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Abstract
Although depolarisation in proton and electron beams in storage rings and ring accelerators is rooted in

the spin–orbit coupling embodied in the Thomas–BMT equation, the details of the depolarisation

mechanisms are very different. In particular the polarisation of a high energy proton beam depends on

its history whereas the polarisation of a high energy electron beam can depend strongly on the

depolarising effects of synchrotron radiation. In both cases the spin distributions are most efficiently

described in terms of the invariant spin field. The invariant spin field also provides the best framework

for quantifying the differences. A good example of the differences is provided by the use of a Siberian

Snake in an electron storage ring.

Snakes are essential for preserving proton spin polarisation during acceleration to high energy and can

help to stabilize spin motion at the top energy. But snakes can be inappropriate for stored high energy

electron beams which are self–polarised via the Sokolov–Ternov effect or prepolarised before injection at

the full energy. For example, snakes can, in effect, “switch off” the Sokolov–Ternov effect and at high

energy a single snake, installed to constrain the equilibrium polarisation direction (~n0) to the machine

plane can lead to a prohibitive increase in radiative depolarisation. The latter point will be demonstrated

with a simple, exactly solvable model of spin decoherence and the result will be compared with that from

the standard Derbenev–Kondratenko–Mane (DKM) calculation based on an exact expression for the

invariant spin field. The model is a useful pedagogical tool for demonstrating the meaning and

limitations of the DKM approach and for demonstrating the danger of horizontal ~n0.

Depolarisation of electrons by synchrotron radiation increases strongly with energy and can be especially

strong if the ring is misaligned or has spin rotators to provide longitudinal polarisation at interaction

points. But the depolarisation can be reduced by “linear spin matching”, i.e. by a careful choice of the

optics in sections of the ring. Spin matching is conveniently carried out in terms of the 8 × 8 spin-orbit

transfer matrices of the SLIM formalism. This approach emphasizes the locality of the required “spin

transparency”, is convenient for diagnosis and allows computer algebra to be used.
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The central differences:

• Proton depolarisation during acceleration by resonance crossing: memory, deterministic,

“reversible”.

Proton spin   INFORMATION  preservation during resonance crossing.

SATURNEAGS

P

0
E

P

0
E

TimeTime

The final polarisation depends on the history.

• Electron depolarisation by synchrotron radiation “noise”, irreversible, short memory,

independence of history.
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Stationary spin–orbit states in rings

• We don’t discuss particle dynamics by sitting on the closed orbit.

• We also shouldn’t discuss spin dynamics by sitting on the closed orbit — we must get out

into phase space.

And understand STATIONARY SPIN–ORBIT STATES:

===> “Invariant spin field”.

• Essential for understanding/calculating high order e± depolarisation.

And indispensible for understanding proton spin dynamics at very high energy (e.g. HERA

at 800 GeV).

Can then compare the two phenomenologies very easily.

• ===> Maximum attainable polarisation

• ===> Starting point for perturbation theory — if needed, e.g. noise, non-linear fields,

. beam-beam....
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Invariant fields: phase space
Protons

.

• Canonical particle coordinates: ~u ≡ (x, px, y, py, z, pz) Indep. var. = azimuth, s

• For electrons at high energy: ~u ≡ (x, px, y, py, σ, η = δE/E0)

• Phase space density, ρ(~u; s): Liouville: ρ constant along paricle orbits =====>

∂ρ

∂s
= {Horb, ρ}

• Stationarity: ρ(~u; s) = ρ(~u; s + C)
i.e. 1–turn periodicity of the (statistical) scalar FIELD ρ(~u; s)

although individual particles MOVE AROUND IN PHASE SPACE.
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Spin motion in electric and magnetic fields:

The T-BMT spin precession equation:

d~S

ds
= ~Ω × ~S

~S: spin expectation value

~Ω: depends on ~B, ~E, ~β, γ

In transverse magnetic fields:

Ω ∝ (a + 1/γ) · B

a = (g − 2)/2 where g is the relevant g factor.

a = 1.793... for protons.

a = −0.143 for deuterons.

(a = 0.00115... for electrons.)
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Invariant fields: spin

How can a proton beam be fully polarised but the polarimeter gives ZERO?
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Invariant fields: spin
Protons

• Local spin polarisation ~P (~u; s): T-BMT. =====> PARTIAL diferential equation:

∂ ~P

∂s
= {Horb, ~P} + ~Ω(~u; s) × ~P

• Stationarity: ~P (~u; s) = ~P (~u; s + C)
i.e. 1–turn periodicity of the (statistical) vector FIELD ~P (~u; s)

although individual particles MOVE AROUND IN PHASE SPACE AND THEIR SPINS

MOVE TOO.

• |~P | is constant along orbits: ===> n̂(~u; s) = ~P/|~P |

∂n̂

∂s
= {Horb, n̂} + ~Ω(~u; s) × n̂

• Stationarity: n̂(~u; s) = n̂(~u; s + C) ===> n̂ is called the INVARIANT SPIN FIELD.

• Non–trivial T–BMT solution satisfying CONSTRAINTS.

• Solutions obeying these constraints are unstable (illdefined) at spin–orbit resonances.
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The invariant spin field (n–axis, Derbenev–Kondratenko vector)

0

0

n

n

0n

s1 s2

s1 + C

f (u ; s ) , x z
u = (x, p ,y, p ,z, p )

y

A pre−established s−periodic unit vector field at each phase space point
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The invariant spin field (n–axis, Derbenev–Kondratenko vector)
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f (u ; s ) , x z
u = (x, p ,y, p ,z, p )

y

A pre−established s−periodic unit vector field at each phase space point  
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The Invariant Spin Field, n̂

.

• ~n(M(~u; s); s) = R
3×3

(~u; s)~n(~u; s)

This is NOT the eigenproblem ~N(~u; s) = R
3×3

(~u; s) ~N(~u; s)

n̂ is NOT a “closed spin solution”!!!

Instead, the field seen AS A WHOLE is invariant.

• On the closed orbit n̂(~u; s) −→ n̂(~0; s) ≡ n̂0(s).

• ===> n̂ and n̂0(s) should not be confused!!!

• The invariant spin field for 1 plane of orbit motion is a smooth closed vector

curve.

• For 3 planes of orbit motion n̂ is on a smooth surface but is not closed.
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The invariant spin field (ISF):

defines one axis of a local orthonormal coordinate system
at each point in phase space and azimuth for describing spin motion

— Pre-established at each s, ~u, γ0 independently of the presence of particles or spins.
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For protons: the invariant spin field
defines the maximum attainable equilibrium polarisation.

~Peq( ~J, ~φ; s) = P ( ~J) n̂( ~J, ~φ; s)

| ~Pmeas(s)| = | < P ( ~J) n̂( ~J, ~φ; s) > s| ≤ | < n̂( ~J, ~φ; s) >
s
|

Over one turn, the particles of an equilibrium phase space distribution replace

each other, and spins set parallel to the local n̂’s replace each other too.

Even if the spin field is very complicated: once in equilibrium, stay in equilibrium

— but small ~Pmeas.
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Figure 1: HERA protons at about 800 GeV: propagation of a beam that is initially completely

polarised parallel to ~n0 leads to a fluctuating polarisation. For another beam in which the spins

are initially parallel to their local ~n the polarisation stays constant, in this case equal to 0.765.
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The stable spin direction?

• The ISF gives the stable POLARISATION directionSSSSSSSSSSSS.

• n̂0 gives the stable spin direction on the closed orbit.

BUT THERE IS ONLY A TINY FRACTION OF PARTICLES ON OR NEAR THE

CLOSED ORBIT!

• At very high energy

< n̂( ~J, ~φ; s) > s and < P ( ~J) n̂( ~J, ~φ; s) > s need not be parallel to n̂0(s)
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 a: HERA-p / 8 snakes / 4 pi mm mrad / 800 GeV
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 b: HERA-p / 8 snakes / 4 pi mm mrad / 802 GeV
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Figure 2: The n̂–vector for the 4π mm mrad ellipse at 800 GeV (left) and 802 GeV (right).

 a:  HERA-p / 8 snakes / 64 pi mm mrad / 800 GeV
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Figure 3: The n̂–vector for the 64π mm mrad ellipse at 800 GeV (left) and 802 GeV (right).
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The spin tune:

In transverse magnetic fields:

δθspin = aγ · δθorbit

• aγ is called the “naive spin tune”:

• It is a natural spin frequency of the system.

• At 27.5 GeV for electrons aγ = 62.5

• At 920 GeV for protons aγ = 1759–BIG!!

• ===> 1 mrad of orbit deviation causes > π/2

of spin precession!!!!

High fields=====> extreme sensitivity.
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The real spin tune: measures rate of precession around n̂

y zx

spinνAmplitude dependent spin tune! ( J)

phase space point

= n1,n2 axes

=  Spin projectionn1

n2

n1

n2

n1
n2

n1

n2

on n1,n2 plane

s2

s1

Attaching coordinate axes to each 

Spin precession rate w.r.t.  n1, n2  is the same at all phase space points with same J  , J  , J  . 
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The real spin tune:

Not a single number, but an equivalence class

with elements related by “gauge transformations” of the local coordinate systems.

Without snakes, the real spin tune ν( ~J) does NOT oscillate with synchrotron
motion: although aγ does.
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Spin–orbit resonance.

• Interleaved vertical and horizontal (quad and

imperfection) fields.

• Rotations around different axes don’t commute.

• If the spin and (linear) orbit motion are in resonance:

νspin( ~J) = m + mx · Qx + mz · Qz + ms · Qs

====> CRAZY spin field:

• High order resonances even for perfectly linear spin

motion. (non–commutation).

• Two main groups of resonances:

– Integer resonances due to motion along the distorted

periodic orbit ===> strong tilt of n̂0 from ideal.

– Synchro-beta (‘intrinsic’) resonances due to

synchro-beta oscillations AROUND the distorted

periodic orbit.

===> |n̂(~u; s) − n̂0(s)| LARGE.

===> | < n̂( ~J, ~φ; s) >s | SMALL — geometry.

e.g. ≈ 60◦ ===> Pmeas ≈ 0.5 !!!!
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SPIN98 + M. Vogt thesis 2000.

With no snakes, spin tune rises with energy and resonances are crossed.

With snakes REAL spin tune 6= 1/2 and can still hit resonances even with perfect alignment!!!!
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Figure 4: The amplitude dependent spin tune ν and the static polarisation limit Plim vs. vertical

orbital action Jy as calculated with SPRINT for the HERA–p. Left: vertical tune Qy = 32.2725,

right: Qy = 32.2825.
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SPIN2000 + M. Vogt thesis 2000.
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• Top left:

Energy scan of Plim and ν for HERA–p with flatteners and a 4 snake scheme

(rad., 45◦, rad., 45◦) with purely vertical motion at 0.75 σ.

• Top right:

The dependence of the final Pdyn after ramping through the resonance at approximately

802.7 GeV on the energy gain per turn.

• Bottom left:

Tune scan of Plim and ν for HERA–p with flatteners and a 4 snake scheme

(long., −45◦, rad., 45◦) with purely vertical motion at 2 σ.

• Bottom right:

The dependence of the final Pdyn after ramping through the resonance at [Qy] ≈ 0.2635 on

the total number of turns.
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Acceleration: evolution through stationary states?

At fixed γ0:

d ~S · n̂
ds

= 0

along an orbit (angle between 2 T-BMT solutions is constant).

During acceleration (using pre–established) n̂(~u; s, γ0):
d ~S·n̂(~u;s,γ0)

ds 6= 0
If

dγ0

ds and ∂n̂(~u;s,γ0)
dγ0

are small enough ~S · n̂ is an adiabatic invariant and a stationary spin distribution transforms to a

new stationary spin distribution with the same P ( ~J)!!! Spin can follow n̂ !!!

If a ~J dependent resonance is crossed, P ( ~J) can change but ~P ( ~J, ~φ : s) is still parallel to n̂( ~J, ~φ; s)

| ~Pmeas(s)| = | < P ( ~J) n̂( ~J, ~φ; s) > s| ≤ | < n̂( ~J, ~φ; s) >
s
|

|P ( ~J)| ≤ 1

HISTORY!
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The Froissart–Stora formula for crossing resonances

Pfinal

Pinitial
= 2 e−

π|ǫ|2

2α − 1

• ǫ is the “resonance strength”, a measure of the dominant spin perturbation at resonance

(Fourier component),

• α expresses the rate of resonance crossing.

Very fast resonance crossing: Small |ǫ|2

2α
: polarisation preserved.

Very slow resonance crossing: Large |ǫ|2

2α
: adiabatic invariance ===> full spin flip without

polarisation loss.
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Electrons

• Synchrotron radiation: ===> polarisation build up by

the Sokolov–Ternov effect!!!

• Synchrotron radiation: ===> noise and damping.

• ===> Stochastic orbital motion in the magnetic fields

• ===> Spin diffusion ===> depolarisation!!!!

• The resulting polarisation comes from a balance of

polarisation and depolarisation.

• How to calculate???
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For an overview of polarised electron phenomenology see:

“Electron polarisation in rings”, D.P. Barber, Snowmass 2001, Working

Group M5

at http://snowmassserver.snowmass2001.org/
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n0

‘‘Longitudinal’’ snake

Ideal snake: no syncho−beta dependence n0 horizontaleverywhere

A simple model example: a single Siberian Snake in a perfect flat smooth ring.

Synchrotron phase space (σ, η) , smooth dispersion and quads.

n̂0(s) ≡ cos

(

g6(s)

)

ê1 + sin

(

g6(s)

)

ê2,

n̂ ≡ cos(f)ê1 + sin(f)ê2

f(σ, η; s) = g6(s) + σg19(s) + ηg20(s) =⇒ (T − BMT solution along orbit σ(s), η(s))

At HERA, 27.5 GeV, |n̂(σ, η; s) − n̂0(s)| ⇐⇒ 200 mrad ===> | < n̂ > | ≈ 1
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Simple model continued:

The corresponding stochastic differential equation for the spin–orbit motion
in the arc.







σ′(s)

η′(s)

ψ′(s)







=







0 −κ 0

Ω2
s/κ −2 αs/C 0

0 2πν0/C 0







·







σ(s)

η(s)

ψ(s)







+
√
ω ·







0

ζ(s)

0







For notation:

K. Heinemann, DESY Report 97–166 (1997) and Los Alamos archive: physics/9709025.

D.P. Barber, M. Böge, K. Heinemann, H. Mais, G. Ripken, Proc. 11th Int. Symp. High Energy

Spin Physics, Bloomington, Indiana (1994). AIP Proceedings 343.
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K. Heinemann, D.P. Barber 1996

Figure 5: No radiation, spins initially set parallel to n̂0, 27.5 GeV HERA: initial

state not in equilibrium ===> oscillating polarisation.

Figure 6: With radiation, spins initially set parallel to n̂0, 27.5 GeV HERA: af-

ter transients ~P (σ, η; s) parallel to n̂(σ, η; s) with the (σ, η) independent |P | falling

exponentially.
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horizontal0n everywhere:

hours at few hundred MeVBatesMIT− τ
dep

tens of seconds at 10 GeVeRHIC τ
dep

millisecs at 27.5 GeVHERA τ  =  260 
dep

No Sokolov−Ternov very exciting possibility  to observe 

‘‘kinetic polarization’’ at MIT−Bates ring.

A single Siberian Snake in a perfect flat ring.

‘‘Longitudinal’’ snake

n0
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Full 3–D spin motion
Particle transport in the presence of damping and diffusion.

Fokker–Planck equation:

∂ρ

∂s
= L

FP,orb
ρ

where with synchrotron photon emission modelled as additive noise the orbital Fokker–Planck

operator can be decomposed into the form:

L
FP,orb

= Lham
︸ ︷︷ ︸

Lham→Liouville

+ L0 + L1 + L2
︸ ︷︷ ︸

damping and noise

.
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Without the S–T terms, the corresponding form for the

Polarisation Density ~P:

∂ ~P
∂s

= LFP,orb
~P + ~Ω(~u; s) × ~P

Barber + Heinemann 1990’s

~P (s) =
∫

d6u ~P(~u; s).

This equation:

• can be derived in a classical picture,

• is homogeneous in ~P i.e. it’s “universal”,

• is valid far from spin–orbit equilibrium,

• contains the whole of depolarisation!
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After including the S–T terms, this becomes (Derbenev + Kondratenko, Barber +

Heinemann):

∂ ~P
∂s

= L
ham

~P + ~Ω(~u; s) × ~P
︸ ︷︷ ︸

≡Damping and noise free part

+L0
~P + L1

~P + L2
~P +

1

τ0(~u)

[

~P − 2

9
v̂(~P · v̂) +

8b̂(~u)

5
√

3
ρ

]

︸ ︷︷ ︸

ST in BKS form

+ X−terms
︸ ︷︷ ︸

Kinetic pol.

︸ ︷︷ ︸

SMALL

⇓
≡ T-BMT equation (BIG)

⇓
Stationary state

⇓
n̂-axis (Invariant spin field) → DETERMINES DIRECTION

⇓

Rate of polarisation loss ∝ Functional of n̂, ∂~u n̂, ∂
2

~u n̂ . . . . . . (e.g. DK formula ).

=⇒ large near spin orbit resonances — since n̂ is then very sensitive to ~u.
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The Derbenev–Kondratenko–Mane Formula: full 3–D.

P
eq,DK

= − 8

5
√

3

∮

ds 〈|K|3b̂ ·
[

n̂ − ∂n̂
∂η

]

〉s
∮

ds〈 |K|3{1 − 2
9
(n̂ · v̂)2 + 11

18

∣
∣
∣
∂n̂
∂η

∣
∣
∣

2}〉s

τ−1
dep

=
5
√

3

8

reγ
5h̄

me

1

C

∮

ds

〈

|K|3 11

18

(

∂n̂

∂η

)2〉

s

b̂ field direction, K curvature

〈 〉s: ensemble average.

~Pmeas(s) = P
eq,DK

〈n̂〉s ≈ P
eq,DK

n̂0 since |n̂(~u; s) − n̂0(s)| SMALL.
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Check the DKM formula for the Barber – Heinemann model:

Exact result of model:

τ−1
spin =

d2

λ2
0

· ω

2 c λ L
· 1

{cosh(cL/2) + cos(λL)} ·
(

2λ sinh(cL/2) − c sin(λL)

)

DKM version using the expression for n̂(σ, η : s):

(c0 τdep
)−1 =

d2

λ0
2
· ω

2 λ0 L
· 1

{1 + cos(λ0L)} ·
(

λ0L− sin(λ0L)

)

.

• Resonance denominators

• BIG effect even way off resonance

• ===> Avoid n̂0 in horizontal plane!!!

===> Avoid that spin couples to dispersion (sync. phase space is BIG).
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For electrons with radiation:

• The VALUE of the polarisation P
eq,DK

is the same at all phase space points and azimuth s.

• The DIRECTION of the polarisation is parallel to n̂

• At practical energies |n̂(~u; s) − n̂0(s)| SMALL e.g. ≤ 100 mrad away from resonances.

• The rate of depolarisation depends on the DERIVATIVE ∂n̂/∂η

• An estimate for pure synchrotron motion: ση ≈ 10−3, |n̂(~u; s) − n̂0(s)| ≈ 1 mrad

=⇒ |∂n̂/∂η| ≈ 1 =⇒ P
eq,DK

≈ 0.60!!!

• Very close to resonances n̂(~u; s) is a very sensitive function of ~u so that ∂n̂/∂η can be large

and the equilibrium P
eq,DK

can be small.

• For electrons, even without Sokolov–Ternov build up, the equilibrium of the spin

DIRECTIONS (along the spin field n̂ ) is established by noise and damping.

• For protons, the equilibrium of the spin DIRECTIONS is established during acceleration.
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Full calculation of n̂(~u; s) is HARD and needs big computing power

High order perturbation theory: Unitarity problems near resonances.

SMILE (S.R. Mane),

SpinLie (Yu. Eidelmann and V. Yakimenko).

Nonperturbative:

SODOM (K. Yokoya),

SPRINT (K. Heinemann, G. H. Hoffstaetter, M. Vogt).

===> linearize

SLIM/SLICK (A.W. Chao (D.P. Barber)) , SITF (J. Kewisch),

ASPIRIN (V. Ptitsin)

Linearization ignores most non–commutation ===> only first order resonances. Unitarity

problems.
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SLIM/SLICK/SITF I.

~Ω = ~Ωco + ~ωsb

~ωsb is small (?)

In practical electron rings n̂(~u; s) is close to n̂0(s) so use:

n̂(~u; s) = n̂0(s) + α(~u; s)m̂(s) + β(~u; s)l̂(s)

where
√

α2 + β2 ≪ 1

We write the components ωsb
s , ωsb

x , ωsb
y in the form







ωsb
s

ωsb
x

ωsb
y







= F3×6
















x

px

y

py

σ

η
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SLIM/SLICK/SITF II.

In linear approximation the combined orbit and spin motion is

described by 8 × 8 transport matrices of the form

M̂ =







M6×6 06×2

G2×6 D2×2







acting on the vector (~u, α, β),
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SLIM/SLICK/SITF III.

The eigenvectors for one turn defined by M̂(s0 + C, s0) · ~qµ = λ̂µ · ~qµ
are written in the form

~qk(s0) =




~vk(s0)

~wk(s0)



 , ~q−k(s0) = [~qk(s0)]
∗

for k = I, II, III ;

Then with respect to the (n̂0, m̂, l̂) frame,

∂n̂

∂η
≡ i

∑

k=I,II,III

{v∗k5 ~wk − vk5 ~w
∗
k}

= −2 Im
∑

k=I,II,III

v∗k5 ~wk

Note that this is independent of the phase space vector and emittances!

The v∗k5 describe the coupling of the orbit to radiation.

∂n̂
∂δ

≡
∑

3modes coupling of spin to orbit × coupling of orbit to radiation
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Spin matching I.

To minimize depolarisation, minimise the coupling of the spin to the orbit at dipoles where the

coupling of orbit to radiation does not vanish.

~wk(s0) = −
[

D(s0 + C, s0) − λ̂k

]−1

G(s0 + C, s0)~vk(s0)

for k = I, II, III ;

Minimize the appropriate parts of the 1–turn SPIN–ORBIT coupling matrix G(s0 +C, s0) ===>

Minimize the appropriate parts of the SPIN–ORBIT coupling matrix G(s+ ∆, s) for strings of

elements: SPIN TRANSPARENCY
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Spin matching II.
The matrix approach to linear spin matching: minimize G2×6

Advantages:

• Direct connection to quantities appearing in SLIM (SLICK).

• Necessary for coupled systems (skew quads, solenoids).

• For a big ring:

Evaluation (numerical) of integrals in a thick lens optimization

program is too slow ===> analytic integration? ===> integrals

already contained in G2×6 .

• “Locality”: once G2×6 is zero for a section of the ring it remains

zero no matter what changes are made to the optics outside.

• Provides a systematic basis for investigation of the algebraic

properties using e.g. REDUCE, MATHEMATICA, MAPLE.

• The interpretation is usually transparent, e.g. arbitrary string of

quads and drifts.
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Spin matching III.

The basic rules of self polarisation and spin matching.

• Keep n̂0 aligned to the field in as many of the ring dipoles as possible to drive S–T effect at

full rate. E.g. minimize the regions around IPs where n̂0 is horizontal and there is radiation

in dipoles.

• Minimize G2×6 across the regions around IPs where n̂0 is horizontal.

• Get a grip on the remaining effects of G2×6 .

• Then do very good orbit correction to avoid the n̂0 tilts (resulting from misalignments) that

couple spin to horizontal synchro–betatron motion and nullify the effect of good spin

transparency.
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Spin matching IV.

See the article by D.P. Barber and G. Ripken in the Handbook of Accelerator Physics and

Engineering, Eds. A.W. Chao and M. Tigner, 2nd edition, World Scientific, 2002.
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Higher order resonances. e.g. sync. side bands

Beam–beam forces!!!


