-space (X, L) is called an extension of
the left G-space {X, I'). In the special case where the extension (X, L} has the form

(X! x Y, L) for some set ¥ and if f is the natural projection from from X’ x ¥ onto
X', then the left G-space {X, L} is called a skew product of the left G-space (X', L'}.

Remark:

(1) Let (X', L7, (X’ x ¥, L) he left G-spaces and let (X’ x Y, L) be a skew product

of {X', L). This is a strong restriction on L, as follows.

By eq. {A.2), we have, for gc G,z ¢ X',y Y,

g«
e - CE (a5
g, y)
where the function L” : G x X' x Y — Y satisfies, for g, h € G, 2’ ¢ X',y e Y,
egia'\m)=v, {A.6)
gk 7' y) = L'(9; I'(h; 2'), L' (i, 1)), (A7)
which is the announced restriction on L. [m}
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If (X, L}, (X', L'} are topological left G-spaces and if a continuous G-map f exists
from {X, L} to {X", L’} which is a homeomorphism onto X", then the topological left
G-spaces (X, L), (X', 1) are called “conjugate”. H (X, L), (X', L'} are topological
teft G-spaces and if a continuous G-map f exists from (X, L} to (X", 1) such that
f is onto X, then the topological left G-space (X, L} is called an extension of the
topelogical teft G-space (X', I'). I the special case where the extension (X, L) has
the form (X' x Y, L} for some topological space ¥ and if f is the natural projection
from from X’ x ¥ onte X', then the topological left G-space (X, L) is called a skew
product of the topological left G-space {X’, L'} (note that X' x Y is equipped with
the product topology). .

I {X, L} is a topological left G-space and H is a topological group then a function
f e C{G x X, H) is called a continuous f{-cocycle over the topological left G-space
(X, L), forg, g €G,ze X,

flog', =) = Hg. Ly =N (e =) {(1.8)

We define, for given X, G, H, the set COC{X, G, H} as the collection of pairs (L, f)
with the property that (X, L) is a topological left G-space and that f is a continuons
H-cocycle over (X, L). For literature on cocycles, see, e.g., [HKI, KR, Zinl]. Note
also that two conventions for the definition of cocycles are used: ours and the ‘dual’
one. In the latter convention {see e.g. [KR, Ziml}} {f(g,2))™", not f(g,%), is a
cocycle. However for comvenience we stick to our convention which is the same as in
[HE1}.

Right G-actions are defined in direct analogy to left G-actions. In fact, if X
. CrioNs AT
is & set, & a group with identity e and R : & x X — X a map satisfying, for
nheGzeX,

Rlegiz) ==, {A9)
R{gh;z) = Rlk; Rg: )}, (A.10)
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then R is called a right G-action on X and the pair {X, R) is called a right G-space.
Due to the close analogy of the concepts of right G-action and left G-action it is

obvious how a topological right G-space, a G-map ete. are defined.

As is comnon, we will often skip the word ‘left’, i.e., we often call a left G-action
a G-action, and a left G-space a G-space ete. This convention is especially useful
if G is Abelian since in that case left ard right G-actions are the same. Thus, for
example, the terminology ‘Z-action’ is a stringent alternative to the equally valid

but less stringent terminology ‘left Z-action’.

The following facts about right G-spaces are important fo%nmpa! bm@(the
latter are treated in Appendix D) so let {X, R) be a right G-space~Let these€ X* b
defined by X* := {({z, R(g; %)) : ¢ € G,z € X} and the function o5 : G x X — X*

be defined by or{g, T} 1= (&, R{g;2)). Clearly o is onto X*. The riglt G-action B
is called free if, for all = € X, the equality: 1¥{g; z} = = implies: g = eg. Itis casy to

see that R is free iff og is one-one. In fact, if oplg, 2) = op(y’, 2’} then (z, Blg; x)) =
{z/, Rlg'; ')} whenee, if R is free, z = 2, = ¢ so that ¢y is one-one. Conversely,
let B{g;z) = #. Thus og(g,z) = (z, R{g; 7)) = {z,2) = (=, Rlea:i ©)) = oules, =)
whence, if op is onc-one, g = eg so that R is free. We thus haveshown that R is free iff
og is one-one. Therefore, since og is onto X*, R is free ifl o5 is a bijection from Gx X
onte X*. OF course if 1? is free the inverse o5 is well defined and onc then defines the
function 7z : X* — G by 7g := pry 0 a3 where pri{g, ) == g. If R is free one calls
7r the “translation function” of R. Note that if B is free thenfor g € G,z € X we
have R{7r(z, R{g,z)},z) = R{{pr1 o ox' Nz, R{g, 7))} 2} = R{pri{g, =), ) = R(g,z)
whence for z,% € X we have R{rp(z, 2}, 7) = /. Of course if R is free then 75
is the only function 7 : X* — (3 which satisfies, for 7,% € X, R{r(z,2'),s) =&

A topological right G-space (X, R) is called “principal” if R is free and if 75 is

continuous.

I (X, R) is a right G-space and z € X then the set {R{g;z) : g € G} is called
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the orbit of 2 under R. The set of orbits under R s denoted by X/ and the map

pr:X — X/R is defined by

pr(z) == {R(gz): g € Gy = | J {R(g:o)} . {A11)

[laed

Clearly py is onto X/R. Note that, for ,y € X, we have that pa{z} = pa(y) Hf
# € pr(z). Thus, forz € X,

pat{er({zh) = pr'Upal2)}) = {y € X = paly) € {pr(=)}}
={ye X :paly) =pa(=)} = {v € X sy c pplz)} = prlz} . (A.12)

It follows from (A.11),(A.12) thatfor AC X

7 oal) =t onJ 2 =22 (U wtteh)) = U vl oatiah)

reAd 2EA €A
= mtm = U Rea1= U #ea1 = U Rlg4). (113)
zeA €A geG ge@ 1A geG

If X is a topological space and {X, R) is a topological right G-space then one egnips
X/R with the quoticnt topology w.r.t. pg, 1.e., & subset U of X/R is open iff ()
is open in X. Thus the map pp is identifying and one calls X/R an “orbit space”.
To show that pg is open, let I be open in X whence, by (A.13),

PR () =) RlaU). (A14)

9€6
Since each Rfg;-) is a homeomorphism from X onte X we have that R(g; U} is open
in X whence . R{g; U} is open in X. Thus, by (A.14), P (pr(U)) is open in X.
Sinee the topology of X/ R is the quotient topo[ogy w.r.t. pp we have that pr(U) is

open in X/R whence pg is open.

There are many texthook treatments of group action. Two useful textbooks,

dedicated to group actions, are [Die2, Kaw|.

100




Appendix B

Topological concepts and facts

In this section we provide some concepts and facts from Topology, in particular some
know-how about liftings and factors of bundles and fiber structures (see Definition
B.1}). This know-how is especially useful for continuous and 2z-periodie functions
like {n;-) arising in the study of spin-orbit tori {w, ¥). The concept of bundle is
also of importance for us in Section D where we refine it to the concept of principal
bundle. As in Section A, we present the material in such detail that it is essentially

self contained.

Hurewicz fibrations {see Definition B.5}) are fiber structures which satisfy a certain
condition. In fact, for our purposes, a Hurewicz fibration has sufficient structure to
obtain from a continuous function a lifting which is a continuous function as well.
VWhile Liftings provide a tool to obtain contimious functions, factors provide another
tool to obtain continueus functions {namely to turn 2i-periodic functions on B into
functions on the k-torus T* defined below)., For these matters we introduce with
Definition B.2 four well-known fiber structures and demonstrate in Section B.1 that
all four of them are Hurewicz fibrations. They will be used for liftings and one of

them will be used for factors. Three of the four projections (see Definition B.1) are

101

Appendix B. Topological concepts and facts

covering maps (see Definition B.7). Note that fiber structures {and even Hurewicz
fibrations) are pretty simple concepts which do not involve any group actions. Thus
in this section we neither employ the machiner._\,' of principal bundles nor do we need
Category theory (sce however Appendix D). The know-how we use about liftings
and Hurewicz fibrations can be found in [Dug, Spal and the know-how about factors
in [SZ]. See also [Bre, Di2, Rot, Diel}. Our terminology is close to [Dug, Hus].

B.1 Bundles, fiber structures and Hurewicz fibra-

tions

In this section we choose our four fiber structures and show that they are Hurewicz
fibrations. The search for liftings w.r.t. owr fiber structures is the content of Sections
B.2 and B.3. In Section B.3 this search will be facilitated by the use of factors {see
Definition B.1) w.r.t. one of the four fber structures (the latter fiber structure is
also used in Section C.2).

Definition B.1 (Bundle, fiber struciure, lifting, factor, cross section, locally trivial)
Given fopological spaces X, Y, we denote the sel of continuous functions from X inlo
Y by C(X,Y) and the set of homeomorphisms from X onto Y by HOMEO(X,Y).

A triple (B, p, B} is colled a bundle if E and B are topological spaces and if p is
in C{E,B). A bundle (E,p, B) is colled a fiber structure if p is onto B. One calls
E the total space, B the base space and p the projection of the bundle. For b€ B,
b} is called the fibre of p over b and its topology is defined as the relative fopology
from E.

If ¢ = (E,p,B) is a bundle, X is a {opological space and g € C(X, B), then
f € C(X,E) is catled a lifting of f w.rt. thebundle £ ifg=pof. Ifge C(E,X)
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then a f € C(B,X) is called o factor of g wrt. fhe bundle £ if g = fop. If
& € C{B, F) satisfies idg = poo, where idg is the identily map on B, then one cells

o across section of £. The set of cross seclions of € is denoted by I'(E).

A fiber structure (E,p, B) is called locally trivial if for every b € B an open
neighborhood U of b, a topslogical space Y and a homeomorphismp : UxY — p~i{(U)
onte p (U) erist such that, for allz € U,y € Y, poplz,y) =z where U x Y has
the product topology, U has the relative tapology from B end p~(U) hes the relafive
topology from E. i

Remark:

{1} QOur notion of ‘bundle’ is from {Hus] and our notion of ‘fiber structure’ is from
fDug] and all concrete examples of bundles in this work are Aber structures.
Note that a bundle which has a cross section is a fiber structure. If€ = {E, p, B}
is & fiber structure and X a topological space then, since p is onto B, every

g € C{F, X) has at most one factor w.et. £,

Clearly the concepts of bundle and fiber structure are trivial and the topologies
of the fibres in a fiber structure are in general largely unrelated - in particular
they are in general not homeomorphic. However a fiber structure has a lot of
structure if it is focally trivial. In particular for locally trivial fiber structure
{E,p, B), every b € B has an open neighborhood U such that the fibres p™'{u)
with u € U/ are homeomorphie. We will sce that the four fiber structures to be
introduced in this section are locally trivial, a circumstance which makes it casy

to show, again in this section, that all four of them are Hurewicz fibrations.
Definition B.2 4 function on R* is called 2x-periedic if it is 2n-periodic in all &

arguments. If Y is o fopologicel space, we denote the set of 2m-periodic functions in
C(R* Y)Y by Coer (R, V). The set SO3) consists of those reel 3 X 3-mairices R with
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det{R) = 1 for which RTR = L, where RY denotes the transpose of It and Iz the

3 % 3 unit matriz. We define

g -1 0
F=311 0 01}, 503(2) := {exp{27xT) : x € R} C SO(3), (B.1)
0 0 0

and consider S03(2) as a topological subspace of SO(3). Denoting the fractional part
of a real number © by {z], we obtain forz € R
cos(2ax} —sn(2wz) O
exp(2nz) = exp(2rfz}T) = | sin{Zrz) cos{2mz) 0 | . (B.2)
0 0 1
Thus SO(2) is, under matriz multiplication, an Abelian subgroup of SO(3). Clearly
for every B € SO4(2)} a unique r € [0,1) exisis such that py(2ar) = exp(2arT}
and we abbreviele PH(R) = r and call PH(R} the “phase” of R. The function
o R — 505(2), defined by pr{y) = exp(yT), clearly belongs to Creo(R, 505(2))
and is onto SO3(2) whence {B, ;m, S03(2)} is a fiber structure.

We define the k-sphere 8% := {x € R¥ 1zl = 1} (& positive integer) and equip
it with the relative topology from B¥Y, We define the function pp 1 8% — S0(3) by
pa(F)z := (253 — D + 2r{rTz) + 2ro(r x 2), where 7 =: {ro,r) € %, € R,r € R®
and = € RY. Since the Topology of SO(3) & "defined as the relative lopology from
B33, py € C(S%,50(3)). Note that the irace of p{F) reads as Trlpy(F}l = 412 — 1.
On §* one introduces ¢ mulliplication by {ry, r}{0, ) = {rosSo— 175, g5+ 5pr + 7 % 5)
where rg,80 € R, r,5 € R, One observes thet § is a fopological group whose unit
element is (1,0,0,0)7. The inverse of (ro,r} is {rg,—r). Moreover py is a group
homamorphism, i.e. p(fs) = p(P)pa(8). [t is thus easy lo show that p, is onfo
SO(3) hence {S3, pa, SO(3)) is a fiber structure.

We define the function ps : SO(3)} — 8% by pa(R) = Re®, where €8 denotes

the third unit vector, ie., & = {0,0,1)T. More generally, e' denotes the i-th unit
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vector in eny B, ie, (¢¥); i= 1 and, for i # j, (¢'); = 0. It is easy io see that
ps € C(S0(3),8%) and is onto §% whence (SO(3),13,5%) is a fiber struchure.

We define the complex unil circle T = {z € C : |z| = 1} and the k-lorus
T*, ie., the k-fold cartesian product of T (whenever we write T%, this implies that
k is u positive infeger). We consider T as a fopological subspace of C and TF as
the topolsgical product of its k factors. Defining pag : RY — TF by pia(9) =
(explicn), ..., exp(ida))T il is casy o see thot pyx € Coer(RY,T*) and is onto T

whenee (R¥, pyy, T} 45 a fiber structure, a

Having defined our four fiber structures, the remaining task of this section is to
_ show that all of them are Hurewicz fibrations. Since the notion of Hurewicz fibration

is closely related to Homotopy Theory we first necd

Definition B.3 {Homelopic functions) Let X, Y be topologicel spaces and let fi €
C{X,Y) be continwous meps where i = 0,1. Then we write fo ~y H ifah €
C{X % [0,1},Y) erists such that h(1,0) = fo and A(-,1} = F where X x [0,1] is
equipped with the product topology and [0, 1] is equipped wilh the reletive topology
from B. One then says thot fg, f1 are homotopic w.rit. Y. It is easily shoun (see,
e.g., {Rot, Spal} that o=y is an equivelence relation on C(X,Y) end we denote by

{X, Y] the set of all equivalence classes.

Note that for cartestan producis like X x [0, 1] we choose the product topology if
not mentioned otherwise. A g € C(X,Y) is called nullhomolopic wrt. Y, if it is

homotopic w.r.d. Y do a constant map in C(X,Y). [n:

If two functions have different domtain then they cannot be homotopic, It is
also clear that, in the notation of Definition B.3, always functions exist in C(X,Y’)
which are nullhomotopic w.e.t. Y. Note that continuous functions with common

domain are often not homotopic. Note that the suffix in ~y is important. In fact,
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for every pair fy, fi of continuous functions on a topological space X one can choose
Y sufficiently large such that fo ~y fi [Dug, Section XV.1]. Nevertheless one often

does not mention ¥ when the context is clear.

Proposition B.d a} Let X and Y be topological spaces and lef g; € C(R*, X) and
HelCX,)YYvhere i =0, 1. If fo 2y fi1 and go ~x o then fi o g1 =~y fo 0 go.

b} If X is a {opological space and if g € C(R*, X} then g is nullhomotopic wrd. X.

¢) Let X and Y be lopological spaces and let Y be path-connected. Then all g €
C{X,Y) which are nullhomolopic w.r.t. Y, are homotopic wrdl. Y. In other words,
all g € C(X,Y"), which are nullhomoetopic wr.t. Y, belong fo the same element of
[x,Y].

Proof of Proposition B.4a: Let X and Y be topological spaces and let g; € C(RF, X}
and f; € C{X,Y) where i = 0,1. Thus 8 F € €{X x [0,1},Y) exists such that
F(,i) = fi{) and a @ € C{B* x [0,1}, X) exists sueh that G-} = g:{). The
function H : B¥ x [0,1] — ¥, defined by H(z, #} := F{G{z, ), ), is continuous and
satisfies H{z, i} = F{G{z, i}, ) = F{g:(2}), 1) = fils(2)). Thus freg 24y fooge D

Proof of Proposition B.4b: See {Dug, Section XV.1]. a
Proof of Proposition B.4c: See [SZ, Section 2.1} 0

1t follows from Proposition B.d that if X is a path-connected topological space,

then all g € C(R¥, X) are homotopic w.r.t. X.

For a fiber structure {F,p, B} and a nonempty subset U of B the funetion
plp~H (1) : pHU} — U is onto U since p is onto B. Choosing for p (U} the
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relative topology from E and for U the relative topology from B, it is clear that

s MUY is a continuous function hence {(p~H{U),plp~ (U}, U} is a fiber structure,

Definition B.5 {Hurewicz fibration} Let X be a topolegical space. A fiber structure
(E.p, B) is called a fibsation for X i it kas the following property: if G € C(X x
[0,1), B} and if G(-,0) has a liffing f w.r.l. {E,p, B} then G has a lifting F wa.t.
(E.p, B) such that f(-} = F(.,0).

A fiber structure (E,p, B) is called & Hurewics fibration if it is o fibretien for
arbitrary topological spaces X.

A fiber structure (E, p, B} is colled a local Hurewicz fibration if every b € B has
@ neighborhood U such that the fiber structure (p~ YU}, plp~(U), U) is a Hurewice
fibration. Recall that p= (U3 hos the relative topology from E ond thet U has the
relative topology from B. a

Note that the concept of locat Hurewicz fibration will play a role in the proof of

Lemma B.6.

We see by Definition B.5 that liftings w.r.t., Hurewicz fibrations can be found
by the following method. 1f (£, p, B) is a Hurewicz fibration and if one looks for a
lifting of a contintlous map g : X — B w.r.t. (E,p, B) then one just tries to find a
continuoys map g’ : X — B with g ~p ¢’ which is so simple that a lifting of ¢ w.r.t.
{E,p, B) can be casily found. As a matter of fact, in Sections B.2, B.3 we will often

apply this method.

To show that our four fiber structures are Hurewicz fibrations, the following

lenuna is crucial

Lema B.6 {Homotopy lifting theorem) Let (E, p, B) be a fiber sirueture which is
locally trivial and let B be a compact Hausdorff space. Then (E,p, B} is a Hurewicz
fibralion.
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Proof of Lemma B.6: Since B is a compact Hausdorff space, the claim follows by

applying [Dug, Corollary XX.3.6] if {E, p, B) is a local Hurewicz fibration.

Thus we only have to show that (E,p, B) is a local Hurewicz fibration so let
b € B. By Decfinition B.1 an open neighborhood ¥ of b, a topological space ¥
and a homeomorphism o : U x Y — p YU} onto p~H{U) exist such that, for all
be Uye¥, poplhy) =5 We only have to show that the fiber structure
(P~ YUY, plp~(U), 1) is a Hurewicz fibration. Thus let G € C{X x [0,1}, U} and let
a(-) := G(-,0) have a liffing f w.rt. (g~ HU}, plpH{U), U). We define the function
F: X x[0,1} — p~H{U) by F(z, 1) == 0| Glz, t.),prg(w’l(f(z)))) where pry is the
projection on the second factor, ie., pro(b,y) = y. Since p is a homeomorphism
onto p~H{U), F is a continous function. Clearly p(F(x,{}} = G{z,{) whence F is
a lifting of G w.r.t. (p~'{U), pls~{U), U). Furthermore, for cvery e € p-Y{U}, we
have & = (p=(e) = (e~ EMamly ") ) = o{p(e) rolo™e) ) where
pre is the projection on the second factor, ie., pri{b,y) = b. Hence F{z,0} =
p G{z,ﬂ),pra(so“(F(z,0))))- Since also P(2,0) = o 0le, O rafe™ ()
and since @ Is a bijection we conclude that F(-,0) = f(-}. Since & and X were chosen

arbitrarily we thus have shown that {E, p, B) is a local Hurewicz fibration. ]

Since the base spaces S03(2), SO(3),8% and T* of our four fiber structures atc
compact Hausdorfl spaces, we see by Lemma B.6 that our aim of proving that these
fiber structures arc Hurewicz fibrations reduces to showing that they are locally

trivial.

We first introduce

Definition B.7 (Covering map) Let X, Y be topological spaces and p € C(X, Y)Y be
onto Y. Then p is called o covering map w.rt. X and Y if every point of ¥ has
an open neighbourhood U such that p~'{U) is a disjoimt union { . Ux of epen sets
Uy C X with p(th) = U and such thet every p|lUs : Uy = U is & homeomeorphism

4 iy . y
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