Polarisation in electron rings

D.P. Barber

•

•

Deutsches Elektronen–Synchrotron (DESY), Germany University of Liverpool, UK Cockcroft Institute, Daresbury, UK 19 May 2008

Plan

- HERA a reminder
- Some theory and phenomenology
- eRHIC ring-ring: calculations, including beam-beam effects
- ELIC: Comments and questions
- Things still to do

HERA

The first and only e^{\pm} ring to supply longitudinal polarisation at high energy — via the Sokolov-Ternov effect – also at 3 IP's simultaneously!

Polarisation vertical in the arcs – to drive the Sokolov-Ternov effect

NO INTERNAL QUADRUPOLES!

3 pairs of rotators (so max. Sokolov-Ternov polarisation = 83 %), solenoids on, no beam-beam

THEORY and PHENOMENOLOGY

The T-BMT equation.

$$rac{dS}{ds} = ec{\Omega}(\gamma, ec{v}, ec{B}, ec{E}) imes ec{S}$$

Periodic solution \hat{n}_0 on closed orbit.

The real unit eigenvector of:

 $R_{3\times 3}(s+C,s)\hat{n}_0 = \hat{n}_0$

 \hat{n}_0 is 1-turn periodic: $\hat{n}_0(s+C) = \hat{n}_0(s)$

 \hat{n}_0 : direction of measured equilibrium radiative polarization.

Closed orbit spin tune ν_0 : number of precessions per turn around \hat{n}_0 for a spin on the closed orbit. Extract from the eigenvalues of $R_{_{3\times3}}(s+C,s)$

The value of the polarization is the same at all azimuths — time scales.

Spin motions

- Protons: largely deterministic unless IBS.
- Electrons/positrons:

If a photon causes a spin flip, what are the other $\approx 10^{10}$ photons doing? ===>

Stochastic/damped orbital motion due to synchrotron radiation

- + inhomogeneous fields
- + spin–orbit coupling via T–BMT

==> spin diffusion i.e. depolarisation!!!

Self polarisation: Balance of poln. and depoln. ==>

$$P_{\infty} \approx P_{\scriptscriptstyle BK} \; \frac{1}{1 \; + \; (\frac{\tau_{dep}}{\tau_{\scriptscriptstyle BK}})^{-1}} \qquad (P_{\scriptscriptstyle ST} \to P_{\scriptscriptstyle BK})$$

In any case:

$$au_{dep}^{-1} \propto \gamma^{2N} \ au_{st}^{-1}$$
 (actually a polynomial in γ^{2N})

==> Trouble at high energy!

Spin-orbit resonances

 $\nu_{\rm spin} = k + k_I \nu_I + k_{II} \nu_{II} + k_{III} \nu_{III}$

 $\nu_{\rm spin}$: amplitude dependent spin tune \approx closed orbit spin tune = precessions /turn on CO

- Orbit "drives spins" ==> Resonant enhancement of spin diffusion.
- Resonance order: $|k_I| + |k_{II}| + |k_{III}|$
- First order: $|k_I| + |k_{II}| + |k_{III}| = 1$ e.g. SLIM like formalisms.
- Strongest beyond first order:

synchrotron sidebands of first order parent betatron or synchrotron resonances

 $\nu_{\rm spin} = k + k_i \nu_i + k_{III} \nu_{III}, \quad i = I, II \text{ or } III$

More on spin–orbit resonances

(1) Linear orbit motion with linearized spin motion (SLIM/SLICK): just first order spin-orbit resonances.

(2) Linear orbit motion with full 3–D spin motion:

all orders of spin-orbit resonances.

(3) Non-linear orbit motion with linearized spin motion: orders of spin-orbit resonances just reflecting the orbital spectrum.

(4) Non-linear orbit motion with full 3–D spin motion: all orders of spin–orbit resonances.

Diagnostics : With (1) and (3) we use spin motion to Fourier analyse the orbital motion!

Linear spin matching

Skip the invariant spin field and the Derbenev-Kondratenko formula for today!

Heuristics instead!

 $\vec{S} \approx \hat{n}_0(s) + \alpha \hat{m}_0(s) + \beta \hat{l}_0(s)$

 α, β : 2 small spin tilt angles — have subtracted out the big rotations!

$$\mathbf{\hat{M}}_{8 imes 8} \;=\; \left(egin{array}{ccc} \mathbf{M_{6 imes 6}} & \mathbf{0_{6 imes 2}} \ \mathbf{G_{2 imes 6}} & \mathbf{D_{2 imes 2}} \end{array}
ight)$$

 $acting on \ ec{u} = (x, \ x', \ y, \ y', \ l, \ \delta) \ \ ext{and} \ \ lpha, eta$

This is the SLIM formalism for estimating depolarisation analytically at first order (Chao 1981).

To minimize depolarization: minimize appropriate bits of $G_{2\times 6}$ for appropriate stretches of ring ===> lots of independent quadrupole circuits. Spin transparency!!! – not the trivial kind to which this term is applied at certain labs.

eRHIC: ring-ring option

Parameters

|--|

	High ene	rgy setup	Low energy setup		
	р	e	р	e	
Energy, GeV	250	10	50	5	
Bunch intensity, 10 ¹¹	1	1	1	1	
Ion normalized emittance, π mm · mrad , x/y	15/15		5/5		
rms emittance, nm, x/y	9.5/9.5	53/9.5	16.1/16.1	85/38	
β*, cm, x/y	108/27	19/27	186/46	35/20	
Beam-beam parameters, x/y	0.0065/0.003	0.03/0.08	0.019/0.0095	0.036/0.04	
$\kappa = \epsilon_y / \epsilon_x$	1	0.18	1	0.45	
Luminosity, 1.e32 cm ⁻² s ⁻¹	4.4		1.5		

The 4×4 transfer matrix for the transverse motion through a pair of solenoids:

$$\left(egin{array}{cccccc} 0 & -2r & 0 & 0 \ 1/2r & 0 & 0 & 0 \ 0 & 0 & 0 & 2r \ 0 & 0 & -1/2r & 0 \end{array}
ight)$$

where r is the radius of orbit curvature in the longitudinal field. Use 5 back-to-back symmetric quadrupoles.

$$ec{P}_{
m bks} \;=\; -rac{8}{5\sqrt{3}}\; \hat{n}_0\; rac{\oint ds rac{\hat{n}_0(s)\cdot\hat{b}(s)}{|
ho(s)|^3}}{\oint ds rac{[1-rac{2}{9}(\hat{n}_0(s)\cdot\hat{s})^2]}{|
ho(s)|^3}}$$

22

23

aγ

Electron-Ion Collider Collaboration Meeting, Hampton, Virginia, May 2008.

Spin coordinates

$$\hat{S} = \sqrt{1 - lpha^2 - eta^2} \ \hat{n}_0 + lpha \hat{m} + eta \hat{l}$$

Estimating depolarisation by M-C simulation $\alpha^2 + \beta^2 << 1$

$$\Delta P \approx -\frac{1}{2}\Delta(\langle \alpha^2 + \beta^2 \rangle) = -\frac{1}{2}\Delta(\sigma_{\alpha}^2 + \sigma_{\beta}^2) \implies \frac{dP}{dt} \approx -\frac{1}{2} = -\frac{1}{2}\frac{d}{dt}(\sigma_{\alpha}^2 + \sigma_{\beta}^2)$$

Spin-orbit covariance matrix

σ_x^2	$\sigma_{xx'}$	•	•	•	•	•	•
$\sigma_{x'x}$	$\sigma_{x^{\prime}}^2$	•		•	•	•	•
•	· ·	•		•	•	•	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•
	•	•	•	•	σ_{δ}^2	•	•
_	—		—	—	—	 —	
						σ_{lpha}^2	$\sigma_{lphaeta}$
$\int \sigma_{\beta x}.$						$\sigma_{etalpha}$	σ_{eta}^2 ,

Spin–orbit maps for sections

For linearised spin motion (SLIM/SLICK):

$$\mathbf{\hat{M}} \;=\; \left(egin{array}{ccc} \mathbf{M_{6 imes 6}} & \mathbf{0_{6 imes 2}} \ \mathbf{G_{2 imes 6}} & \mathbf{D_{2 imes 2}} \end{array}
ight)$$

The $\mathbf{G}_{2\times 6} \times (\mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{y}', \Delta \mathbf{l}, \delta)^{\mathrm{T}}$ delivers changes to the 2 small angles α and β

For full 3–D spin motion:

$$\mathbf{\hat{M}} \;=\; \left(egin{array}{ccc} \mathbf{M_{6 imes 6}} & \mathbf{0_{6 imes 3}} \ \mathbf{G_{3 imes 6}} & \mathbf{D_{3 imes 3}} \end{array}
ight)$$

The $\mathbf{G}_{\mathbf{3}\times\mathbf{6}} \times (\mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{y}', \mathbf{\Delta}\mathbf{l}, \delta)^{\mathbf{T}}$ delivers rotations around $\hat{n}_0, \ \hat{m}_0, \ \hat{l}_0$

The beam-beam (non-linear) kicks are applied at single points

Diagnostics! Diagnostics! Diagnostics!

Switch spin-orbit coupling off/on to see what does what.

Sidebands of parent first order betatron resonances: a useful approximation

$$\tau_{_{dep}}^{-1} \propto \frac{A}{\left(\nu_0 \pm Q_y\right)^2} \quad \rightarrow \quad \tau_{_{dep}}^{-1} \propto \sum_{m_s = -\infty}^{\infty} \frac{A B(\xi; m_s)}{\left(\nu_0 \pm Q_y \pm m_s Q_s\right)^2}$$

A is an energy dependent factor

 $B(\xi; m_s)$'s: enhancement factors, contain modified Bessel functions $I_{|m_s|}(\xi)$ and $I_{|m_s|+1}(\xi)$ depending on the modulation index

$$\xi = \left(\frac{a\gamma \ \sigma_{\delta}}{Q_s}\right)^2$$

in a flat ring.

===> very strong effects at high energy — dominant source of trouble

Recall the limitations at LEP!!

Analogous formula for sidebands of first order synchrotron resonances.

ELIC: latest version using stored beams

Features: $\nu_0 = 1/2$ with Siberian Snakes but the figure of 8 form ensures that the Sokolov-Ternov effect doesn't average to zero.

. .

$$ec{P}_{
m bks} \;=\; -rac{8}{5\sqrt{3}} \; \hat{n}_0 \; rac{\oint ds rac{\hat{n}_0(s) \cdot b(s)}{|
ho(s)|^3}}{\oint ds rac{[1 - rac{2}{9}(\hat{n}_0(s) \cdot \hat{s})^2]}{|
ho(s)|^3}}$$

Using vertical bends to get rotation of \hat{n}_0 to longitudinal at the IP's.

Comments and Questions

- The polarisation lifetime should be larger than the beam lifetime. Probably no problem at the lowest energy. Self polarisation only helps at high energy.
- If no proper spin transparency has been built in, one cannot assume a priori that the depolarisation rate will be low just because the design spin tune ν₀ is 1/2.
 See D.P. Barber and G. Ripken in *"Handbook of Accelerator Physics and Engineering"*, Eds: A.W. Chao and M. Tigner, World Scientific, 3rd edition (2006).
- Why not put the vertical bends into the hadron ring?
 If spin matching were needed, it would be energy dependent and that would be a real mess.
- Page 52: why not try to use the terminology for spin matching that was established in 1982 (PEAS workshop DESY), so that we can all communicate?
- Does the energy independent ν_0 imply that synchrotron sidebands are weak?
- What are the implications of the crab cavities? Effects of detector fields and compensation.
- How much polarisation survives beam-beam effects (direct and indirect) ?). Very large ξ .
- Wigglers to decrease the polarisation time: they will decrease P_{bk} too. More depolarisation?

Things still to do:

Many!

- First create a (MAD) optic file for a closed ring with solenoids, skew quads, rf cavities etc.
- Then check if a decoupled optic can be created at each energy.
- Then check if it gives the expected tunes (3!) and emittances and damping times
- Then get a first order analytical estimate of the polarisation and depolarisation time at one energy around 9 10 GeV using SLICK.
- No need for crab cavities, beam-beam forces, full 3-D spin motion if the first estimates are bad.
- If things look bad, find out why: Diagnostics!!!!
- Then let's.....

The HERA Upgrade

	LUMINOSITY UPGRADE		DESIGN		2000 (average)	
	e-Beam	p-Beam	e-Beam	p-Beam	e-Beam	p-Beam
$E \left[{ m GeV} ight]$	27.5	920	30	820	27.5	920
I [mA]	58	140	58	160	45	95
N_{ppb} (Ne or Np) $\times 10^{10}$	4.0	10.3	3.6	10.1	3.1	7.0
N _b , to t	189	180	210	210	189	180
$N_{b,col}$	174	174	210	210	174	174
$\epsilon_x [\mathrm{nm \; rad}]$	20	$rac{5000}{\beta\gamma}$	48	$\frac{6000}{\beta\gamma}$	41	$rac{5000}{\beta\gamma}$
ϵ_z / ϵ_x	0.17	1	0.05	1	0.1	1
eta_x^* [m]	0.63	2.45	2.2	10.0	0.9	7.0
β_z^* [m]	0.26	0.18	0.9	1.0	0.6	0.5
$\sigma_x \times \sigma_z \left[\mu \mathrm{m}^2 \right]$	112×30	112×30	325×46	262×83	192×50	189×50
$\sigma_{s} \; [\mathrm{mm}]$	10.3	191	8.3	200 (85)	11.2	191
$\Delta \nu_x$ / IP	0.034	0.0015	0.019	$8 \cdot 10^{-4}$	0.012	0.0012
$\Delta \nu_z$ / IP	0.052	$4 \cdot 10^{-4}$	0.024	$6 \cdot 10^{-4}$	0.029	$3 \cdot 10^{-4}$
min. aperture [σ_x]	20	12	23	16	14	10
$\mathcal{L}_{s} [\mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{mA}^{-2}]$	$1.8 \cdot 10^{30}$		$3.4 \cdot 10^{29}$		$7.4\cdot10^{29}$	
$\mathcal{L} \ [\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	$7.5\cdot10^{31}$		$1.5\cdot10^{\textbf{31}}$		$1.5\cdot10^{\textstyle 31}$	

Table 1: