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We present a set of notes, meant for quik referene, on radiative

spin polarization, omputer algorithms and spin mathing in eletron

storage rings.

2.7.7. Radiative Polarization in Eletron Storage Rings

The Sokolov-Ternov e�et [1℄ Relativisti eletrons in a storage ring emit syn-

hrotron radiation (Se.3.1 in [30℄). A very small fration of the radiated photons

ause spin ip. For eletron spins aligned along a uniform magneti �eld, the "# and

#" ip rates di�er and this leads to a build-up of spin polarization antiparallel to

the �eld. Positrons beome polarized parallel to the �eld. The transition rates for

eletrons are
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For positrons, interhange plus and minus signs here and elsewhere



.

The equilibrium polarization in a uniform magneti �eld is independent of ,
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For a beam with zero initial polarization, the time dependene for build-up to equi-

librium is
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0
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where the build-up rate is
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� is the radius of urvature of the orbit, r

e

is the lassial eletron radius and the other symbols

have their usual meanings.
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0

depends strongly on  and � but is typially minutes or hours. In a at ring in

whih all bending magnets have the same � just average Eq.(4) over the irumferene
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The Baier-Katkov ip rate For eletron spins initially aligned along an arbitrary

unit vetor

^

� the generalization of Eq.(1) is [2℄
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where ŝ = diretion of motion and

^

b = (ŝ�

_

ŝ)=j

_

ŝj.

^

b is the magneti �eld diretion if

the eletri �eld vanishes and the motion is perpendiular to the magneti �eld.

The orresponding instantaneous rate of build-up of polarization along
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The T-BMT equation Negleting radiative spin ip, the motion of the rest-frame

spin expetation value

~

� of a relativisti harged partile traveling in eletri and

magneti �elds is governed by the Thomas-BMT equation d

~

�=dt =

~


 �

~

� (Se.2.7.1

in [30℄).

We write
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where
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is due to the �elds on the losed orbit, whene
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ref

ontains the design �elds and ~!

imp

represents the e�ets

of magnet misalignments, orretion �elds et. ~!

sb

is due to synhrotron and/or

betatron motion with respet to the losed orbit.

On the losed orbit the T-BMT equation

d
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an be solved in the form
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where R

o

3�3

is a rotation matrix. The real unit eigenvetor (rot. axis) for the one turn

matrix R

o

3�3

(s + C; s), denoted by n̂

0

(s), is the periodi spin solution on the losed

orbit. For a perfetly aligned at ring with no solenoids, n̂

0

(s) = �ŷ. The one turn

matrix has a omplex onjugate pair of eigenvalues e
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The (m̂

0

;
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) are usually not periodi in s. But by applying a further rotation by an

angle  

sp
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0

we an onstrut the vetors (m̂;
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By hoosing  

sp

(s + C)�  

sp

(s) = 2��

0

, the set (n̂

0

; m̂;

^

l) is then periodi in s with

period C. The vetors (m̂;

^

l) are needed in Se 2.7.8.

The losed orbit spin tune �

0

is the number of spin preessions per turn around

n̂

0

. For a perfetly aligned at ring without solenoids �

0

= a

0

, where a = (g � 2)=2

(see Se.2.7.1 in [30℄) and 

0

is the Lorentz fator for the beam energy. In this setion

and in Se. 2.7.8 we use the symbol \a" instead of the symbol \G" used in the rest

of the Handbook. Only the frational part of the spin tune an be extrated from the

numerial values of the eigenvalues e

�i2��

0

.

The Baier-Katkov-Strakhovenko (BKS) equation Negleting the e�et of

stohasti (synhrotron radiation) photon emission on the orbit and imagining that all

partiles remain on the losed orbit, the equation of motion for eletron polarization

is [3, 4℄
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In the ase of horizontal motion in a vertial magneti �eld, we have
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 = (a=�)ŷ,

and

^

b(s) = ŷ.

By integrating the BKS equation, one �nds the generalized Sokolov-Ternov for-

mula for the asymptoti eletron polarization in arbitrary magneti �elds along the

losed orbit,
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See [5℄ for a ompilation of time sales. Usually, in rings ontaining dipole spin

rotators (Ses.2.7.3, 2.7.4 in [30℄) the polarization j

~

P

bks

j annot reah 0.9238 [6℄.

The BKS polarization build-up rate is
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This is in aord with Eq.(7) by replaing

^

� ! n̂

0

and averaging.

Radiative depolarization The stohasti element of photon emission together

with damping determines the equilibrium phase spae density distribution. The same

photon emission also imparts a stohasti element to ~!

sb

and then, via the T-BMT
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equation, spin di�usion (and thus depolarization) an our [7℄. The polarization is

the result of a balane between the Sokolov-Ternov e�et and this radiative depo-

larization. In the approximation that the orbital motion is linear, the value of the

polarization is essentially the same at eah point in phase spae and azimuth and the

polarization is aligned along the Derbenev-Kondratenko vetor n̂ [8℄.

The unit vetor �eld n̂, whih is also alled the \invariant spin �eld" [9, 10, 11, 12℄,

depends on s and ~u � (x; p

x

; y; p

y

; z; Æ). n̂(~u; s) satis�es the T-BMT equation at (~u; s)

and is periodi: n̂(~u; s) = n̂(~u; s+ C). On the losed orbit n̂(~u; s) redues to n̂

0

(s).

The Derbenev{Kondratenko{Mane formula Taking into aount radiative de-

polarization due to photon-indued longitudinal reoils, the equilibrium eletron po-

larization along the n̂ �eld is [8, 13, 9℄
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where < >

s

denotes an average over phase spae at azimuth s. This formula di�ers

from Eq.(14) by the inlusion of the terms with

�n̂

�Æ

and use of n̂ instead of n̂

0

. The

ensemble average of the polarization is

~

P

ens;dk

(s) = P

dk

hn̂i

s

(17)

and hn̂i

s

is very nearly aligned along n̂

0

(s) (see the angle estimate below). The value

of the ensemble average, P

ens;dk

(s), is essentially independent of s.

The e�et of transverse reoil an also be inluded but ontributes derivative terms

analogous to

�n̂

�Æ

whih are typially a fator  smaller than

�n̂

�Æ

and an be negleted

unless

�n̂

�Æ

is very small [14, 15℄. If

�n̂

�Æ

were to vanish, a P

dk

of 99.2 % ould be reahed

[14, 15, 9℄.

In the presene of radiative depolarization Eq.(15) beomes
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This an be written in the form:
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The time dependene for build-up from an initial polarization P

0

to equilibrium is

P (t) = P
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This formula an be used to alibrate polarimeters (see Eqs.(21) and (22), Se.2.7.8)

[16℄. However, the alibration will be impreise if

�n̂

�Æ

in the numerator of Eq.(16) is

not well enough known. For examples of build-up urves see [6℄.

Resonanes Away from the spin{orbit resonanes

d

(see also Eq.(11), Se.2.7.8)

�
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(22)

n̂(~u; s) � n̂

0

(s). But near resonanes n̂(~u; s) deviates from n̂

0

(s) by typially tens of

milliradians at a few tens of GeV and the deviation inreases with distane in phase

spae from the losed orbit. The \spin{orbit oupling funtion"

�n̂

�Æ

, whih quanti�es

the depolarization, an then be large and the equilibrium polarization an then be

small. Note that even very lose to resonanes, jhn̂i

s

j � 1: the ensemble average

polarization is mainly inuened by the value of P

dk

in Eq.(16).

To get high polarization, one must have (�n̂=�Æ)

2

� 1 in dipole magnets. The

mahine optimization required to make

�n̂

�Æ

small is alled \spin mathing" (Se.2.7.8).

Asymmetri wigglers If �

�1

bks

is very low beause the energy is low and/or the

average urvature is small the polarization rate an be enhaned (see Eq.(15)) by

installing an \asymmetri wiggler", i.e. a string of dipoles in whih short dipoles with

high �elds are interleaved with long dipoles with low �elds of opposite polarity while

ensuring that the �eld integral of the string vanishes. For more details, and disussion

of advantages and disadvantages see [5℄. A partiular potential disadvantage is that

the enhaned radiation loss an require that extra rf power be installed and that the

energy spread inreases so that the depolarization rate inreases owing to stronger

synhrotron sideband resonanes (Se.2.7.8).

Kineti polarization The (numerator) term linear in

�n̂

�Æ

in Eq.(16) is due to a

orrelation between the spin orientation and the radiation power [5℄. In rings where

n̂

0

is horizontal due, say, to the presene of a solenoid Siberian Snake (Ses.2.7.3,

2.7.4 in [30℄) [17℄,

�n̂

�Æ

has a vertial omponent in the dipole �elds. This an lead to a

build-up of polarization (\kineti polarization") even though the pure Sokolov{Ternov

e�et vanishes. The rate is �

�1

dk

.

Phase spae and polarization evolution equations If the orbital phase spae

density 	 obeys an equation of the Fokker{Plank type (Se.2.5.4 in [30℄)

�	

�s

= L

FP

	 (23)

d

In fat the resonane ondition should be more preisely expressed in terms of the so{alled ampli-

tude dependent spin tune [9, 10℄. But for typial eletron/positron rings the amplitude dependent

spin tune di�ers only insigni�antly from �

0

.
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where L

FP

is the orbital Fokker{Plank operator, then the spin di�usion is desribed

by the \Bloh" equation

�

~

P

�s

= L

FP

~

P +

~

�


�

~

P (24)

where

~

�


 =

~


=(ds=dt) and

~

P is the \polarization density" � 2=~�(density in phase

spae per partile of spin angular momentum) [18, 19℄. To inlude the Sokolov{Ternov

e�et see [20℄.

Beam energy alibration A polarized eletron beam an be depolarized by apply-

ing a weak osillating magneti �eld perpendiular to n̂

0

with a frequeny f

rf

related

to the frational part of the spin tune ~�

0

by

f

rf

= f



~�

0

or f

rf

= f



(1� ~�

0

) (25)

where f



is the irulation frequeny of the beam [21℄. Thus the required f

rf

gives an

aurate measurement of ~�

0

and this gives high relative preision knowledge of �

0

. By

relating �

0

to the average energy of eah beam, high preision measurements of the

entre{of{mass energy of olliding e

+

{e

�

beams and of the masses of vetor mesons

suh as the � family and the Z an be obtained [22, 23, 24, 25, 26℄. Other beam

parameters an also be measured [27℄. The polarization need not be large for these

measurements so that by Eq.(21) the depolarization an be repeated at intervals of

about �

dk

.

Conluding remarks For an overview of measurements see [28, 6, 29℄. For an

overview of the theoretial bakground see [9℄.
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2.7.8. Computer Algorithms and Spin Mathing

There are two lasses of omputer algorithm for estimating the equilibrium polariza-

tion in real rings:

(i) Methods based on evaluating

�n̂

�Æ

in the Derbenev{Kondratenko{Mane (DKM)

formula (Eq.(16) of Se.2.7.7) given the ring layout and magnet strengths; and

(ii) The SITROS [1℄ and SLICKTRACK [2℄ algorithms whih estimate �

dep

(Se.2.7.7)

using Monte{Carlo traking.

The lass (i) algorithms are further divided aording to the degree of linearization

of the spin and orbital motion:

(ia) The SLIM family (SLIM [3, 4℄, SLICK [5℄, SITF [1℄) and SOM [6℄ and ASPIR-

RIN [7℄. The latter two utilize the \betatron{dispersion" formalism outlined

below and all are based on a linearization of the orbital and spin motion.

(ib) SMILE [8℄: Linearized orbital motion but nonlinear spin motion;

(i) SODOM [9℄: Linearized orbital motion but nonlinear spin motion;

(id) SpinLie: Nonlinear orbital motion and nonlinear spin motion (Se.2.7.9 in [49℄);

and

(ie) SPRINT [10, 11℄: Linearized orbital motion but nonlinear spin motion.

The linear approximation { SLIM We now present expressions for

�n̂

�Æ

in an

approximation in whih the orbit and spin motion are linearized and in whih ~!

sb

(Se.2.7.7) is linearized as in Eq.(2) below (the SLIM formalism). In linear approxi-

mation we write (see Se.2.7.7)

n̂(~u; s) = n̂

0

(s) + �(~u; s)m̂(s) + �(~u; s)

^

l(s) (1)

valid for

p

�

2

+ �

2

� 1 and we write the omponents !

sb

z

, !

sb

x

, !

sb

y

in the form

[12, 13℄

0

�

!

sb

z

!

sb

x

!

sb

y

1

A

= F

3�6

0

B

B

B

B

B

B

�

x

p

x

y

p

y

z

Æ

1

C

C

C

C

C

C

A

(2)

where ~u � (x; p

x

; y; p

y

; z; Æ) desribes motion with respet to the losed orbit. In

partiular p

x

= x

0

and p

y

= y

0

(exept in solenoids).

The detailed forms of the matrix F

3�6

for bending magnets, quadrupoles, skew

quadrupoles, solenoids and rf avities an be found in [13℄. The orbit motion in
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sextupoles is linearized. For example for a quadrupole, de�ning ~g = �(1 + a

0

) g

where g =

e

p

0

�B

y

�x

one has

F(s) =

0

�

0 0 0 0 0 0

0 0 ~g 0 0 0

~g 0 0 0 0 0

1

A

(3)

In linear approximation the ombined orbit and spin motion is desribed by 8 �

8 transport matries of the form

^

M =

�

M

6�6

0

6�2

G

2�6

D

2�2

�

(4)

ating on the vetor (~u; �; �), where M

6�6

is a sympleti matrix desribing orbital

motion and G

2�6

desribes the oupling of the spin variables (�; �) to the orbit and

depends on m̂(s) and

^

l(s) (see e.g. Eq.(14)). D

2�2

is a rotation matrix assoiated

with the spin basis rotation of Eq.(12) in Se.2.7.7 [12, 13℄.

The eigenvetors for one turn de�ned by

^

M(s

0

+ C; s

0

) � ~q

�

=

^

�

�

� ~q

�

are written

in the form

~q

k

(s

0

) =

�

~v

k

(s

0

)

~w

k

(s

0

)

�

; ~q

�k

(s

0

) = [~q

k

(s

0

)℄

�

for k = I; II; III ;

~q

k

(s

0

) =

�

~

0

6

(s

0

)

~w

k

(s

0

)

�

; ~q

�k

(s

0

) = [~q

k

(s

0

)℄

�

for k = IV (5)

for arbitrary s

0

. The ~v

k

are the eigenvetors for orbital motion with eigenvalues

�

k

= e

�i2��

k

and with �

�k

= ��

k

(k = I; II; III). These eigenvetors obey

the orthogonality relations, and have the normalization of [3℄. The orresponding

eigenvalues of

^

M(s

0

+C; s

0

) are

^

�

k

= �

k

(k = I; II; III) and

^

�

IV

= e

�i2��

IV

with

�

IV

= �

0

and with �

�IV

= ��

IV

.

The spin parts of the eigenvetors ~w

k

(s

0

) (k = I; II; III) and ~w

IV

(s

0

) an be

written as

~w

k

(s

0

) = �

h

D(s

0

+ C; s

0

)�

^

�

k

i

�1

G(s

0

+ C; s

0

)~v

k

(s

0

)

for k = I; II; III ;

(6)

~w

IV

(s

0

) =

1

p

2

�

1

�i

�

e

�i  

sp

(s

0

)

for k = IV

9



and

~w

�k

(s

0

) = [~w

k

(s

0

)℄

�

; (k = I; II; III; IV )

In this linear approximation n̂(~u; s) an be obtained via [14, 15, 13℄

n̂(~u; s)� n̂

0

(s) �

�

�(~u; s)

�(~u; s)

�

=

X

k=I;II;III

fA

k

~w

k

(s) + A

�k

~w

�k

(s)g (7)

where the amplitudes A

k

are determined by the orbit via

~u (s) =

X

k=I;II;III

fA

k

~v

k

(s) + A

�k

~v

�k

(s)g (8)

Then with respet to the (n̂

0

; m̂;

^

l) frame,

�n̂

�Æ

� i

X

k=I;II;III

fv

�

k5

~w

k

� v

k5

~w

�

k

g

= �2 Im

X

k=I;II;III

v

�

k5

~w

k

(9)

Note that this is independent of the phase spae vetor ~u and that

�n̂

�Æ

is periodi in

azimuth in the mahine oordinate system. In this approximation the depolarization

time is then (Eq.(20), Se.2.7.7)

�

�1

dep;lin

=

55

p

3

36

r

e



5

0

~

m

e

1

C

Z

s

0

+C

s

0

d~s

1

j�(~s)j

3

2

X

�=1

 

Im

X

k=I�III

[v

�

k5

(~s)w

k�

(~s)℄

!

2

(10)

This is the formula used in SLIM to alulate the depolarization rate. SLIM

is based on thin lens optis. SLIM{like programs for thik lens optis are SLICK

and SITF. Eah term in Eq. (9) is basially the produt of the sensitivity of an orbit

amplitude to a hange of Æ and the sensitivity of n̂ to a hange of that orbit amplitude.

Using the 6 � 6 sympleti unit matrix S de�ned in [3℄ and the relation A

k

=

�i~v

y

k

S~u, Eq. (7) an be written to display the expliit dependene of n̂ on ~u as

�

�(~u; s)

�(~u; s)

�

= 2 Im

(

X

k=I;II;III

~w

k

(s) � ~v

y

k

(s)S

)

~u(s) = H

2�6

~u(s)

In this linearized theory the vetors n̂(~u; s) and

�n̂

�Æ

display only �rst order reso-

nane behaviour, namely the resonanes

�

0

= k

0

+ k

I

�

I

+ k

II

�

II

+ k

III

�

III

(11)

with jk

I

j+ jk

II

j+ jk

III

j = 1. They arise from the denominator matrix in Eq.(6). The

theory is not valid beyond the limit

p

�

2

+ �

2

� 1.

10



In this formalism the horizontal and longitudinal orbital variables are usually

oupled. See, for example, the symboli forms of the orbital eigenvetors under \Har-

moni losed orbit spin mathing" below. However, the eigentunes are usually very

lose to those assoiated with pure transverse (x; y) and longitudinal (s) motion so

that in the absene of x � y oupling one an often make the assoiations: I ! x,

II ! y and III ! s.

This formalism forms the natural language for the method of maximizing the

polarization alled \spin mathing". Thus omments on the other programs will be

postponed until later.

Spin mathing in the SLIM formalism In pratie the spin mathing of real

rings takes plae in stages as follows.

Stage 1: Strong synhrobeta spin mathing of the perfetly aligned ring

From Se.2.7.7 it is lear that to maximize the polarization we must minimize �

�1

dep

.

Then by Eq.(10) we need to minimize v

�

k5

(k = I; II; III) or the omponents of ~w

k

at azimuths where 1=j�(s)j

3

is large. The v

�

k5

determine the orbit exitation due to

synhrotron radiation (Se.2.1.4 in [49℄) [16℄. In partiular, for rings without x � y

oupling, v

�

II5

usually vanishes in the ars sine the vertial dispersion �

y

vanishes.

However, v

�

II5

does not vanish inside spin rotators (Ses.2.7.3, 2.7.4 in [49℄) ontain-

ing vertial bends. On the other hand v

�

I5

tends not to vanish in the ars sine the

horizontal dispersion �

x

6= 0. Finally, v

�

III5

essentially never vanishes. Eah ase

must be evaluated individually but the minimal reipe is to try to minimize ~w

k

for

(k = I; II; III) only at azimuths where jv

k5

(s)j

2

=j�(s)j

3

is suÆiently large. This

in turn requires (Eq.(6)) that G(s+C; s) � ~v

k

(s) for (k = I; II; III) be minimized.

This must be ahieved by designing the ring layout with this in mind and then pro-

viding suÆient exibility in the optis by providing enough independently powered

quadrupoles. Subsequent alulations with SLIM will indiate whether the math

riteria for the adopted design suÆe.

Consider, for example, a spei� mode, k. Label those bending magnets at whih

jv

k5

(s)j

2

=j�(s)j

3

is large by �

1

(k)

; �

2

(k)

; � � �; �

n

k

(k)

. Then the suppression of depolar-

ization assoiated with the kth mode requires that ~w

k

(s

�

i

) = 0 for all (i = 1 to n

k

).

In general (see Eq.(6)) this in turn requires [17℄

G(s

�

2

; s

�

1

)~v

k

(s

�

1

) = 0

G(s

�

3

; s

�

2

)~v

k

(s

�

2

) = 0

.

.

.

G(s

�

1

+ C; s

�

n

)~v

k

(s

�

n

) = 0 (12)

where we suppressed the supersript label \k". To ful�ll Eq.(12) we then require the

G

ij

(s

�

l+1

; s

�

l

) to vanish when the jth omponent of ~v

k

does not vanish. The matrix

11



G an be written in the form

G(s

2

; s

1

) =

Z

s

2

s

1

d~s D(s

2

; ~s)G

0

(~s)M(~s; s

1

)

where

G

0

=

�

l

s

l

x

l

y

�m

s

�m

x

�m

y

�

� F (13)

Thus G

ij

(s

�

l+1

; s

�

l

) depends on the orientation of the (m̂;

^

l) vetors so that in some

ases some elements of G

ij

(s

�

l+1

; s

�

l

) vanish automatially. But in general these on-

ditions an only be ful�lled by adjusting quadrupole strengths | while maintaining

other neessary features of the orbital optis. We all this strong synhrobeta spin

mathing. A setion of the ring satisfying a ondition in Eq.(12) is \spin transpar-

ent" for mode k. The interpretation is immediate: the overall spin{orbit oupling for

the setion vanishes for mode k. Clearly, the exat spin mathing onditions are very

dependent on the layout of a mahine and eah ase must be handled individually.

In thin lens approximation the G matrix for a quadrupole of length l

q

is

G =

�

�~ql

y

0 �~ql

x

0 0 0

+~qm

y

0 +~qm

x

0 0 0

�

(14)

where ~q = (1 + a

0

) g l

q

. The thin and thik lens forms of G for other magnet types

are given in [3, 4, 18℄.

If the G

ij

(s

�

l+1

; s

�

l

) annot be brought to zero while maintaining an aeptable

opti, then the G(s

�

l

+C; s

�

l

) � ~v

k

(s

�

l

) themselves should be minimized. This essen-

tially means that the e�ets of elements of the G matries of setions of the ring are

made to partially anel one another. The spin mathing of a ring with a solenoid

Siberian Snake (Ses.2.7.3, 2.7.4 in [49℄) has provided an example of this [7℄. By

Eq.(7) redution of G(s + C; s) � ~v

k

(s) for (k = I; II; III) also redues the angle

between n̂ and n̂

0

at azimuth s.

Alternative Stage 1: Harmoni synhrobeta spin mathing of the perfetly aligned ring

If the strong spin mathing methods just desribed are impratial for some rea-

son, another approah aimed at minimizing the strengths of depolarizing resonanes

an be adopted.

Rewrite Eq.(6) as

[w

k1

(s

0

)�i w

k2

(s

0

) ℄ = �

e

�i 

sp

(s

0

+C)

[e

�i2��

0

� e

�i2��

k

℄

Z

s

0

+C

s

0

d~sj

(�)

k

(~s)e

�i2�[�

k

��

0

℄~s=C

with

j

(�)

k

(~s) = e

�i[2��

0

~s=C� 

sp

(~s)℄

�

l

s

�im

s

l

x

�im

x

l

y

�im

y

�

F~v

k

(~s)e

+i2��

k

~s=C

= j

(�)

k

(~s+ C) =

+1

X

p=�1



(�)

kp

e

+i2�p~s=C

12



=)



(�)

kp

=

1

C

Z

C

0

d~se

i2�[ �

k

��

0

�p ℄~s=C

e

�i 

sp

(~s)

�

l

s

�im

s

l

x

�im

x

l

y

�im

y

�

F~v

k

(~s)

so that

[w

k1

(s

0

)�i w

k2

(s

0

) ℄ = e

�i 

sp

(s

0

)

i

C

2�

+1

X

p=�1



(�)

kp

e

�i2�[ �

k

��

0

�p ℄s

0

=C

[ �

k

��

0

� p ℄

The ondition that ~w

k

(s

�

i

) = 0 for all (i = 1 to n

k

) is now be replaed by

[w

k1

(s

�

i

)�i w

k2

(s

�

i

) ℄ = e

�i 

sp

(s

�

i

)

i

C

2�

+1

X

p=�1



(�)

kp

e

�i2�[ �

k

��

0

�p ℄s

�

i

=C

[ �

k

��

0

� p ℄

= 0

Near to the resonane �

k

� �

0

� ~p = 0 the sum over p is dominated by the

term ontaining 

(�)

k~p

. This orresponds to the spins' seeing a stationary �eld in the

(n̂

0

; m̂

0

;

^

l

0

) frame, proportional to 

(�)

k~p

, whih rotates spins away from n̂

0

. Note that



(�)

k~p

is independent of s

�

i

. Approximate spin mathing an be ahieved for all s

�

i

by

adjusting the optis so that an appropriate set of the 

(�)

k~p

are small. This is alled

harmoni synhrobeta spin mathing. See also [17, 19℄.

On resonane e

i2�[ �

k

��

sp

�~p ℄~s=C

= 1. Then the oeÆients 

(�)

k~p

take the form



(�)

k~p

=

1

C

Z

C

0

d~se

�i 

sp

(~s)

�

�

l

s

+ im

s

l

x

+ im

x

l

y

+ im

y

�

� F~v

k

(~s) for �

k

+ �

0

= ~p



(+)

k~p

=

1

C

Z

C

0

d~se

+i 

sp

(~s)

�

�

l

s

� im

s

l

x

� im

x

l

y

� im

y

�

� F~v

k

(~s) for �

k

� �

0

= ~p (15)

For mode k and orbit amplitude A

k

, the so-alled \resonane strengths" are given by

A

k



�

k~p

and A

�k

(

+

k~p

)

�

. The 

+

k~p

and 

�

k~p

an be obtained from the SLIM algorithm by

alulating the matrixG at the resonane for one turn but without the bakward spin

basis rotation (Eq.(12), Se.2.7.7 in [49℄) that, in SLIM, is applied at the end of one

turn [12℄. The onept of resonane strength (Eq.(2), Se.2.7.5 in [49℄) is important

for the aeleration of polarized protons. Normally only the ase of at rings with

quadrupoles is onsidered so that n̂

0

is nominally vertial. The formalism presented

here shows how to de�ne and easily obtain resonane strengths for eah mode k and

in the presene of solenoids and skew quadrupoles for arbitrary orientations of n̂

0

.

See also [20, 21, 11℄.
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Reformulation in terms of beta funtions and dispersion[22℄

We an reformulate Stage 1 by making a transformation of the partile oordinates

from ~u � (x; p

x

; y; p

y

; z; Æ) to

~

~u � (~x; ~p

x

; ~y; ~p

y

; ~z; Æ) via the transformation

~

~u = K � ~u

where

K(s) =

0

B

B

B

B

B

B

�

1 0 0 0 0 ��

1

0 1 0 0 0 ��

2

0 0 1 0 0 ��

3

0 0 0 1 0 ��

4

�

2

��

1

�

4

��

3

1 0

0 0 0 0 0 1

1

C

C

C

C

C

C

A

=) K

�1

(s) =

0

B

B

B

B

B

B

�

1 0 0 0 0 �

1

0 1 0 0 0 �

2

0 0 1 0 0 �

3

0 0 0 1 0 �

4

��

2

�

1

��

4

�

3

1 0

0 0 0 0 0 1

1

C

C

C

C

C

C

A

whereby the dispersion vetor ~� � (�

1

; �

2

; �

3

; �

4

) is the periodi solution of the lin-

earized equations of motion for (x; p

x

; y; p

y

) with Æ = 1 and without the rf avities.

Then with �

x

� �

1

; �

y

� �

3

~x = x� Æ�

x

; ~y = y � Æ�

y

:

The matrix K is sympleti so that the formalism remains anonial. In partiular,

the new transfer matries

~

M and eigenvetors

~

~v

�

are obtained via

~

M(s

2

; s

1

) = K(s

2

) �M(s

2

; s

1

) �K

�1

(s

1

)

and

~

M(s+ C; s) = K(s) �M(s+ C; s) �K

�1

(s)

=)

~

~v

�

(s) = K(s)~v

�

(s)

so that the eigenvalues and orthogonality onditions are unhanged. Furthermore the

new matries

~

F and

~

G are

~

F(s) = F(s) �K

�1

(s)

and

~

G(s

2

; s

1

) = G(s

2

; s

1

) �K

�1

(s

1

)

The depolarization rate then takes the form

�

�1

dep;lin

=

55

p

3

36

r

e



5

0

~

m

e

1

C

Z

s

0

+C

s

0

d~s

1

j�(~s)j

3

2

X

�=1

 

Im

X

k=I�III

[ f

k

(~s) ~w

k�

(~s) ℄

!

2
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with f

k

=

P

6

n=1

[K

�1

℄

5n

� ~v

�

kn

= v

�

k5

and

~

~w

k

= ~w

k

. This formulation has the advantage

that in the speial ase, or the approximation, of no orbital oupling, the 6 � 6 orbit

matries just onsist of three 2 � 2 matries on the diagonal. This is the ase if

there is no x � y oupling and no dispersion in the avities. Then we an make the

identi�ations

e

: I ! x, II ! y and III ! s and the eigenvetors

~

~v

k

(s) of the

revolution matrix an be written in the form

~

~v

I

=

0

�

~

t

x

~

0

2

~

0

2

1

A

;

~

~v

II

=

0

�

~

0

2

~

t

y

~

0

2

1

A

;

~

~v

III

=

0

�

~

0

2

~

0

2

~

t

z

1

A

;

~

t

r

=

1

p

2�

r

(s)

�

�

r

(s)

�[�

r

(s) + i℄

�

e

�i 

r

(s)

(r � x; y; z) and the f

k

are given by f

I

� f

x

= �(~v

I1

�

2

� ~v

I2

�

1

) ; f

II

� f

y

=

�(~v

II3

�

4

� ~v

II4

�

3

) and f

III

(s) � f

z

=

q

�

z

2

e

�i 

z

(s)

. The jf

x

j

2

and jf

y

j

2

are just the

fators

�

r

2

+ (�

r

�

r

+ �

r

�

0

r

)

2

2�

r

(r = x; y)

used in [23℄ to alulate emittanes in the absene of transverse oupling. In pratie

jf

III

j

2

is almost independent of s sine �

s

(s) is almost independent of s (see below).

Note that these � and � are Courant{Snyder parameters and should not be onfused

with the quantities in Eq.(1). With these oordinates the

~

F matrix for a quadrupole

takes the form

~

F =

0

�

0 0 0 0 0 0

0 0 ~g 0 0 ~g�

3

~g 0 0 0 0 ~g�

1

1

A

We an write

~

~w

k

(s

0

) = �

h

D(s

0

+ C; s

0

)�

^

�

k

i

�1

~

G(s

0

+ C; s

0

) �

~

~v

k

(s

0

)

for (k = I; II; III) and we use a representation of the

~

G matrix in the form

~

G(s

2

; s

1

) =

Z

s

2

s

1

d~s D(s

2

; ~s)

~

G

0

(~s)

~

M(~s; s

1

)

with

~

G

0

=

�

l

s

l

x

l

y

�m

s

�m

x

�m

y

�

�

~

F

e

In the following we will hoose the notations (x; y; s) and (I; II; III) aording to the ontext.

There should be no onfusion. If there is transverse{longitudinal oupling one an often still make

the assoiations I ! x, II ! y and III ! s just as when using the oordinates u.
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In thin lens approximation the

~

G matrix for a quadrupole is

~

G =

�

�~ql

y

0 �~ql

x

0 0 �

1

+~qm

y

0 +~qm

x

0 0 �

2

�

where �

1

= �~ql

y

�

1

� ~ql

x

�

3

and �

2

= +~qm

y

�

1

+ ~qm

x

�

3

. We see that as a result

of separating the transverse oordinates into betatron and dispersion ontributions,

olumns six of

~

F and

~

G ontain terms depending on dispersions.

The strong spin mathing ondition

~

~w

k

= 0 for suppressing depolarization now

amounts to setting the

~

G(s

�

l+1

; s

�

l

)

~

~v

k

(s

�

l

) to zero in analogy with Eq.(12). Then

in the speial ase, or approximation, of a fully unoupled opti and by taking into

aount only the depolarizing inuene of quadrupoles this is equivalent to requiring

[24, 25℄:

For horizontal motion:

�

(1 + a

0

)

p

2

1

C

Z

s

�

l+1

s

�

l

d~s

p

�

x

(~s)g(~s)e

�i  

x

(~s)

[ l

y

(~s)� im

y

(~s) ℄ e

�i 

sp

(~s)

= 0

(16)

For vertial motion:

�

(1 + a

0

)

p

2

1

C

Z

s

�

l+1

s

�

l

d~s

q

�

y

(~s)g(~s)e

�i  

y

(~s)

[ l

x

(~s)� im

x

(~s) ℄ e

�i 

sp

(~s)

= 0

(17)

For longitudinal motion:

�

(1 + a

0

)

p

2

1

C

Z

s

�

l+1

s

�

l

d~s

[�

z

(~s) + i℄

p

�

z

(~s)

g(~s)e

�i 

z

(~s)

�f�

y

[l

x

(~s)� im

x

(~s)℄ + �

x

[l

y

(~s)� im

y

(~s)℄ge

�i 

sp

(~s)

= 0 (18)

Sine in pratie synhrotron motion is well approximated by simple harmoni

motion [27℄, �

z

(s) is almost independent of s and �

z

(s) � 0. Then Eq.(18) may be

approximated by

�

(1 + a

0

)

p

2

i

p

�

z

1

C

Z

s

�

l+1

s

�

l

d~sg(~s)e

�i 

z

(~s)

� e

�i 

sp

(~s)

f�

y

[l

x

(~s)� im

x

(~s)℄ + �

x

[l

y

(~s)� im

y

(~s)℄g = 0 (19)

Harmoni synhrobeta spin mathing in terms of beta funtions and dispersion

follows the path detailed earlier under \Alternative Stage 1" but with the eigenvetors

~

~v

k

and the matries

~

F. Typial expressions an be found in [25, 26℄.

Commentary

Spin mathing should be arried out using thik lenses so that the opti is orret.
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Strong spin mathing by minimizing the integrals in Eqs.(16{18) requires expliit in-

tegration. Furthermore Eqs.(16{18) must be modi�ed if there is signi�ant orbital

oupling. Thus in pratie the numerial �tting involved in strong spin mathing

an be arried out most simply by minimizing the G

ij

(s

�

l+1

; s

�

l

) sine these already

represent integrals and do not need knowledge of the dispersion. Moreover these ma-

tries are preisely those ontained in the SLIM program so that ross heks between

programs are simpli�ed. Another advantage of working with the G matrix is that it

allows setions of the ring to be studied and made transparent in isolation sine no

knowledge of Courant{Snyder parameters is needed; use of G emphasizes the loal

nature of spin transpareny. On the other hand Eqs.(16{18) and the split{up versions

depend on Courant{Snyder parameters and these in turn depend on the struture of

the whole ring so that the \loality" is masked. When studying the spin transpareny

of a ring, it is often useful for diagnosti purposes to set elements of the G or the

~

G matries to zero arti�ially and thereby obtain an impression of whih setions

of the ring are most dangerous. For example by swithing o� olumn six of

~

G in

quadrupoles, the e�et of dispersion an be leanly separated from the e�et of be-

tatron motion. One an also investigate the system by using the matrix handling

failities in symboli algebra programs and the fat that the G and

~

G of magnets or

strings of magnets often depend in a simple way on the elements of the orresponding

M and

~

M [18℄. Finally, the G and

~

G matries are in general energy dependent. But

a spin math made at the design energy is usually still e�etive for a few tens of MeV

above and below, exept near resonanes.

Some examples

In a perfetly aligned at ring (no vertial bends) with no solenoids and no x � y

oupling, the depolarization rate �

�1

dep;lin

vanishes (see below under Harmoni losed

orbit spin mathing) so that no spin mathing is needed.

A spin rotator (Ses.2.7.3, 2.7.4 in [49℄) based on dipoles and ontaining no

quadrupoles is automatially almost spin transparent sine the elements of G are

usually muh smaller in dipoles than in quadrupoles [18℄. Dipole rotators ontaining

quadrupoles need expliit spin mathing [28℄.

Spin rotators based on a ombination of solenoids (whih rotate n̂

0

from the ver-

tial into the horizontal) and dipoles (to make the polarization longitudinal at an

interation point (IP)) [18℄ are not automatially transparent. They also ause x� y

oupling. However, by sandwihing quadrupoles and skew quadrupoles among se-

tions of solenoid the oupling an be eliminated and by areful hoie of the sandwih

struture some terms in olumns 1 to 4 of G for the rotator an be made small at

the same time [18℄. Column 6 remains troublesome but for antisymmetri solenoid

shemes [18℄ the olumns 6 of the rotators anel eah other. For further disussion

on solenoids see [29, 30℄.

For a straight setion (e.g. surrounding an IP) where the polarization is longi-

tudinal and whih only ontains quadrupoles and drifts, the spin preession angle is

a linear ombination of the overall orbit deetions �p

x

and �p

y

in the quadrupole

�elds [18℄. Thus spin transpareny implies making �p

x

and �p

y

vanish for all or-
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bits. This an also be dedued from Eqs. (16) and (17). If the straight setion is

geometrially and optially left{right symmetri, this an be ahieved with an opti

for whih tan� 

x

= ��

x

and tan� 

y

= ��

y

where the � are the phase advanes

between the IP and an outer end of the straight setion and the � appertain to the

outer end. So the eight onditions that olumns 1 to 4 of the G matrix vanish have

been redued to two onditions by the symmetry. Furthermore, this is an example

where the spin mathing onditions redue to purely optial onditions.

These onditions an also be formulated diretly in terms ofG. By hoosing

^

l = ŷ

and m̂ = x̂ and requiring that the elements G

11

and G

23

vanish for the streth from

the IP to the outer end, G vanishes for the whole straight setion for an arbitrary

orientation of m̂,

^

l around the longitudinal n̂

0

.

For a straight setion modi�ed to ontain horizontally bending dipoles with n̂

0

in

the horizontal plane, Eq. (19) is equivalent to requiring that the total hange of �

2

due to the quadrupoles vanishes over the setion.

If the straight setion ontains rf avities, their inuene on the spin transpareny

an often be negleted.

Other examples of the use of symmetry to simplify the spin math an be found

in [25℄ where spin mathing using variants of Eqs.(16{18) for a ring with dipole ro-

tators is disussed. The results of a alulation with SLICK before and after a spin

math an be found in [31℄. Experimental observations resulting from suessful spin

mathing involving spin rotators are desribed in [32℄.

Computer programs for strong spin mathing

Strong spin mathing failities based on evaluation of spin{orbit integrals (e.g. Eqs.(16{

18) ) are built into the programs ASPIRRIN and SOM. To do spin mathing in terms

of G the ode SPINOR [33℄ an be used.

Stage 2: Harmoni losed orbit spin mathing

One the perfetly aligned ring has been spin mathed, the e�ets of misalignment

must be addressed. In a perfetly aligned at ring with no solenoids, n̂

0

is vertial so

that l

y

and m

y

are zero. Then by inspetion of the G matrix elements for horizontal

bends, quadrupoles and rf avities it is lear that for no x� y oupling, olumns 1, 2,

5 and 6 of G(s+ C; s) vanish. In partiular, for quadrupoles, olumns 1 and 2 of G

and olumns 1, 2 and 6 of

~

G vanish. Moreover with no x � y oupling the one turn

orbital matrix M

6�6

and its eigenvetors have the strutures [34℄

M

6�6

=

0

B

B

B

B

B

B

�

? ? 0 0 ? ?

? ? 0 0 ? ?

0 0 ? ? 0 0

0 0 ? ? 0 0

? ? 0 0 ? ?

? ? 0 0 ? ?

1

C

C

C

C

C

C

A

; ~v

I

=

0

B

B

B

B

B

B

�

?

?

0

0

?

?

1

C

C

C

C

C

C

A

; ~v

II

=

0

B

B

B

B

B

B

�

0

0

?

?

0

0

1

C

C

C

C

C

C

A

; ~v

III

=

0

B

B

B

B

B

B

�

?

?

0

0

?

?

1

C

C

C

C

C

C

A

where a ? denotes a nonzero element. Therefore by Eq.(6) ~w

I

(s) and ~w

III

(s) are
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zero. Note that for no x � y oupling v

�

II5

� v

�

y5

vanishes. Then by Eq.(10) �

�1

dep;lin

is automatially zero. In rings with vertial bends (e.g. in spin rotators) n̂

0

is made

vertial in the ars by design.

In real misaligned rings there is a vertial losed orbit distortion and n̂

0

is tilted

from the vertial in the ars (see below) so that the above mentioned olumns of

G and

~

G for the ar quadrupoles do not vanish. In pratie the tilts an be tens

of milliradians and they inrease with energy (they are roughly proportional to a

0

)

but even these small angles an lead to strong depolarization so that it is essential

that the ring be very well aligned from the beginning. Note that vertial losed orbit

distortion leads primarily to depolarization due to horizontal synhrobetatron motion

in the ars. Note also that tilts of tens of milliradians ause a negligible derease of

the underlying ST polarization (Eq.(14), Se.2.7.7).

If there is a vertial orretion oil and a beam position monitor (BPM) near eah

quadrupole, one an try to minimize the ombined vertial kik (\kik minimization")

[35℄ applied to the orbit by eah quadrupole and its orretion oil and thereby re-

due the tilt of n̂

0

due to the distorted orbit's being o� entre in the (misaligned)

quadrupoles. This also redues the generation of spurious vertial dispersion so that

the driving of �

y

and �

z

resonanes (Eq.(11)) is avoided. This presupposes that the

positions with respet to the quadrupoles of the BPMs are well known. These rela-

tive positions an be estimated using beam{based alibration (Se.4.5.5 in [49℄)[35℄.

However, kik minimization will not be e�etive if, say, the dipoles have signi�ant

tilt misalignments.

If these measures are insuÆient, a further method for bringing n̂

0

loser to the

vertial is needed. n̂

0

, and thus its tilt, for the distorted ring an be obtained as

desribed in Se.2.7.7 but one gains more insight by using a perturbation theory

based on SLIM onepts [36℄. Viewed from the (n̂

0

; m̂;

^

l) frame alulated for the

design orbit, the �rst order deviation of n̂

0

from the design orientation an be written

as

[Æn

01

(s)� iÆn

02

(s)℄ = �i

C

2�

X

k

h

k

e

i2�ks=C

k � �

0

where the h

k

are Fourier oeÆients given by

h

k

=

1

C

Z

s

0

+C

s

0

d~s [d

1

(~s)� id

2

(~s)℄ e

�ik2�~s=C

Here

�

d

1

d

2

�

=

�

l

s

l

x

l

y

�m

s

�m

x

�m

y

�

8

<

:

F � ~u

o

�

e

p

0

0

�

�B

s

1+a

0

1+

0

�B

x

(1 + a

0

)

�B

y

(1 + a

0

)

1

A

9

=

;

where the �B

x;y;s

are �eld errors and ~u

o

is the deviation of the 6{D losed orbit

from the design orbit. Æn̂

0

an be minimized by using orretion oils to adjust the

losed orbit (e.g. by generating losed bumps so that the luminosity is not a�eted)

19



in suh a way that the real and imaginary parts of h

k

, with k near �

0

, are small. This

tehnique is alled harmoni losed orbit spin mathing and is embodied in the

program FIDO [37, 38℄. See [19℄ also. If the mahine distortions are not well known

and if the losed orbit annot be measured well enough, the losed orbit orretion

must be arried out empirially by observing the polarization. If the distortions

and the orbit are well enough known the orretion oil strength an be alulated

ab initio (deterministi harmoni losed orbit spin mathing) [39℄. The orretion

sheme should be hosen so that it ahieves the maximum e�et on Æn̂

0

with the

smallest possible additional orbit distortion.

Harmoni losed orbit spin mathing an in priniple be used to minimize the

Æn̂

0

due to an unompensated solenoid plaed at the position of a nominally vertial

n̂

0

. However, this is ahieved more eÆiently by generating relatively antisymmetri

vertial orbit bumps (spanning horizontal bend magnets) on eah side of the solenoid

[40, 41℄.

It might also be useful to weight Æn̂

0

(s) by a periodi funtion p(s) [42℄. In that

ase one tries to minimize p(s)Æn̂

0

(s). This is worth trying, for example, if the main

soure of depolarization due to misalignments is the oupling of non-zero l

y

and m

y

to the horizontal dispersion in the ars (see Eq.(19)). This is often the ase, as an be

seen by examining the numerial values of the ontributions of eah mode (I; II; III)

in Eq.(10). Then p(s) is taken to be �

x

(s)g(s).

To minimize p(s)Æn̂

0

(s) one must minimize the harmonis

~

h

k

of

~

h(s) = p(s)(d

1

� id

2

) + p

0

(s) [Æn

01

(s)� iÆn

02

(s)℄

=

~

h(s+ C)

whereby

p(s) [Æn

01

(s)� iÆn

02

(s)℄ = �i

C

2�

P

k

~

h

k

e

i2�ks=C

k��

0

Stage 3: Further tuning

Harmoni losed orbit spin mathing an generate spurious vertial dispersion and

this in turn generates vertial emittane (nonzero v

�

II5

(Se.2.1.4 in [49℄)) and also

ensures that olumn 6 of

~

G for the quadrupoles does not vanish. Thus extra depo-

larization an our. It might then be useful to overlay a harmoni vertial betatron

math (k = II in Eq.(15)) on any existing Stage 1 math, assuming that is possi-

ble. Likewise, to overome the e�et of spurious vertial dispersion in olumn 6 of

~

G one ould use extra vertial orretion oils to overlay a harmoni vertial disper-

sion math (k = III in Eq.(15)). Usually both of these two extra mathes would be

empirial. One ould also try to ombine the harmoni losed orbit math and the

harmoni vertial dispersion math into one proedure.
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Stage 4: Beam{beam spin mathing

The beam{beam interation is equivalent to a nonlinear lens and an spoil a spin

math. The e�et of the beam{beam interation on the polarization is not fully

understood but it has been suggested that the beam{beam depolarization an be

redued by balaning the beam{beam deetion of spins against subsequent dee-

tions taking plae in the ring quadrupoles. The ondition for minimizing the e�et of

vertial kiks is independent of the urrent and harge distribution in the opposing

beam and takes the form [43℄

m

x

� il

x

p

�

�

y

+

X

�

�

e

�

i

2

(�

0

��

y

)

4 sin

�

0

��

y

2

Z

C

0

ds g

p

�

y

e

�i 

y

(m

x

+ il

x

) = 0

An equivalent presription in SLIM formalism allows an arbitrarily oupled opti to

be treated [44℄.

Higher order resonanes To go beyond the linearization of spin ontained in

Eq.(1) one writes

n̂(

~

~u; s) = (1� �

2

� �

2

)

1=2

n̂

0

(s) + �m̂(s) + �

^

l(s) (20)

(for �

2

+ �

2

� 1) and does not linearize the T{BMT equation. Then spin{orbit

resonanes of arbitrarily high order an appear in

�n̂

�Æ

[8℄. The strength dereases

with the order (� jk

I

j + jk

II

j + jk

III

j). In pratie the most intrusive higher order

resonanes are those for whih �

0

= k

0

� �

k

+ k

III

�

III

. These \synhrotron sideband

resonanes" of the �rst order parent resonanes are due to modulation by energy

osillations of the instantaneous rate of spin preession around n̂

0

. They originate

in the part due to synhrotron motion in the term ~!

sb

� n̂

0

appearing in the full

equations of spin motion (i.e. beyond the SLIM level) [45℄. The depolarization rate

assoiated with sidebands of isolated parent resonanes (�

0

= k

0

��

k

) is approximately

proportional to the depolarization rate for the parent resonanes. Thus the e�ets of

synhrotron sideband resonanes an be redued by doing the spin mathes desribed

above. Expliit formulae for the proportionality onstants (\enhanement fators")

an be found in [46, 47℄. The underlying strength parameter (the \modulation index")

of synhrotron sideband resonanes is (a

0

�

Æ

=�

z

)

2

whih inreases strongly with the

energy and energy spread.

Other omputer odes [48℄ The SMILE algorithm is restrited to linearized or-

bital motion in the thin lens approximation and alulates

�n̂

�Æ

by an extension of the

�rst order perturbation theory of SLIM to high order using Eq.(20) and full 3{D spin

motion. The algorithm involves multi{turn spin{orbit traking. High order resonane

e�ets are manifested by resonane denominators but the formalism ensures that the

vetor n̂ is of unit length. The highest required absolute values of the k

I

; k

II

; k

III

are

spei�ed as input parameters.
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SODOM represents n̂ by a spinor notation. The periodiity ondition n̂(~u; s) =

n̂(~u; s + C) (Se.2.7.7) is equivalent to periodiity in the three phases of linearized

orbital motion and the one turn 2 � 2 spinor transfer matrix on a synhrobeta orbit is

also periodi in the initial orbital phases. The spinor transfer matrix and n̂(~u; s) are

then represented by Fourier series. The Fourier oeÆients are obtained numerially

and n̂(~u; s) an then be reonstruted. By onstruting n̂ at many points in phase

spae

�n̂

�Æ

an be obtained by numerial di�erentiation.The highest required absolute

values of the k

I

; k

II

; k

III

are spei�ed as input parameters.

The algorithm SpinLie utilizes Lie algebrai methods (Se.2.7.9 in [49℄) to provide

a perturbation expansion for n̂ and an handle 3-D spin motion and moderately

non-linear orbit motion.

The vetor n̂(~u; s) an also be obtained by \strobosopi averaging" using the ode

SPRINT.

�n̂

�Æ

an then be alulated by numerial di�erentiation. This algorithm

automatially inludes all orders of resonane.

The above algorithms all exploit the DKM formula (Eq.(16),Se.2.7.7) but the

SITROS and SLICKTRACK algorithms simulate the depolarization proess diretly

using Monte{Carlo traking simulations of the e�ets on the orbit, and then on the

spin, of stohasti photon emission and damping and deliver estimates of �

dep

. The

equilibrium polarization is then obtained from the approximation (Se.2.7.7)

P

eq

= P

bks

�

tot

�

bks

(21)

where

1

�

tot

=

1

�

bks

+

1

�

dep

: (22)

This ignores the (normally small) term

�n̂

�Æ

in the numerator of the DKM formula.

SITROS and SLICKTRACK alulate with full 3-D spin motion and, in ontrast to

the analytial algorithms, they an handle strongly nonlinear orbital motion.
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