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Abstract

In the following report we present a collection of notes on spin dynamics in storage
rings. The spin motion is described in terms of a pair of real canonical spin variables
« and f and in four different spin dreibeins. The orbital motion is described by using
the canonical variables , p,, 2z, p,, 0 =s—vg-t, p, = (1/82) - n with n = AE/FEy of
the fully 6-dimensional canonical formalism. Action—angle variables Ji, ®; of the linear
coupled orbital motion are introduced by a canonical transformation. The equations thus
obtained are valid for arbitrary velocity of the particles (below and above transition
energy). The general periodic solution for spin motion, the 7-axis, is determined by
the method of forced solution. Action—angle variables of spin motion and a dreibein
which is a single valued function of the particle coordinates (Jg, @i, s) on an arbitrary
particle path are defined and the spin tune as a function of Jj is calculated. Finally,
classical spin diffusion caused by radiation processes is investigated and a derivation of
the depolarisation time presented.
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1 Introduction

In this paper we collect together a number of results and methods useful for studying
spin—orbit motion in storage rings.

The starting point of our investigations is the Lorentz equation for orbital motion and the
Thomas—BMT (T-BMT) equation for spin motion. These are studied in chapter 2.

Both equations are expressed in machine coordinates within the framework of the fully cou-
pled 6—dimensional description of particle motion by using the variables ., p., z, p., o, p, =
(1/83)-n with n = AE/FEy which allows to handle the external magnetic forces in a consistent
canonical manner and which includes consistently and canonically the synchrotron oscillations
in the electric fields of the accelerating cavities. This description is summarised in chapter
3. The equations so derived are valid for arbitrary velocity of the particles (below and above
transition energy).

In chapter 4 we introduce the 8-dimensional closed orbit for the combined spin—orbit
system which leads to the periodic 6-~dimensional closed orbit of particle motion and to the
periodic orthonormal coordinate system (7o, i, f) for spin motion. In this paper the various
systems of orthonormal coordinate vectors used for describing spin will be called “dreibeins”.

In chapter 5 the spin motion is investigated in the (7o, i, f) dreibein by introducing two
independent real canonical spin variables o and (3.

We are then in a position to calculate the so called ri—axis by the method of forced solution
(chapter 6).

The definition of the n—axis allows now to introduce a new periodic dreibein and action—
angle variables for spin motion and to calculate the spin tune as a function of orbital phase
space variables (chapter 7).

Finally in chapter 8 the depolarisation time due to stochastic orbital motion is calculated.

A summary of the results is presented in chapter 9.

In this paper only the orbit to spin coupling is taken into account and the Stern—Gerlach
forces [1] are neglected.

In the First Revision (February 1997) of this paper some minor changes were made to the
text. In this Second Revision, some typographical errors are corrected and the argumentation
in section 7.4 relating to the construction of the periodic reference vectors (7iy, 7i3) is reor-
ganised and improved. Furthermore, figure 1 has been replaced by more explanation in the
text.

2 Spin Motion in a Fixed Coordinate System

The starting point of our description of classical spin motion in storage rings will be the
T-BMT equation [2, 3] combined with the Lorentz equation.



2.1 Orbital Motion (Lorentz Equation)

The equation of motion for a relativistic non—radiating charged particle in an electromag-

netic field, the Lorentz equation, is:

e - - d /1 -
FL.Pw B = (2.
c €+c "X dt<02 r)
with ,
K= ot - moc?

S—e

(energy of the particle)
and the following definitions:

o e = charge of the particle ;
e mo = rest mass of the particle ;
o ¢ = velocity of light;

o & = electric field;

[ ]
ol

= magnetic field ;

e = radius vector of the particle;

v = E/mgc?.

Equation (2.1) can be written in canonical form

d OH d OH
a T e wh TR
d OH d OH
a T tap o w T e

iX _|_8_H i __aH
dt oP; T dt 0T 90X

using the Hamiltonian:
H(X1, Xa, Xa; Pr, Pa, Pys 1) = c- {7?2 + m(2)c2}1/2 +eo
with

= P—ZA = meyr (kinetic momentum vector)

oo

(2.1)

(2.3a)
(2.3b)

(2.3c)

(2.4)

(2.5)



where X1, X5, X5 and Py, P,, P5; are canonical orbital position and momentum variables in
a fixed Cartesian coordinate system (€1, €2, €3) and where A and ¢ are the vector and scalar
potentials from which the electric field € and the magnetic field B are derived as

19A
—grad ¢ — parral (2.6a)

curl A . (2.6b)

™y
Il

ol
Il

2.2 Spin Motion (T-BMT Equation)
2.2.1 The T-BMT Equation

The equation of relativistic classical spin motion, the T-BMT equation, reads as [2, 3]:

d—» — —
= - 0 2.7
dtf 0o x§ (2.7a)
with
o e 1 - avy 1 S o= 1 L £
0, = N I B+ —  _(FR)-F7 — ] x - 2.7b
0 T%c[ (7+a) T )r+(a+1+7)rxc] (2.7b)

and where 7 and P (the canonical orbital position and momentum variables) are determined

by the Lorentz equation.

The following abbreviations have been used:

o E: classical spin angular momentum vector in the rest frame of the particle,

of length 1 ;
e a = (g—2)/2 (0.00116 for electrons, 1.793 for protons) and quantifies the anomalous

spin ¢ factor .

In terms of the three unit cartesian coordinate vectors in the fixed laboratory frame,
€1, €4, €3 we can write 7, P, Qg and £ as:
= Xi-a+ Xy e+ X365 ( )
P&+ Py-éy+ Py és; ( )
= Q-1 +Qy-6+Q3-65; (2.8¢)
= La+&-a+6E6s. ( )

I
mlc; Ly
|



It follows from eqn. (2.7a) that for two spins f: and f_; the scalar product

is a constant of motion:

d - -
o am-am) = o;
== f:(t) ;(t) = const
i.e. the modulus of gand the angle between f: and f_; are invariants:
|_)(t)| = const ; (2.9a)
£ (&1(1),6(1)) = const . (2.9b)
Introducing the matrix:
0 —Q3 Q
QO == Qg 0 —Ql (210&)
—Qy, O 0

the T-BMT equation (2.7a) can also be written as:

d ( : ) 0 ( : ) (2.10b)
— 2 = i, 2 . 2.10
@\ g, &

As may be seen from eqn. (2.9a), the components &, &, & of the spin vector gare not
independent, since they fulfil the condition:

G646 = 1.

Eliminating the variable £3:

&= J1-6-6,

we get a pair of nonlinear coupled differential equations:

d
7 () = W18 -0 & (2.11a)
d
ai L) = Q&= -\1 -G -6 (2.11b)



2.2.2 The Spin Hamiltonian

Introducing a pair of independent spin variables o and (3 by the equations:

= a-¢1—i(a2—l—ﬁ2); (2.12a)
£ = ﬂ-¢1—i(a2—l—ﬁ2); (2.12Db)
= & o= \J1-§-4
= 1- % (o* + 3 (2.12¢)
or (inverting (2.12a, b)):
0 = 4 14?53'&; (2.13a)
B o= + 1f§3 & (2.13b)

the T-BMT equation (2.7a) can also be written in canonical form:

d aHspin .

E (07— —|— 86 3 (214&)
d OHspin

a’ = "o (2.14b)

if we define the spin Hamiltonian H,,;, as:

Hspin(av 67 S) = Q1'§1+Q2'§2+Q3'§3

= i) et
+ [1 - % (o* + 52)] o (2.15)
(see Appendix A and Ref. [1]).

We then obtain from (2.14) and (2.15) the relations:

ia - 4+ —B Q1 a+Qy - f]

L2y g
4¢1—Z(0z + 3?)

9



—|—¢1—1(0z2—|—ﬁ2)-ﬂg—ﬂ-ﬂg; (2.16a)

4
d —a
%5 = - ¢ T [ a+ Q- ]
—w—i(azmz)-ﬂﬁa-ﬂg (2.16b)

which are equivalent with eqn. (2.7a) (see Appendix A).

2.2.3 Introduction of the Canonical Variables J and

Alternatively may introduce a second pair of canonical spin variables (J, ) via the
relations [4]:

= /2(1 = J)-cost; (2.17a)
= /2(1 =J)-sin¢ . (2.17b)
From this definition we have:
g = tan ; (2.18a)
a
_ Ly 2
J = 1—§(oz + ) (2.18b)

and

1 2 2
L= a'¢1—1(0‘ + 5?)

= 2(1—J)cos¢-\/1—%(1—J)

= V1-J2. cos ; (2.19a)

&= Bfl- et
= m-sind); (2.19b)

1 2 2
£ = 1—§(oz + )
= J. (2.19¢)

10



The transformation
a, f = ¥, J
can be obtained from the generating function
1
Fi(a, ) = §oz2 ~tan ) — 1. (2.20)

The transformation formulae are then:

ok

ﬁ — —|—a— = - tan¢ ; (221&)
8}
J = —86—1;1 = —%ozz- (1—|—tan2¢) +1
1 3?
- _% (a® +8%) +1; (2.21b)
OF
Hspin — Kspin(¢7 J) = Hspin + 8—81 — Hspin

= D -H4+0 - LE+Q3-&

= V1I—=J2-[Q-costp+ Qs -sinp] + Q3+, (2.21¢)

and one sees that (2.21a, b) lead back to eqn. (2.18a, b). Thus 1, J are indeed canonical
variables [5].

2.3 Transition to a New Dreibein i, s, i3
We now consider the transformation [4]:

— — — — — —
€1, €2, €3 — Uy, Uz, Uz

with
d*(t) Ut) < ap(t) = U 1i*xd* (2.22)
— i = U = - U — U .
de ’ g g
and
g €1+ &+ & e
= &L U1+ & U+ & us . (2.23)

11



From (2.7a), (2.22) and (2.23) we obtain:

d - 5. d = -
Efzgekxafk—ﬂoxf

S0 d L 5. d -

= ];fkauk—l_;uk% k
3 . 3 d -~
k=1 k=1 t
and thus

3 d » . . 3 » .
Sl — & o= QxE=D & {Uxuk}
k=1 dt k=1

—

= (G- U] x¢. (2.24)

Therefore in the new dreibein the equation of spin motion is:

— & = a{[f-0]xE

Writing:

£ = @M1—1(&2+B2)- (2.25a)

4 ’ '
& = B w L (62 + 82) ; (2.25b)

4 3

£ = 1—1(&2+32) (2.25¢)

3 5 .

and

ﬁo = Ql . ﬁl —|— QQ . ﬁg —|— Qg . ﬁg 3 (226&)
(j — ﬁl'ﬁ1+UQ'ﬁ2—|—(}3'ﬁ3 (226b)

the new Hamiltonian reads as:

12



ﬁspin = {91 — UJ . 51 + {Qz — Uz} . 52 + {03 — U:a} : 53

_ ¢L_i@amm{py_my@+kb_@y6}

+ [0 - 0] - [1 _ % (6> + [32)] . (2.27)
It follows that:
d . M
A
O (=] -a+ [ - 03] - 3)

1 =2 32
4%—1(@ + )

R [ F A PR

OHspin
dt -~ da N
C -] eae [0 5)

1 ~2 32
4%—1(@ + )

—w - i (62+82) - [0 — O] +a-[Qs = 05].  (2.28D)

Introducing (as in eqn. (2.17) or (2.19) ) the spin variables (j, ;/N)) via the relations:

& = 2(1—J) cost ; (2.29a)
B = 2(1—J) sing (2.29b)

or

& = V1—J% cos; (2.30a)
£ = \J1—J2-sin¢; (2.30b)

& o= J (2.30¢)

13



we get:

léspm j L/NJ V1—J2. {{Ql Ul} COSL/) + {Qg Ug} sin ¢} {Qg — Ug} o J (2.31)

and
d - a - Lo
T = A Ryl )
- _ \/1‘]7 . HQI - (71} cos L/NJ + {Qz — (Nfz} sin ;/N)} + {03 — (73} ; (2.32a)
d - J - Lo
G = o Kl

= J1-J2. {— [fll — Ul] sinL/NJ + [Qz - Uz] cos %/NJ} . (2.32b)

2.4 A Special Dreibein Based on a Solution of the T-BMT Equa-
tion

Equation (2.29a, b) represents the most general form of spin motion in an arbitrary
rotating dreibein

(@(1), (1), da(t)) -

If we require that ws(t) is a solution of the T-BMT equation, then

a=0=0
must be a solution of eqn. (2.29a, b).
Equation (2.29a, b) then leads to:
Q0 —0h] = 0; (2.33a)
Q-0 =0 (2.33D)
and thus:
d Lo
0= =0 [93 _ Ug} : (2.34a)
d - o
0= +a Q5 — U5 (2.34b)



or

B
_|_

=
I

i[5 — 5] - (a+i) (2.35)

— a0+ iB0)] = [0 + i) < B B =]

.
i.e. an arbitrary spin £ precesses around the ts—axis. This result is in agreement with eqn.

(2.9a, b).

Equations (2.32a, b) take the form:

R

Y = {93 - U:a} ; (2.37a)

S

J =0. (2.37h)

B

Choosing

~ ~ 2

7 @rot 5 (2.38)

where (),,; denotes an arbitrary constant number, the precession becomes uniform with respect
to the dreibein

(@ (1), ws(1), ds(1))

and from eqns. (2.37a, b) we get:

R
)
3

= Qe (2.39a)

S
=~

J =0, (2.39b)

S

i.e. 1 and J become action—angle variables for the spin Hamiltonian.

Remarks:

1) We will use these results in chapter 7 to define action—angle variables for spin motion
in storage rings, where we shall introduce a special dreibein (7iy, 775, 77) for an arbitrary orbit
reflecting the periodicity properties of the orbit. By construction this dreibein is unique ex-
cept at spin orbit resonances.

15



2) The results of sections 2.2, 2.3 and 2.4 remain valid if we introduce the arc length s of
the design orbit as independent variable (chapter 3) instead of the time ¢ and if we change the
coordinate system (€1, €, €5) by orthogonal coordinate transformations, since the structure
of the T-BMT equation (2.7a) is unaffected by these procedures [1].

3 Introduction of Machine Coordinates

3.1 Reference Trajectory and Coordinate Frame

The position vector 7 of the spin particle in eqns. (2.1) and (2.7) refers to a fixed
coordinate system with the coordinates X, X3 and X5. However, in accelerator physics, it is
useful to describe the motion in terms of the natural coordinates x, z, s in a suitable curvilinear
coordinate system by introducing as usual [6]:

a) the closed design orbit (a piecewise flat path of a particle with constant energy Fjy)
which will in the following be described by the vector ro(s) where s is the length along this
ideal orbit;

b) an orthogonal coordinate system accompanying the particles which travels along the
design orbit and comprises [7]:

=1/

d
the unit tangent vector  €,5(s) = d—ro(s) = 79'(s) ;
s
a unit vector  €,(s) perpendicular to € in the horizontal plane

and the unit vector  €.(s) = €(s) X €,(s) .

The Serret—Fresnet formulae for the orthonormal triad (€, €,, €,) read as:

%é’x(s) = +K.(s)l(s); (3.1a)
%gz(s) = 4K.(s)-E(s); (3.1b)
%a@) = —Ko(s) Euls) — Ka(s) - Euls) (3.1c)

with the assumption that
Ky(s)- K.(s)=0

(piecewise no torsion) and where K, (s), K.(s) designate the curvatures in the z—direction and
in the z—direction respectively.

16



In this natural coordinate system an arbitrary orbit vector 7 (s) can be written in the form
Fa,z,8) =710(s) + a(s) - €x(s) + 2(s) - €:(s) . (3.2)
Note that the sign of K,(s) and K,(s) is fixed by eqns. (3.1).

3.2 Orbital Motion
3.2.1 The Orbital Hamiltonian

The variables x and z in eqn. (3.2) describe the amplitude of transverse motion.
In order to describe also the longitudinal motion (synchrotron oscillations) we have to
introduce two additional small and oscillating variables o and p, [1] with

o = s—1vg-1 (3.3)

and
Po = 57 (34)

where vy and 1 are given by

9\ 2
vg = design speed = ¢fy; [y = \Il_ (moc)

and

AFE 55
"= (3.5)

The variable o denotes the delay in arrival time at position s of a particle and is the longitudinal
separation of the particle from the centre of the bunch. The quantity 7 is the energy deviation
of the particle.

Using this complete set of variables we are in a position to provide an analytical description
for the orbital motion by a simultaneous treatment of longitudinal and transverse oscillations.

Starting then from the orbital Hamiltonian (2.4) for the motion of a charged particle in an
electromagnetic field and introducing the length s along the design orbit as the independent
variable (instead of the time ¢), we can construct the Hamiltonian of the orbital motion with
respect to the new variables x, z, ¢ by a succession of canonical transformations and a scale
transformation [8, 9, 1].

Choosing a gauge with ¢ = 0 (e.g. Coulomb gauge) we then obtain:

H(xypey 2,02, 0,p558) = po—(L+0)- [+ K,-a24+ K, -z] x
e 2 e 2 1/2
1 _ (pac - po-c Ax) —I' (pz - ]FAZ)
(1+7)?
As (3.6)

— [+ K2+ K, -z]-
Po- €

17



with 7 defined by:

. 1 moc? 1 p-¢c p
1+ :_¢1-|- 2 _ 2= — = 3.7a
(i) = oyl L (372)
— A
Do Po Po
(p = moyv) .
The corresponding canonical equations read as :
d OH d oH
d OH d oH
ds —I_apz C s b 0z (3:8)
d OH d oH
% g = —I_apg 3 % Po = —% (38C)
or, using a matrix form:
d oH
= _S. Fo (3.9)
with
gT = (1'7 Pzy %2y Pz, O, pcr) (310)

where the matrix S is given by

S 000 .
0 S,

In order to utilise this Hamiltonian, the electric field € and the magnetic field B or the
corresponding vector potential,

|Ot|SQ|O

A=Az, zs), (3.12)

for the cavities and for commonly occurring types of accelerator magnets must be given. Once
A is known the fields £ and B may be found using the relations (2.6a, b). Expressed in the
variables x, z, s, o, eqns. (2.6a, b) become (with ¢ = 0):

0

oA (3.13)

gzﬁo



and

! 0 . : o\
1 o o i ) |
B. = I+ K, -2+ K, z) . {an ~ (14 K, 2+ K,-z)- AS]} ; (3.14b)
0 G,
Bo= gt o (3.14c)

We assume that the ring consists of bending magnets, quadrupoles, skew quadrupoles,
solenoids, cavities and dipoles. Then the vector potential A can be written as [10] :

1 1
‘ Ay = ——[I1+K, 2+ K, z]|+=-g-(2*—2)+ N -2z
Po-c 2 2
1 L eV(s) [ 21 ]
. . . AL
R A T A A 4
+ < (AB,-z—AB, -z) ; (3.15a)
Po- ¢
e e
A, = —H- -z, A, = +H -z (3.15b)
Po- ¢ Po-C

(h = harmonic number) with the following abbreviations:

e 0B,
= : ; 3.16
I Po - € ( ax )x:z:O ’ ( a)
1 e 0B, 0B,
N = —. . — : 3.16b
2 po-c ( ox 0z )x:zzo ’ ( )
1 e
H = —. - B5(0,0,s) ; 3.16
5 B0 (3.16¢)
e e
K, = + - B.(0,0,s); K, =-— - B,(0,0,s) . 3.16d
o B0.0 o B0.0.) (3.164)
In detail, one has:
a) g#0; N=K,=K,=H=V=AB,=AB,=0: quadrupole;
b) N #0; g=K,=K.=H=V=AB,=AB.=0: skew quadrupole;
c) K24 KZ+#0; g=N=H=V=AB,=AB.=0: bending magnet;
d) H #0; g=N=K,=K,=V=AB,=AB,=0: solenoid;
e) V£0; g=K,=K.=N=H=AB,=AB,=0: cavity;
f) AB?+AB?#0; g=K,=K.=N=H=V=0: dipole.

19



Thus the Hamiltonian (3.6) takes the form:

H(xypey 2002, 0,0058) = po—(L+0)- [+ K, 24+ K, -2z] x
{1_ [px+H'Z]2+[pz_H'x]2}l/2

(1+7)?

1 - TR 2 2
—|—§-[1—|—]&x-:1;—|—]&2-2]—§-g-(z —a°)—=N-uaz
-I-l L eV(s) [h 27 N ]

7w h L cos otel

e
(AB,-z—AB, -x) . 1
e ( z ) (3.17)

Furthermore, for the magnetic field B we get:

in = b [—KZ—I- ‘ ABx-I-(N—H’)-x—I—g-Z] ; (3.18a)
EO Po-C
iBZ = fo l—l—[&’} + ‘ AB,—(N+H"Y) - z+g- :1;] ; (3.18b)
EO Po-C
B, = Bo-2H (3.18¢)
Fy
and for the electric field € we have:
2
€, = V(S)sin[h-%-a—l— ]
2
= V(s)sinp+o(s)-h- % -V(s)cosp + - (3.19a)

(see eqns. (3.13), (3.14) and (3.15) ).

Remark:

Equation (3.17) is valid only for protons. For electrons we need the extra term in the
Hamiltonian

1
Hegd = 3 Cl . [[(z + I(ZQ] - g (320)
3
4
(where C) =-— 62;—(;)



(for vg & ¢) in order to describe the energy loss by radiation in the bending magnets [7, 11].
In this case, the cavity phase ¢ in (3.15a) and (3.17) is determined by the need to replace the
energy radiated in the bending magnets. Thus:

so+L so+L
/ ds-eV(s)-singp = / ds - Fo-Cy - [K2 4+ K?] . (3.21)

50

average energy uptake in the cavities ;  average energy loss due to radiation

Note, that the H,,q term only accounts for the average energy loss. Deviations from this
average due to stochastic radiation effects and damping introduce non—symplectic terms into

the equation of motion.
For proton storage rings, where radiation effects can be neglected, one has:

sinpg=0 = =0, (3.22)

(no average energy gain in the cavities) and the choice for ¢ is determined by the stability
condition for synchrotron motion [9, 10]:

@ =0 above “transition” ;

¢ =7 below “transition”

3.2.2 Series Expansion of the Orbital Hamiltonian

Since

lpe + H-2| < 1;
lp. — H-2| < 1

the square root

[1_ [pﬁH-zPHpZ—H-x]T”
(4P

in (3.17) may be expanded in a series :

[1_[pw+H'Z]2+[pz_H'x]2]1/2:

(L+7)
L [pe+ -2+ [p. — H -]
1— 5 37 (3.23)

and the same can be done with the term
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resulting from the cavity field :

L
27

o

eV(s)
Fy

L eV(s) [h s N ]
o b B, oML 0T7
[h o2 N ] B L eV(s)
cos 7 o+l = o b e Cos ¢
- 0 e‘;(os) sin
1 2 V

Furthermore, for the quantity

one obtains from eqn. (3.7a) :

Thus in practice the orbital

proximation.

n o= fn)

1 11
o —-77_7-—
It Bs g 2
Lol,
= po— —5 Pt
% 2

From (3.7b) and (3.25) we obtain to the first order:

P =
Po

Ap

(3.24)

(3.25)

motion can be conveniently calculated to various orders of ap-

If we wish to obtain a symplectic linearised treatment of synchro-betatron motion we
expand the Hamiltonian up to second order in the orbit variables x, p., z, p., o, p,. Then

we obtain from (3.17) and (3.20):

H

1

DN | —
2
=TS

[px+H'Z]2+[pZ

_|_

| — N =N =

=
=
8w
_|_
=,
=
[\]
_|_
=

_|_

| —
[}

Q]

=<
—~

VA
~—

q

|
| —
S
o
o

eV(s)
Fy

q

- sin g +

O

€

Po- €

22

= pk =K+ K, 2] p,

—H'J}]z}

— - Cy-[K24 K] 0o
0

(AB,-z—AB. - x)

(3.26)



(constant terms in the Hamiltonian with no influence in the motion have been dropped).

The Hamiltonian (3.26) now leads to the (linearised) canonical equations:

or in matrix form:

with

[

and

ol

72

xr

d

Lt = pr+ H -z (3.27a)
d
TP = —[Kitgla+N-z4 Koop
S
H[p. — H 2] - H— ———AB, ; (3.27b)
Po-cC
d
—z = p,—H- -z, (3.27¢)
ds
d
d—pz = —[[&’f—g]-z—l—N-x—l—]&”Z-pg
S
—[po+H 2] - H+——AB, (3.27d)
Po- ¢
d ! (K, o+ K. -z (3.27¢)
— — — Py — |- N, - ’ .
dsa 2 p x z e
d 1 eV(s) 21
Sy = — 0o B 2D
dsp 72 o o 7 Cos
1 eVis . 1 R R
0 0 0
A grate (3.28)
dSy—_ Y Co (8] .
0 1 H 0 0 0
+g+ H?*] 0 N H 0 K,
—H 0 0 1 0 0
N “H [K2—g+HY 0 0 K| (329)
K, 0 K, 0 0 1/
0 0 0 0 & 5 Freospe 0
7" =(x, pes 2 P2y 0, Po) (3.30a)
1 1%
&l =—(0,0,0,0, 0, =—sinp— Cy - [K2+ K?) ; (3.30b)
3 Eo
= € €
cf:omm—EA&J%W%M%OJy (3.30¢)
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Note that the linear transverse oscillations (eqns. (3.27a - d)) and the longitudinal motion
(eqns. (3.27e, f)) are coupled by the term

—[K; -+ K. - 2] (3.31)

appearing in (3.27¢) which depends on the curvature of the orbit in the bending magnets.

3.3 Spin Motion

Introducing again the arc length s of the design orbit as independent variable and using
the relationship:

d ds d . d

the T-BMT equation (2.7a) becomes:
T LG« d. (3.33)
ds
Representing the spin vector gin the form
=€ E & EtE 2. (3.34)

and using eqn. (3.1) we have:

'es—I'f;'ex—l'f;'ez—I'fx'%ex‘l’fs'%es‘l’fz'%ez

et e+ e~ (K Gt Ky E)+ 6 K8+ &, - K8,
B4l —Ex (K. 8 — K, &) (3.35)

d -
i

W o~ W o~ W~

I
e e e s

so that eqn. (3.33) can be rewritten as:
g4t e+ e =0x¢ (3.36a)

with

[ =

Q=20 — K. &+ K, . (3.36b)

¥l

In order to get the components €2, Q,, €, of the vector O

0 = M-+ Q-6+ Q365
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with respect to the triad (€, €, €,) we use the relations:

d
dr "

=
7

=~

= -
= s {[l+K, a+K,-z]-€&+a"-€ +2- €}

where the quantities 2’ and z’ are given by (see (3.17)):

. OH
X —
Opy
= [+ K,-2+ K. z]
—-1/2
{0 = (o H2) = (p— H )}
o A
=
= [+ K,-2+ K. z]
{3 = (pot H-2) = (o — H 22}

and where the term $ can be obtained from the relation:

oM _
dp,
d
= 1—U0'£t(8)
= l_UO'l.
S
— T TOH
1 —
Ips
Vo 1

[1—|—K$-:1;—|—KZ-Z]'1—|—77

{40 = (o H -2 = (p. — H -2}

Vo ‘1‘|‘ﬁ

M+ K, e+ K,-z] 1+0n
xl_%+Hd”@erVm.

(1+7)?

25

(pet+ H-2);

'(pZ—H'l')

(3.37)

(3.38a)

(3.38b)

(3.39)



Furthermore, for the quantities (Fg) and 7 x € appearing in eqn. (2.7b) we get:

(FB) = s {[l+K,-2+K.-2]-By4+a"- B+ 2 B.} ; (3.40a)
Fxé = §-{ & —a-&)-e,. (3.40D)
Thus eqn. (3.36b) leads to:
1
Qs = T QOS ; (341&)
5
1 -
5
1 -
Qz = - QOZ + [ng (341C)
5
with
e 1 avy 1 o= . .
Qo = — < —|—4+al -B,+ —-(FB)-$[1+ K,-a+ K. -z]p; (3.42a)
moc ~y I14+v ¢
e 1 ay 1 o= L O0H
Qpw = —— 1= B, = (FB)- 3.42h
o = (o) e )
oy 1 5 oH
a+-——] — &5 ;
L+v) ¢ Ip-
e 1 ay 1 = O0H
Oy = —— (= B, ~ (FB)- 3.42
AN ORI a0
N 1 5 oH
J— a —_— —_ -55 .
L+~v) ¢ Opz
. 1 .
Writing for the term (r) appearing in eqn. (3.42):
v
1 1
L+y  (I47)+%- 0
1 ")/0
— = nl+ -
L+ l L+ 77]

and taking into account eqns. (3.18), (3.19), (3.23),

s
vector €) reads in linear approximation as:

Q, —2H - (1 +a)

26

(3.25) and (3.37 - 40), the precession



+2H - (14 a) - ps

2

L+ Po - C
2
a7 -
+ 2, . - K, + -AB, ; 3.43a
R ey (3.43a)
Q, = K.-avo— (14 ay)- AB,
Po- €

—(L+ay) - [(N—H') 2= (KZ—g)-7]

72
+ .20 - 50 [px‘|‘H'Z]

1+
eV(s) .
. sin - p,
1 -|- Yo Fy vb

L1
il “70] (KZ AB ) o, (3.43b)
’Yo —1 Po- €

AB,

N, = —K,-av— (14 ay)-
Po- ¢

+(1+av) - [(N+H')- 2= (K +g) -]

2
+“’70 C2H - 32 [p. — H - a]

Yo ] eV(s) .

[a’yo + T+~ Ty SIN @ * Py

1
[ Ta 70] - (Kx b€ ABZ) B2 -p, (3.43¢)
Po- ¢

(no solenoid field in the bending magnets and in the cavities — K, -H = K, - H =
0; V-H=0).
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4 Introduction of a Periodic Reference Orbit for the
Combined Spin—Orbit System

As can be seen from (3.26) and (3.43), the series expansion for H contains terms linear
in the orbital coordinates x, p,, z, p., o, p, and O contains terms independent of the orbital
coordinates. These and the linear terms can be eliminated by introducing a new reference
orbit for the combined spin—-orbit system (8-dimensional closed orbit).

4.1 Definition of the 8-Dimensional Closed Orbit
We begin by defining the 8-dimensional closed orbit:

—

(o(s). &0(s))
containing a periodic orbital part

i A . .
Yo = (1'07 Pz05 %0, Pz0; 0o, p00)7

with
Yo(s+ L) = Hols) (4.1a)
and a spin part é%(s) which defines a periodic spin vector
Eo(s) = oo &t o &+ ox &
with

fo(s+1) = &fs) (4.1b)

whereby the equations of motion read as:

d 0
g = 9. Jn:s) ¢ 4.2
ds Yo S 970 H(yo,S) ) ( a)
L od L d L d - -
€s* s Eos + € - s $ow + €. - s o = QO x £o (4.2b)
(see eqns. (3.9) and (3.36a) ) with
0O = (i, 5) (4.3)

and S is given by eqn. (3.11). Thus (y_’o(s),é%(s)) is a periodic solution of the combined
equations (3.9) and (3.36) of spin—orbit motion.
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The components of the precession vector (%) are given by (eqns. (3.43a, b, ¢)):

Q0 = 2H-(1+a)

‘|‘2H . (1 —I—Cl) " Poo

2

2 a7o -
—3%pe —2 K, —
50 Pzo 1+ l

€

Po- €

A8,

2

4% -
+05 - pao - K, +
By -+ p=o 1_|_70[

c<_. ABZ] : (4.4a)
Po-c¢

0o - K. avo — (14 avo) - AB,

Po- €

~(1+a) - [(N = H') - 20 — (K? = g) - 2]

G’Yg 2
+ -2H - 35 - [pxo + H - 20]
+ v

1
\%4 )
+ lG’YO—F L ] - (s) SIN Y * Pzo
Fy

1+

|4 LE ‘WO] : (KZ __c ABx) B2 oo (4.4b)

73—1 Po-C

00 = —K,-ay — (1+a)- AB,

Po-C

{1+ a0) - [(N + H') - 20— (K2 + g) - 20|

2
420 -2H - 35 - [po — H - x0)
I+

eVis) .
- la% + 1 10’70] ' E(o ) S P
1+a R e
4 ll + = _ZO] : ([xx + — ABZ) B2 poo - (4.4¢)
Yo Po- €
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With the help of this precession vector
Q) = Q.+ 0., +00. ¢, (4.5)

which describes the spin motion along the closed orbit yy(s) we can construct a suitable
periodic reference frame for spin

—

[o(s + L), (s + L), (s + L)] = [fo(s), m(s), I(s)]

(see Appendix B and Refs. [1, 12]) with

ng = é%/|fo|; (4.6a)
Ao(s) L am(s) L I(s); (4.6b)
o(s) = mi(s) x I(s) ; (4.6¢)
iio(s)] = Im(s)| = li(s)] = 1 (1.6d)
and
L d L o d Lo d -
€s 7 Nos + € - 7 Noy + € 7 ng, = QO x fo(s) ; (4.7a)
d d d - d
z . z . > . — 0O o 7 . .
€+ MM + €, 7 e + e, 75 M Q) xm(s) +1(s) T Ypin(s) 5 (4.7h)
d d - d
c . = z . — QO —(s) - —
€5t [, + €, y [, + €, y [, Q) x [ (s)—m(s) T Yspin () (4.7¢)
and
77Z)sym'n(3 + L) - 77Z)sym'n(5) = 27 Qspin (48)

in which the unit spin vector gmay be represented as

L= €2 — € i+ b+ &1 (4.9)

/

With the condition (B.16b), spins on the closed orbit precess at the constant rate v, .,
with respect to (m, f) Furthermore, J = E iy is constant. Thus with (B.16b) and the

—

corresponding orthonormal vectors (m, ) we can consider (.J, ¢sin) to be action—angle vari-
ables for motion on the closed orbit. As explained in Appendix B, the spin frequency Q)i 18

—

arbitrary up to an integer. There is a different (1, [) pair corresponding to each integer part.
In the case that @, is an integer (the fractional part is zero) not only 7y but also mg
and l_g) are periodic solutions of the T-BMT equation. Thus in this case the (7ig rig l_g)) dreibein
is not unique. Alternatively we can note that (3 x 3) spin transfer matrix on the closed orbit
becomes a unit matrix with degenerate eigenvectors. Given one choice of (i 1o l_g)) or (1l m f),
equally valid dreibeins can then be generated by arbitrary orthogonal transformations.

The vector 7ig obeys the T-BMT equation, but off resonance (1, () are not T-BMT
solutions. On resonance this distinction is lost.
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4.2 Transformation of the Orbital Variables

4.2.1 Canonical Transformation

The orbit vector §(s) can now be separated into two components

i7(s) = ijo(s) + ii(s) . (4.10)

where the vector i(s) describes the synchro-betatron oscillations about the new closed equi-
librium trajectory go(s) .
The transformation

y = i (4.11)
can be obtained from the generating function
FZ(xvﬁx;Zvﬁz;o-vﬁa;S) = (w_xO)(ﬁx‘l’pr)‘l’(Z_ZO)(ﬁz ‘I’pZO)
+(o —a0) - (Po + poo) + f(5) - (4.12)
The transformation equations read as:
F F
8F2 aFZ
. = 5 — Nz 20 3 r o= = = - 3 413b
p p Petpo; Bo= g = T ( )
or or
Ps = 8—0'2 = ﬁcr + Poo ; o = aﬁj = 0 —0p (413C)

which reproduce the defining equation (4.10) for 7.

The term f(s) in eqn. (4.12) is an arbitrary function. Choosing f(s) such that

) = 00(s) 5 peols)  20ls) 5 pofs) + u(5) - peols)

we furthermore have:

Oby _ _dro  dpeo  dro o dpo o doo o dpoo
ds ds Pe ds * ds '~ d - ds Ps ds o
Opa =10 Oz =10
., [OH L[
P="\op. ) .. 9: ).
=7 =7
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and therefore

H — H = H+@
0s
= H—g(%) . (4.14)
5 ) =3

4.2.2 The Linearised Equations of Orbital Motion
The orbital Hamiltonian H in the linear case (see eqn. (3.26)) takes the form :

:%-%-ﬁg—[[{x-f—l—[{z 2 po

0

b e+ 12— 1T

FL (K24 g] it K2 g] 22N a2

— “h+—-cose . (4.15)

2
1 1 V 2
Ly L Via) 2

The corresponding canonical equations read as:

d - x
Y = A(s)- g (4.16)
s
with A given by (3.29).
Due to the linearity of the equations of motion (4.16) the solution may be written in the
form:

g(s) = M(s, s0)§(s0)

which defines the transfer matrix M(s, so) .
Since the variables &, Z, &; P, p., po are canonical, the transfer matrix is symplectic [13] :

MT(S,SO) -8 - M(s,80) =S . (4.17)

The symplecticity condition (4.17) ensures that the transfer matrix , M (s, so) , contains
complete information about the stability of the (linear) synchro—betatron oscillations.

As a result of this condition, we are able to introduce action—angle variables for the orbital
motion.
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To do that we remark, that the orbit vector ican be represented as a linear combination

of the (normalised) eigenvectors v1x(s) (k= 1, I1, I11) of the revolution matrix M(s+ L, s)
and may thus be written as:

gls)= > {A-Te(s)+ A T (s)} (4.18)
k=II1,ITT
with
M(s+L,s)t(s) = e 0 2TQu g (s); (4.19a)
Qr = —Qr; (k=1,11,1II) (4.19b)
and
U () - S+ Ur(s) = =0T (s) - S Up(s) =1 ;
(4.20)
17:'(3) -9 -7,(s) =0 otherwise
whereby we have assumed, that the stability condition:
(), real number (4.21)

is satisfied.

Note that the eigenvectors ,(s) represent special solutions of the equation of motion

(4.16):

Bu(s) = M(s,s0) Bu(s0) -

If we put
Fu(s) = Du(s) - e~ 2mQu - (s/L) (4.222)
we obtain from (4.19):
Duls+ L) =0,(s) . (4.22b)

Equation (4.22) is a statement of the Floquet theorem : vectors 0,(s) are special solutions of
the equations of motion (4.16) which can be expressed as the product of a periodic function
0,(s) and a harmonic function

e_i 21 Q- (s/L) .

The “Floquet vectors” 11(5) fulfil the same relationships as the eigenvectors ¥/,(s):

B (s)- 8- uls) = —81(s) - 8 Fpls) = i

(4.23)
v, (s)- 5" 51,(3) = (0 otherwise .
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Using these results we are now able to introduce a new set of canonical variables. For this

we write for the coefficients Ay, A_y (k= 1,11,111)in eqn. (4.18) :
A, = \/jk Pk =27 Q- s/ L] :
A, = \/jk.e+i[¢k—2WQk'8/L] _
Then eqn. (4.18) takes the form:

S I B T E () T

k=I111IT

From (4.25) we now have:

% = _Z'.\/jk.{5k(5),€—i@k_5_k(3).e—l-i<1>k};
0 L= ik = +@'<I>k}
e {Buts) - e 455 e -
Taking into account the relations (4.23) one obtains the equations [14]:
07 g 00 _ % g 00
od, T 9®, 9% T 9L
o g O _ % g %
aJ, — JdJ; N ov, — 00 N
which can be combined into the matrix form
ZT'ﬁ'l =S

where J signifies the Jacobian matrix
. _ (9 05 00 oi o7 o
= \9®; A 0P B 0 Oy

being a 6 x 6—matrix just written as a row of column vectors (0y/0®;) etc.

Equation (4.28) proves that eqn. (4.25) represents a canonical transformation

T, Py, Z, P2y O, o — @p, Jr, @11, Jrr, @rrr, Jrinn

(4.24a)
(4.24D)

(4.25)

(4.26a)

(4.26D)

(4.27a)

(4.27b)

(4.28)

(4.29)

(4.30)

and that @y, Jy (k= 1,11,111)are indeed canonical variables which can now be interpreted

as action—angle variables since

dJy
P
dq)k 2
- L9

The way to find the Hamiltonian in terms of Ji, @y is explained in Ref. [14].

(4.31a)

(4.31D)

The orbit vector i(s) in (4.25) is thus an explicit function of the canonical variables Jj

and @, and of the longitudinal variable s, via the eigenvectors, Ux(s).
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4.3 Spin Motion

In analogy to the separation of the oscillation amplitude ¢ into two parts we can divide

the precession vector € (see eqn. (3.36b)) into two components by writing:

Q@) =09 +3
with
Q-00 =3 .

@
Writing

— — — —
W = W €t Wy € FWw,: €,

(4.32)

(4.33)

(4.34)

we obtain from eqns. (3.43a, b, ¢) for the linearised components ws, w,, w,, of the vector & :

ws = +2H-(1+4a)-p,

2
By L0 [KZ— ‘ ABx]

L+ 0 Po-c
2
‘|‘ﬁgﬁz Do [[X7x+ ‘ ABZ] )
L+ 0 Po - €
wr = =(Ltag) [(N = H)- &= (K= g) 2]

2
2 B [+ H - 2]

L+
1 o eV(s) . N
+— - |avo + . SN @ - pe
8 l% 1‘|"70] By 7Y
1
— [1 + ja%] . (Kz S ABJ;) B3+ o
Yo — 1 Po-¢

wo = H(l+ay) [(N+H) 2= (K2 +g)- 3]

2
+ 2 5 [ — H - 3]

1+
1 o eV(s) . N
—— - |avo + . SIN @ * Py
33 [ T ’YO] Lo wr
1+a R N
+ [1 + 2 70‘| : (]Xx + ABZ) ' 63 *Po -
v — 1 Po- €
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Furthermore, the vector

Ws
Wy
Wy

with the linearised components w;, w,, w, can be written as:

with

F23

F24

T
. P
w = F .
z £ (3x6) ~
o 7
Po
—a(yo—1)- [KZ — . ABx] :
Po- ¢

. AB.

+a(yo—1)- [Kw + ] :
Po- €

+2H - (14 a);
—(1+ay) (N —H');
+a(yo—1)-2H ;

+(1 4 ayo) - (K2 —g) 4+ 2a(yo — 1) - H? ;

Yo € .
avyo + -—V(s)sinp ;
l o 1-|-’Yo] Ey () sin

—[1+i]-(1(2— ‘ ABx) :
Yo Po- €

—(1 4+ ayo) - (Kz +9g)—2a(y—1)- H?

Yo € .
— la~g + -—V(s)sinp ;
l% 1-|-’Yo] Ey () sin
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Fss = -I-(l-I-Cl’Yo)'(N—l-H/);

F34 = —|—Cl(")/0 — 1) . 2H 3

€

Po- €

bz = + [1+£] : (Kx—l-

ABZ) ;
Yo

F. = 0 otherwise . (4.37)

The precession vector & describes the spin motion in the (7o, i, f) spin frame, as shall be
shown in the next chapter.

—

5 The Equations of Spin Motion in the (7, 7, [ ) System

—

5.1 Spin Motion in the (7, m, ) System
By eqns. (2.8) and (4.9) we have:

= &g+ & om+&-1, (5.1)

which we rewrite as:

€n T €s T €x Tlg € &s
& le, e, e, &
55 ﬁO gs m gs l:é)s fn
( &L| = | noe. mé. e ( Em ) (5.2b)
3 ioe, mé. e &

The equations of motion for spin in the (€, €., €;) system read in matrix form as (see eqn.

(3.36) ):
55 55
52’ fZ
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with

S
=)
1 cf:bl
S
=)
Lo
SO
S
=)

S
)
)

™~
™~
oy

™~

My

Tl
o o
LoL oL
~——

Ng €,

- = l_)—»
meg €s
- = ! _)—»
m €y + 77Z)51m'71(8) lel’
- = g
me; lez

333
AT YIEAT

S~ S~ o~y
S
<
w T~
<.

3
—~
VA
~—
——

DL

- = - = - =
Ng€s MNop€p NgEy
- = - = - =
= ME;, ME; ME,
g g g
le, e, le,
0 0 0
g g g
+ [ € l e, l€e,
- = - = —
—ME;, —IMEp —Mm
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N €s T €y Mo Es 0 0 0 &s
le, le, le, —MEy —MEy —ME, £
ﬁo gs ﬁo é)ls ﬁo gz 0 —W, Wy 55
= MEs MEy ME, w, 0 —Ws &x
le, &, [ €, —Wy  Ws 0 £,
0 0 0 foE mé, e, £,
—I—@/);pm(s) . [ €, [ €, [ €, N €y MEy [Ey Em
—1 &, ma —m e, ioe, mée, lé, &
ﬁo gs ﬁo é)ls ﬁo gz —wzfx —|— wwf 0 0 0 fn
= MEs MEy ME, +w. & + @/)Spm( s)-1 0 0 1 Em
l _)5 l gx l gz _wxf —I_ wsfl’ 0 —1 0 fl
Ng€s T €x No Ex W &s 0
= me, Mmé, me, |- Wy s + () | &
le, &, [ €, W, £, —&m
[ w, &n 0
= W X fm + ¢;pzn(8) ) —I_&
L\ @I 51 _fm
Wi &1 — wi &m 0
= W —wn & | F L) |
(- 3) - &= (1~ &) - bn 0
= | (&) -b—(-@)- & |+l | +& (5.7)
with
= Wy Totwm o mtw . (5.8)
Using the notation:
0 - Q,
O =1 a o -0 (5.9)
-0, Q. 0



with

Q= (ifo-&) = Py ; (5.10a)
O, = (m-d); (5.10b)
0 = (-9 (5.10¢)

eqn. (5.7) can be rewritten in matrix form as:

g [ & &
e =alal. (5.11)
& &

Equation (5.11) may be solved by methods as described in Appendix C.

5.2 The Spin Hamiltonian

As described in section 2.2.2, we now introduce canonical spin variables « and (3 for the
spin vector ¢:

€ = &oitotbm - m+&-1

by the relations:

—_

£ = 1—5( 2+52) ; (5.12a)
En = a-¢l—i( 2—|—[32); (5.12b)
& = ﬂ'w—i(a“rﬁ?); (5.12¢)
2
a = + 'fm;
— L+ & (5.13)
B =+ a & .

If the orbit vector i(s) is known, we then can calculate the spin motion from the equations:

d aHspin .

% o = ‘|‘ 8[3 y (514&)
d . M

0= = (5.14b)
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which may be rewritten by using the notation

(5

%5 = —ﬁz-d%%pm. (5.15)
The spin Hamiltonian Hpi, reads (see eqns. (2.15), (5.10) and (5.11)) as
Hapin(e, B; ) = (—— o + 7). a- w ioﬂﬂf? ), 3 %—— a2+ﬁ2>)
Nos(8) Mox(8) Noz(8) ws($)
X | ms(s) mg(s) m,(s) we(8)
Is(s)  lu(s) L.(s) w.(s)
+%(a2+ﬂ2) % Yapin(s) (5.16)
with [1]
( w; ) = E(SXG) 5 (5'17)
Hopin(cr, 35 )
BN AP ma(s) mels) mas) ) ”
= \/1 4( ‘|‘6) ( ﬁ)( Z(S) lx(s) lZ(S)) E(3x6)( ) y( )
#3004+ 5) {4 b (6) = (ol ), ma9) - E (o) 01
= (o, 8)- (8, —a) - Gy - y(s)
(o247 {j zz)spin(s)—g(s)} (5.18)
with
Gofs) = (_ngg e _ijgjg)-ggm)(s); (5.19%)



g(s) = (n0ss Nows Noz) -+ F (3x6)(5) - 5(8) ; (5.19b)

Pla, §) = % 0+ )

- () e

n=0

n

_ 1_%(a2+ﬁ2)+...' (5.19¢)

From (5.14) and (5.18) we obtain the equation of spin motion in the form:

0
i gy e 2] ) " Gols) ()
0 2 o Fla, )]
+Qo<s>-5+g<s>-(_01 Bl)f (5.20)
with
2o = (o ) 2

5.3 The Linearised Equations of Spin Motion Combined with the
Equations of Orbital Motion

5.3.1 The Spin Motion in Linear Order

To prepare for later investigations we consider in particular the linear order of spin motion:
a<l, f<l = Flo,p) = 1

which leads to the Hamiltonian :
L = ms(s) mo(s) ma(s)
Hspin(avﬁa 5) - (av ﬁ) ) ( ZS(S) lx( ) ! ( )

+= [0+ 57 = Wupin(s) (5.22)



The corresponding canonical equations for o and 3 read (see eqn. (5.20)) :

L E= Gols) - §(s) + Dofs) € (52

Here the matrix GG ¢ describes the linear spin—orbit coupling and the function ¢, (s), appear-
ing in D o(s), designates the spin phase function.

In this form the relation (5.23) is the basic equation for spin motion used in the computer
program SLIM [15, 7]. We have thus derived the SLIM formalism from canonical equations
based on a polynomial expansion of a spin Hamiltonian.

Remark:

The first order approximation of eqn. (5.7) in the limit

&l < 15
& <« 1;
u] ~ 1
takes the form:
o = +(f @) + B ; (5.24a)
with
£, = a; (5.25a)

& = f3. (5.25b)

This is equivalent to eqn. (5.23).

5.3.2 The Combined Form of Orbital Motion with Linear Spin Motion

By combining the orbital part 5 and the spin part 5into an 8—dimensional vector as first

done by A. Chao [15]:
- _ [y
t=1 % 5.26
(£) 20

we can rewrite the orbital equation (4.16) and the spin equation (5.23) in a compact matrix
notation as follows:

%U — A (5.27)
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with

A = (QAO Q%) . (5.28)

Since eqn. (5.27) is linear and homogeneous, the solution can be written in the form:
@(s) = M(s,so) - U(s0) (5.29)
which defines the 8—dimensional transfer matrix M(S, s0) of spin—orbit motion.

A

By eqn. (5.27), M(s, so) is determined by the differential equation

d -~ . .
d_ M(Sv 50) = A(S) ) M(Sv 50) ) (530&)
S
M(SO, s9) = 1. (5.30b)
If we write ﬂ as
’ M 0

we obtain from eqn. (5.30) [16]:

wld ) - (4 0)(%2) 2
- (%MA—M&Q Q%Q)
and
(%((55,755)) Q(Sg,so)) =1 (5.32b)
I) %M(S,So) = A(s)- M(s,0) ; M(s0,50)=1; (5.33)

(M(s, so)= transfer matrix for the orbit) ;

1) - Dis.so) = Dufs)- Dis.so) : Dlsorso) = 1

o 08 [Bain(s) = Yupin(50)] S0 () = Ypin(50)] )
= L) (—ammm@ww@m%ncmwwmm—%m@m)’ (5:34)
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L) == G(s,s0) = Gols) - M(s,50) + Do(s) - G(s, 50) ; G(s0,50) =0

&~

= G(s,s0) = Q(s,so)-/s:dE-Q(so,E)-QO(E)-M(§,50)
. /S:dg-Q(s,é)-Qo(é)-M(E,so). (5.35)

By eqns. (5.33 - 35) the transfer matrix ﬂ(s, S0) is determined in a unique way.

In particular, one finds the following expressions for the revolution matrix M(So + L, s0):

9 . M(SO + L730) Q
M(So+ L,So) = ( Q(So + L,So) Q(So+ L,So) ) (536)

with

Door i) = (g ambror ) 537

where the quantity Qs,;, defines the (linear) spin tune on the closed orbit (see eqn. (4.8)).

The eigenvectors of the whole 8—dimensional revolution matrix ﬂ(so + L, s9) for spin and
orbit which are defined by

~ ~

M(so+ L,s0) " Gu = Ay - G (5.38)
can now be written in the form:

Gu(so) = (?’““0)) C Erls0) = [Glso)” (5.302)

for k=1, I1, 1]

and

Giv(so) = ( 0s(50) ) . Gav(so) = [y (so)]" (5.39b)

IBIV(SO)

for k=1V .

By combining eqns. (5.38), (5.39), (5.36), (5.37) and (4.19) we obtain for the 2-dimensional
vectors Wy(so) (k=1, I1, I1]) and Wy (so):

G(s+L,s) vk(s)+ D(s+ L,s) Wi(s) = Ay - Wr(s)

~ —

— @i(s0) = — | Dlso+ L,so) = Ax| - Glso+ L, so) - T(s0) (5.40a)
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fork=1, 11, III;

Wrv(so) = \/Lﬁ ( —1@ ) e Vrintso) (5.40D)
for k=1V
and
W_g(s0) = [Wk(s0)]"; (=1, I1, III, IV) (5.41)
(Uk(s0) being defined in (4.19a)).
The corresponding eigenvalues are
Se=N=e 029k (k=1 q1, I1T) (5.42a)
and
S\IV = e_i ' ZWQIV with QIV == Qspm . (542b)

For the the eigenvectors ¢,(s) of the transfer matrix M(S + L, s) (initial position s):
FI(s 4 L) - duls) = (o) - s (5.3
we also have:

() = ML(s, 50) Gu(s0) = ( ol ) | (5.44)

In particular we get

i) = (gl ) o = vl (5.450)
with
v = i _ ! I _i¢5pi”5'15 s) = [wrv(s)]*
iv(s) = Dlsssw) divion) = 5+ (L ] o) ) =l G

The eigenvalues are independent of s:
Mu(s) = Au(so) - (5.46)
As may be seen by (5.31) and (5.35), the solution of eqn. (5.23) can be written as:
Cls) = D(ssso)-Clso)+ [ d5- D(5,5) - GofS) - M (3. 50) - (o)
— D (s,50) { s +/ d3 - D (50,3) - Gof3) - M (3, 50) - g(so)} . (547)
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Remark:

Note, that the components @y in eqn. (5.44)

W(s) = —[D(s+ L,s)— X -l]_l -G(s+ L,s) Uk(s)
— C[D(s+Lys)— -1 -/:+L di-D(s+L,3) Go(3) 5u(3) (5.48)
for (k=1, II, I1]) are solutions of eqn. (5.23) with ¢(s) = vj(s):

C Bs) = —[D(s+Lys)—Ag-1]"" -/:+L d - %Q(s 4 L,3) - Go(3) - 7:(3)
—[D(s4+L,s)=X-1]7"-D(s+L,s+L)-Go(s+ L) Tp(s+ L)
—I-[Q(S—I-L,S)—)\k'l]_l -D(s+L,s)-Go(s) - tk(s)

s+ L
— [D(s+Lys)— 17 / d3 - Dy(s)- D (s + L,3) - Go3) - (3)

—[D(s+ L,s) — A - -1-Gols) - AUr(s)

—I-[Q(S—I-L,S)—)\k'l]_l -D(s+L,s)-Go(s) - tk(s)
D) () 1D s Lo — N 17 [D (s 4 L) — - 1] Gols) - k(o)

= Dy(s) - wi(s) + Go(s) - i(s) -

This result is in agreement with the definition of Wi (s) by eqn. (5.44), i.e. the spin—orbit
vector ¢,(s) defined by (5.44) is a solution of eqn. (5.27), which represents the combined form
of spin—orbit motion.

6 Calculation of the 7—Axis

We are now in a position to calculate the so-called fi—axis [17, 4] which represents a
special solution of the T-BMT equation on the 6—dimensional particle orbit having the same
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periodicity properties as the particle orbit, namely:

(Jr Jir Jin, @, @, iy s) JrJrr Jiir, @5 + 27, @41, @y, 8)
Jr, I, Jirn, @1, @+ 2, gy, )
Jr, Jin Jirn @, @, @y 4 27, s)

Jr, I, Jirn, @1, @, @rrr, s + L) (6.1)

I T 1

where the variables J; and &, (k =1, 1, II1) are the action—angle variables of the orbital
motion [12].

The n—axis is the key object in the definition of combined action—angle variables for spin
and orbit on arbitrary orbits and for describing spin kinematics in electron storage rings

[4, 17, 18].
6.1 Definition of the 7i—Axis
In order to obtain the 7i-axis, we introduce a damping term
— - f with v >0

on the r.h.s. of eqn. (5.14) for spin motion:

d - d -
L0 = =S S M= 6.2
F0 = St (6.2
Denoting then the solution of eqn. (6.2) by
(= F(, 7 s) (6.3)

with

the n—axis is calculated from the relation:

n(s) = lim lim ﬁ(&, SHE (6.4)

0<y—0 spg——00

Thus we are using the fact that the asymptotic forced solution of a damped oscillator has
the periodicity of the driving force [19]. In this case the driving force is the vector & which
has the periodicity (6.1) and we introduced the damping via the term v - (. By subsequently

allowing v-( to approach zero we recover the solution to the T-BMT equation with the desired
periodicity properties.
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6.2 Perturbation Theory

The ri—axis shall now be determined in a perturbation theory.

Using (4.18) we write eqn. (5.19b) in the form:

g(s) = > AAgls) + Ak g-i(s)} (6.5)

k=I,01,ITT
with
9u(s) = (nos(s), nou(s), n0:(3)) - F (3xe) - (). (6.6)

Then we consider the (small) coefficients Ay as perturbation parameters which lead to a
perturbation series for the spin vector (:

5: 5(0)_|_5(1)_|_5(2)_|_..._|_5(N)_|_...‘ (6.7)

The different orders of the ri-axis may then be constructed in a systematic manner using
the method of forced solution as described by eqns. (6.2 - 4).

6.2.1 The 7i—Axis in 0" Order
From eqns. (5.20) and (6.2) we have:
LEO 2 pos) - FO . FO) (6.5)

with the solution :

and with D (s, s) given by (5.34).

The forced solution is:

70(s) = lim  lim e 7" (5 = 50) - D (5.50) - ¢V (s0)

0<y—0 sg——o00
= 0, (6.9)
i.e. the fi—axis coincides with 77y in 0 order.

Note, that 77 (%)(s) satisfies the periodicity condition (6.1).

49



6.2.2 The n—Axis in Linear Order
In first order we obtain from (5.20) and (6.2):
d - . S S
00 = Go(s) - 1(3) + Dofs) - {1 = L1 (6.10)
The solution of eqn. (6.10) reads as:

5(1) (s) = eV (s —s0) - D (s, 80)

{ (s0) —I—/ ds- D (s0,3) - Gol3)- §(§) etV (58— 50)} )
and the forced solution is:

AW (s) = lim lim e 7" (5 = s0) - D (s,50)

0<y—0 sg——00

{ So—l-/ds (S0, 3 Go(g).&f’(g)‘e—l—’y-(E—so)}

— lim [ d5-D(s,8) Go(3)- §(5) - TV 3

0<y—=0 J_oo

> s—n-L 6
e Oll,ym_>0 nZ::O /5_(n+1).L dS . Q( Z::

@l

= lim i/SS+Ld5’-Q(S,5’)-Q(S’,S’—[n—l—l]L)-Qo(sl—[n—l-l]L)

0 0
<y— o

= lim ZA ZD”+15—|-L3) )\(”‘H).e_(n"'l)"YL

0<y—=0
n=1 n=0

s+ L
X / ds'- D (s,s") - Go(s") - U,(s")

6
= Z A, lim [l—)\;l-e_’yl’- D(s+ L,s) -)\;1-6_7[’- D(s+ L,s)

0<y—0
pn=1
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></:+Ld§-Q(s—|—L,§)-Q (5) - Bu(5)
= Z_:l Ay - W,(s) (6.11)

(see also Ref. [20]) whereby eqn. (5.48) and the following relations have been used:
D(ss' —n+1]L) = D" (s + Ls") = D" (s+ L,s);
Gols' =+ 1]L) = Gols);
T —n+1]L) = X5, ;

D(s,s')- D"V (s 4 Lys) = DUV (s 4 Lys)- D(s,s') ;

o0 -1
Z Qn(5+L,3)-A;”-6_n'7L = [l—)\;l-e_’yl’- D(s+ L,s)

n=0

Equation (6.11) can also be written in the form:

AW (s) = z_j A, 1, (s) (6.12)

with
Bu(s) = et 27Qu-(s/L) 5 (o) (6.13)

and

A, = 1 2mQy - (/L) | »4

= @.6_i®u

A

= A (.. 0,). (6.14)

I
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It follows from (6.12) that 7 ()(s) satisfies the periodicity condition (6.1) since

Wu(s+ L) = w,(s) (6.15)
and

A A

Au( S @ 4 2m) = Au(Jy, @) (6.16)

Remark:

If we transform the rotation matrix D(s + L, s)

B cos 27 Qspin] s8I0 27 Qspin]
D(s+L,s) = ( — i 270 Qspin] €08 [27 Q spin] )

into principle axes:

U'-D(s+Ls)-U = J; D(s+L,s) =U-J-U"; (6.17a)
11
co () o
‘I’Z : QWQspin 0
€
l = ( 0 . ZWQspin (617C)
the vector wj, can be put into the form:
- _ -1 =127 Q) - -
We(s) = Uu-J-u e 1l cG(s+ L, s) vk(s)
. -1
= —Q[l_e_ZQﬂ-le] ‘Q_I‘Q(S‘I_L,S) Ek(s)
! AT Qr — Qupin 0
- . 2sin W[Qk + QSpin] )
= 1 ; .
0 . e—l_”T[Qk + Qspm]

2sin W[Qk - Qspin]
xU™ G (s+L,s) ti(s) .
This equation shows that the components of @y become infinitely large for

Qr £ Qspin —> integer .
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6.2.3 The n—Axis at Second Order

FTLIE MO NLEEY GRS BE I LSRRI R0
with
() = 3 (A s) A i)}
= Z;A’w%(S) (6.19)
and
g(s) = ; Ay guls) 5 (6.20a)
gu(s) = (ns(s), na(s), no(s)) - L zxe)(s) - vuls) - (6.20b)

The solution of eqn. (6.18)

reads as:
7 (@(2), Vi) = e (s — so) - D (s,50) - C@ (s0)

+e 7 (5 - 50) .Q(5750)

The forced solution is:
>(2) _ : : 7(2) (F2) .
n(s) = lm o lim o F (G, 75 s)

S

— lim dg-Q(s,g)-( 0 +1)-g(§)-ﬁ(1)(§)-e+7'§

0<y—=0 J _ oo —1 0
) s . 0 +1 e .3
= OF A Jin [ 00 () @
Bl p2 >
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& s—n-L
= ZZ Ay A, - lim Z:% /s—(n-|—1)~L ds- D (s,3)

M1 M2 0<’7_>0 n
0 +1 —~ o .
(S PHCREAC

& s+L
= > > A A, lim > / ds'-D(s,s')-D(s',s —[n+1]L)
=0 v*

0<y—0
H1o M2 <7 n

VAR

X(_?_%)-mmy—m+uL»wM@tﬂn+um

weTv (" =[n+1]1)

& s+L
= > > A A, lim > / ds'- D (s,s")- D" (s + L, s)
=0 v*

0<y—0
H1o M2 <7 n

0 +1 —(n “(n+1)
) A A )
=1L

o0

_ T nt1 A=+ y—=(nt1) . —(n+1)-yL
;% A Ao ollwrgo nZ:% D" (s + Lys) - A A €

s+L
e () ) g

-1

= ZZ AMAMz )

M1 H2

m [l— )\;11 . )\;21 s D(s+L,s)

li
0<y—0

<A )\;21 . 6_7[’ - D(s+ L,s)

7

= ZZ AMAM ' [)‘m)‘uQ 'l_ Q(S—I—L,S)]_l

M1 H2

S+L ! ! ! 0 —I_l - !
<[ g (D DG+ L) (T ) e () (6.21)

Clearly the components of 77 (3) become infinitely large when

Qm + Quz = nleger + Qsm'n .
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(For the general resonance relation see eqn. (6.27) ).

6.2.4 The i—Axis at k" Order

For an arbitrary (the k™) order we can in general write:
d - > - -
(W= Do(s) (Wt 3 ALAL A KD () =y (Y (6.22)

M1 2 g
B 3257 o

whereby the term Iz’£f22,,,uk(3) depends on (") for v < k.

For instance we have:

KO = 0; (6.23a)
KW = Gofs) - (s) ; (6.23b)
= 0 +1 S .

KD, = (_1 0)-wm<s>-<n57 nas ) - F (g0)(5) T (s) (6.23¢)

(see eqns. (6.8), (6.10), (6.18)). The general form of K’ﬁf&ywk (s) may be found from eqn.
(5.20) by iteration.

Assumption:

KR

k M1M2"'Mk(8) .

K (s+L) = XAy A

K12 g

(6.24)

This relation is fulfilled for & = 0, 1, 2 as may be seen from eqn. (6.23a, b, c¢), and in the
following shall be proved by induction.

From eqn. (6.22) we obtain:

d - . . .
% éﬂ(k) = QO(S) ) éﬂ(k) + Z AMAM T A#«k KLY (3) -7 g(k) . (625)

M1 2 g
B 51255 b

The solution of eqn. (6.25)

(W = FO D, 5 s)

reads as:
CW(s) = e (8750) . D(s,5)

X{EW (30)+/5 ds - D(s0,3)- > AMAM---Aﬂk-K’fj&wuk(s)-e+7'(§_50)} .

L5250 Mg
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The forced solution is:

TR ) (£
" B Ollwn—%o 501—1>moo F (G 73 s)
= Jim [ @ g by 5
= OEWH—%O . ds-Q(SaS)-M M;.Mk ALAL - A A;(L“)Q uk(s)'e ~y
- Z AMAW T Aﬂ«k ' oliwn—lm —co ds - D( ) Ail)@ Mk(g) ) €‘|")/ $
1,12,
A Ay, Ay - dim S [T 4 ~(k) b3
B © ol §-D(s,8) K 3) - -
Mh;"ﬂk e " 0<1WH_1>0 n=0 / (n+1)- i _(878) Xﬂwz"'uk(s) €
— Z AﬂlApQ L . Oll,ym_>0 Z / /) Q(S S _ [n —|— 1] L)
1,12,
XK (s —[n+ 1)Ly et (s' —[n+ 1] L)
— Z A%HA%Q Ce . . OEWH_%O Z / S/) . Qn-l—l (S + L,S)
1,12,
) AR A=) ] LR ()T (s —[n+1] L)
- Z A Ay - Ay - oliwn—%o Z_: D"t (s+L,s)- [)\;1(”+1) )\;2(n+1) L )\;k(nﬂ)}
BT 34257 o o
k1)L, [ iy
X e T / dS/,D( ) A%(L“)L2 uk(‘s/)'e ~y

-1
= Z AMAM A#«k - lim [l_()‘m)‘uz "')‘Mk)_l 'e_ﬁyL'Q(S—I'LvS)]

0<y—0
B M2,

s+L =
X ()‘M)‘M e )‘Mk)_l ) e_ﬁyL ) Q(S + L,S) ) /S ds’ - Q(S,S/) ) ]((k) (S/)

= Z AMAM"'AM '[)‘M)‘M"')‘Mk'l_ Q(S—I_L?S)]_l

B2,
s+l 1 (k) ’
<[ R, () (6.26)

Transforming the rotation matrix D (s+ L, s) into principle axis (see eqns. (6.17a, b, ¢)),
one can easily show that the term

[)‘M)‘M e )‘Mk 1 - Q(S + Lvs)]_l
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in (6.26) becomes infinite for

Qm + Quz et Quk = nteger + QSpin . (6‘27)

Finally we remark that the vector # *) in (6.26) obeys the periodicity relation (6.1):
A O Jin, Jiin, @1, @rr, @rap, 8)

(J1, Jir, Jir, @1, @1, @, s+ L) (6.28)

With the help of (6.26) and (6.24) we now can prove that the relation (6.24) is also ful-
filled for the next order (k + 1). It follows then that eqn. (6.24) and thus also the periodicity
condition (6.28) is valid for all orders of 7(s).

Remarks:

1) In this paper we have used the canonical variables o and [ to calculate the r—axis.
It is also possible to work with the components &,, &, and & of the spin vector gby using
an iterative technique applied to equations of spin motion as represented in the form of eqn.
(2.10). This is essentially the method used in the SMILE formalism introduced by S. Mane
[18]. It is also possible to calculate 7 iteratively in terms of (&, &) by expanding eqn. (4.9)
[21].

2) The vector 77 is unique except at spin—orbit resonances and in the neighbourhood of
resonances 11 depends very sensitively on the phase space position. These statements are non—
perturbative and are analogous to the lack of uniqueness of 7iy on the closed orbit (see section
4.2.1 and 7.3). However, when calculating 7 perturbatively, we find that the components

(&, B) diverge at resonances. This is the perturbative manifestation of the instability and
non—uniqueness that would be found in a non—perturbative calculation.

3) As a result of the periodicity relations (6.1), the i—axis can be expanded into a Fourier

series:
n (Jr, Jir Jrir, @1, @, @y s) = > ﬁmlmzms ¢ (J)
mi,m2,ms3,q
we i Ama @1(3) + my @1r(3) +ma ®11r(3) +9-2m (3/L)} - (6.29)

Using the ansatz (6.29), we obtain an alternative method to determine the fi—axis by solving
the equation of spin motion (5.14). (See also Ref. [4]).
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4) The solution (6.26) diverges not only at the resonance (6.27), but also at the resonances
that were found at lower order.

7 Spin Motion in the (7, 775, 77) System

7.1 Introduction of the Dreibein (i, 7iy, 7i)

In this section we demonstrate how to use the ri—axis to construct a special dreibein
(i1, 1, 1) on an arbitrary 6—dimensional orbit.
In the following we shall introduce a compact matrix notation by rewriting an arbitrary
vector

A = A flo+ Ayt Al
as a column vector with components A,, A,,, A;:
— An
A, flo+ Ap-m+ A -1 = A
Ay

and defining the derivative of a column vector with respect to the arc length s as the derivative
of the corresponding components A; but not of the unit vectors:

A
d " d d - d
— | A, = ng-— A, +m-— A, +1-— A .
ds A ds ds ds
I
In particular we then have:
. 0
m = | I — 0
1
and thus in this notation:
Tm = L7y
ds T ds T

(7.1a)
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31
[N~}
Il
A
[N~}
\T‘/lé st
I
Sy 3y S
o=, | X X
— 3
{ —
3 X | Sy Sl
X
=3

=

(7.1b)

S

— ﬁl Xﬁz =

By construction 7i; and iy obey the same periodicity condition (6.1) as 7 and form a

mutually orthogonal set ! .

Since
d as) _ & a d 72
ds |a(s)] ld| |a]* ds
_a a a-d
@l fal* dl
_d-(da)—d-(ad)
B ||
_ax|ld xa
B ||
we obtain with
ai=nxm (7.2)
and (d/|d|) = riy:
d 5 ﬁl X [Elv X ﬁl]
- 1 = =
ds |d|
Ny X mx[ﬁxﬁ])xm}
- g ’

where () is the spin precession vector in the (1o, m, [ ) frame.
Writing

{ﬁlx [mx(ﬁxﬁ)]} — A4 B 4O ity

YFor @ = iy we have 17 = { and i, = —.
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—
1t follows that:
and thus:
Furthermore we get:
d —
—n
ds

{Aﬁ+Bﬁl+CﬁQ}Xﬁl
{Aﬁ+052}><ﬁl
+A- -y, —C-n

(7:6)1><ﬁ),
(Q7,)
A L C -
ﬁ-n—l—m-nz X nq
A

(7.2a)



= gxnlﬁ—an
N A
_ [Qxﬁ]xﬁl—l—ﬁx[T 52_%5]
|dl |dl
2 2 A
a
3 A
= (Qﬁl) ﬁ‘I—TﬁXﬁQ
B
A s

and

S
Il

=~

(ﬁﬁl)-ﬁl+(ﬁﬁz)-ﬁz} X7t (7.2¢)

Using the relation:

d —
%ﬁ = Uxmn;
d —
_ﬁl = UXﬁl; (73)
ds
d -
£n2 = UXnQ
with
— A = i’_, - i’—» —
U = @-n+(ﬂn1)-n1+(ﬂn2)'”2- (7.4)

We can obtain the same expression for U by calculating § S Tk X % iy, with i3 = 71

[4, 1].
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7.2 Equations of Motion with Respect to the Dreibein (7, 7y, 7i)

In the following we use the formalism of sections (2.3,2.4). Decomposing the spin vector

gwith respect to the dreibein (7iy, 7ig, 77)

g = §O‘ﬁ+§1'ﬁl+§2‘ﬁza

we obtain from eqn. (5.11):
d - 5 S
S = e
_ {(ﬁﬁ) i (i) -+ (D) ﬁz}xg,
N s L déy . d& | dEy
= x{fo n+ & n1‘|'52'n2} = % +£ n1+£ 2
> d - d . - d
N+50'£n+§1'£n1+§2'£n2
b de
B
+U><{50'n+§1'n1‘|‘§2‘ﬁ2}3
déy . dé dé, 7 T
— %'n—l-dil 1+% = [Q—U]X(&'n-l-fl'nl—l-fz'nz)-

Since 77 obeys the T-BMT equation (see eqn. (2.33)) , the new precession vector [ﬁ — (j]

is parallel to n:

—(j] == k(q)k,Jk, S)'ﬁ,

20

[

and in this frame the spins precess around © with constant J = 7i - E
Our notation reflects to the fact that 0, 7, 75, 7 and thus k all depend on
(Jk, (I)k, S) .

Furthermore k, like Q, 7, i1y, iig, is periodic in (®y, s).

Then:

COF N R N TP (o i G+ 6o )
52 n1)

= k(@ Jis) - (G-
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with (see 2.7b)

KOy, Jy s) = (i) — %

& L diy

= (Qn) e (7.5)
leads to

P o
Ts &1 = —k(Qk, Sy 8) - & | (7.6)

3 +h( P, Ji; s) - &

d . N N N

Ts [51 +i- fz} = 1 k(Py, Jy; ) [51 + i fz} ; (7.7)

{51(8) + - 52(3)} = {51(50) +7- 52(50)} - exp {z . /S: ds - k(®g, Ji; 5)} ) (7.8)

The interpretation of (7.5) is obvious: w.r.t. 7; and 7y the rate of spin precession around

i is composed of the projection of Q onto 7 and the rate of rotation of #; and iy around 7.

7.3 Spin Tune on an Arbitrary Orbit

We now define:

A 1
Qspin = — lim ——

50+N~L N N
A o /50 ds - k(®g, Ji; 3) . (7.9)

The quantity Qspin is a measure of the average spin precession frequency in the (7y, fia, 77)

frame on an arbitrary orbit. Note, that Qspin is independent of the starting point sg.

On the closed orbit we obtain:

and thus:
N 1 1 50+N~L dN ’ -
Qspin - - Nl—r>r<io o N /50 S [_¢spin(8)]
1
- m . {¢spin(50 + N - L) - ¢5pin(80)}
77Z)510in(50 + L) - ¢5pin(80)

= = spin - 1
- Qu (7.10)
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Thus our Qspin reduces to ()i, on the closed orbit.

For the spin tune shift with respect to the closed orbit:

0Qupin = Qupin — Qpin (7.11)
we get from (7.9) and (7.10):
1 so+N-L
0Quin = = lim s / a5 - {k(®y, Jis 3) + 0 (3)) (7.12a)
Defining in (7.12):
AR(®p, Ty 5) = k(g Ty 5) + L5 (5) (7.12D)

which is periodic in ®; and s so that:

AE(®r, @1, @i J1, Jir, Jir s) = Ak(®r+ 27, @rr, @rrrs Jr, Jin, Jiar s)
= Ak P+ 2m, @pyp; 1, Jin, Jiir )
= Ak Py, @rrr+ 2w Sy, Jin, I )
= Ak(®r, @7, P11 Jr, i, Jir s+ L)

we expand Ak as a Fourier expansion:

Ak(q)kv Jk; S) = Z leQOS(Jk; S) ) e_i {mlq)I +mabu+ qu)III}v (713&)
where
132 2m 2m 2m
Roimyms (Jky ) = {—} : dq)[/ dq)n/ d®;rr
T 0 0 0
« Ak(Py, Ty 5) - i {mi®r + ma®p + ms®yyy} (7.13b)
with

Roimoms (Ji; s+ L) = Rpymyms (5 8)

= 3 Romgmog (i) - e 1927 (/1) (7.13¢)

q

1 so+L - .
= Rm1m2m3q (‘]k) = z / ds - Rm1m2m3 (Jk, 5) . e—l_lq 2m (S/L) ;

R—m17—m27—m37—q (‘]k) = [leQOgq(Jk)]* .
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Then we can in general write:

—l{m1q)1( )-I—mzq)n( )+ ma®r(3) +q-2m (3/L)} (7.14)
Equation (7.14) may be written in the form:

so+p-L

5Qspin = - Z ]\ll—{%om Z/S leQOgq(Jk)

m1,m2, M3, q ot(u=1)-

et A @r(3) +ma @y (S) +ms @rr(3) +q- 27 (3/L)}

= — Z lim L : Z ds - Rm1m2m3 q (‘]k)

mi,mz,m3,q pu=1 %0
we—tmi @p(s" +[p—1]- L)
we—timy - @pp(s’+ [ —1]- L)
we—tma Qpp(s 4+ [p—1]- L)
g (2n/0) (5 — [k~ 1] T)
= — Z lim L g: 6_27”" (=D {m1 Qr+maQrr +msQrir + q}

N
mi, M2, M3, q —oo 2N pn=1

So-I—L ;
X /S ds’ - leT)’LQT)’qu (‘]k)
o {m1 ®1(s") + ma ®rr(s") + ms ®rrr(s’) +q-2n (s'/L)}

N N So-I—L .
= =% Jim g 3 T2 D [T R () 7027 ()
p 2N f s

H=

_ 3 lim —‘§:€_27” (1t = 1) {m1 Qr +my Qrr +m3 Qrir + q}

my,mg,ma,q YOO 2N
mj,my,mg3 # 0,0,0

So-I—L ;
X /S ds’ - leT)’LQT)’qu (‘]k)
et {m1 ®1(s") + ma ®rr(s") + ms ®rrr(s’) +q-2n (s'/L)}

1 N

So-I—L
= — |lim ——- Z / ds’ + Roooo (Jx)

N—ooo 20N “—
n=1
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. 1 1 — e 2mi- N -{my Q1 +mg Qrr +msQrir + q}
- ’"17’;’"37‘1 N 2nN 1 —e2mi-{miQr +m2Qrr+ms Qrur + ¢}

mj,my,mg3 # 0,0,0

So-I—L ;
X /S ds’ - leT)’LQT)’qu (‘]k)
o {m1 @1(s") + ma ®rr(s") + mas ®rrr(s’) +q-2n (s'/L)}

1 So-I—L ;
= ——'/ ds" - Roooo (Jk)
27T 50
L
= —== Roooo (&) (7.15)
2

away from the orbital resonance

my Qr+ma Qi +masQrr = integer ;
(ml, mz, mg, 7£ 0, 0, 0) .

On such a resonance the terms proportional to R, m,m., and its conjugate survive the
averaging and Qspin then depends on the orbit phase. In the following we will consistently
exclude the case of orbital resonance since on resonance, Qspin is not constant and cannot be
used as a tune for action—angle variables of spin [4].

In eqn. (7.15) we have used the relation:

Or(s) = Pp(so)+ 2% Qr - (s — s0) (7.16)

(see eqn. (4.31b) ). It follows from (7.15) that §Qspi, is independent of @y (k= 1, I, I11]):

To get the spin tune shift at first order we replace 7 with 7ip to obtain:

7=y = kWD(D i s) = Qi
(see eqns. (7.5) and (5.10) ) and thus:
AED(@, Sy s) = (7 - D)

or taking into account (4.25) and (5.17):

AR (@, Ty s) = S0 JIe eI OE) L (ngy (), now(s), 702(5)) F (s 06(s)  (T.18)

k=1 11,111
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which leads to:
5Q5)., = 0, (7.19)

i.e. the spin tune shift vanishes in 1st order.

7.4 Action—Angle Variables for Spin Motion on an Arbitrary Orbit

Since k(Jk, ®x;s) is not constant we now wish to find a new spin coordinate system
in which spins precess uniformly and thereby construct action—angle variables for spin on
arbitrary orbits. To this end we introduce the variables (.J, 1) by the definition:

50 = J;
& = VI—=J% cosip(s) ; (7.20)
£ = VI—J% sine(s) .

The spin Hamiltonian describing precession motion around 7 (see eqn. (7.7)) is:
Hopin = k(P®p, Ji; s)-J (7.21)

and the canonical equations of motion are then:

d OH spin

b= T = (@i s) (7.22a)
%J _ _agzm — 0. (7.22D)
The solution of (7.22a, b) is given by
o(s) = /:dg-k(CI)k,Jk; oF (7.23a)
J = const. (7.23b)

We now employ the canonical transformation

based on the generating function
A A 2T A s A
Ry, J; s) = —J- {% Qupin 5+ [ d5 - k(@4 i 5)}—|—¢-J (7.25)
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which reads as:

- or 2T A s N 2T 4

Y = &72 = _stpin'S_/sodS'k(q)kvjk; S+ = A
JF .

J = =—=2 =]

o

The new Hamiltonian

. oF:
Hspin — Hspin + =2
0s
is given by:
~ 0F,;
Hspin — Hspin + E
~ 2T A
= k(®p, Jp;8)-J—J- {f Qspin(Jr) + E(Pr, Ji;
27 4 A
The corresponding canonical equations read as:
d - aﬁspm 2T A
s Y o= 4 57 A Qspin(Jr) = const ;
ds o

Qspin(Jk) -

(7.26)

(7.27)

5)}

(7.28)

(7.29a)

(7.29b)

Thus we now have a spin precession frequency independent of ®; and s but dependent on Ji
and identical to the average spin tune in the (77, 72, 1) dreibein. The quantities .J, ¢ are our

action—angle variables for spin on an arbitrary 6—dimensional orbit.

Associated with these new variables J, ¢ is the new dreibein (7%1, 7%2, i) with (7%1, 7%2)

given by:
7%1 = 47y - cos x(s) + iz - sin x(s) ;
iy = —iiy-sinx(s)+ iz - cos x(s)
or
Hy4i-my = [By i) exp[—i-x(s)]

where by (7.26)

X(Pi(s), Ji; s) = x(Pr(s0), Jk; s0) + /S: d3 - k(D(3), Jy; §) + 2%
= X(®x(50), Jr; s0) +/0 ds - {k(cbk(g),Jk; 8+
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L

(7.30a)

Qupin - (5 = 50)
Qspm} . (7.30b)



Defining the spin components él, éz with respect to (7%1, 7%2) by the relation:

ml
|
UAaY
o
Sy
-+
)
)
S0
=
-+
I
[}
S
[}

we can write:

;%{&-l-i‘éz} = Z'Q(Jk)‘{él+i‘é2}

[E(s)+i-Gals)] = [Eilso) +i-Eals0)] - exp{i Qi) - (s — 50)}
with
2T A
QJ,) = _T'Qspin

which expresses again the fact that the spins precess uniformly in the new dreibein.
Choosing for simplicity
X(®x(s0), Ji; s0) = 0,

in (7.30b) we may write *:

W@us) T ) = [ s {0490 )+ T Q-

50

(7.31)

Further insight into the properties of the new dreibein can be obtained by using (7.12b)

and expanding the integrand in (7.31):

R 27 4
Ak(®p, S 8) = F(Pr, i 8) + = Qupin( i)
27

2
== Ak(q)k,Jk, S) + _7T T

Qspin = Yepin(5)

into a Fourier series:

A

AR(®r, @7, ®rpp; Jr, Jin Jiin ) = AR(®p 427, ®pp, B J1, Jrr, Jiirs )
(@71, @rr 421, @rrr; 1, Jir, I s)
= Ak(®r, @y, @rpr + 2w J1, Jir, Jian s)
(

S, @1, @rrrs Jr, i iy s+ L)

(7.32)

ZNote that the proof of the periodicity conditions (7.35) and (7.36) also works for an arbitrary choice of

X (®r(s0), Jk; s0)-
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— Al%(q)k, Jg; 8) = Z ]%mlmms(s) . e_i {mi®r +ma®r + m3q)HI}; (7.33a)

mi,m2,ms3

- (%)3 : /027r d®, 0% d®y; 0% d®rrr - Ak(®, Jy; 5)
wetidmi®i(s) + ma®pr(s) + ms®rp(s)} (7.33b)
with
Runsmzms (s 4 L) = Rz (5)

N

Ry (Ji) - e 00 27 (s/L)

N

= leT)’LQT)’qu (‘]k) =

Il
b~ = QM

so+L . . ~
/ + A - lem2m3 (Jk, 5) . e—|—lq -2 (S/L)

which leads to:

A~

Ak(q)k, Jk; 5) = Z Rgmlm2m3q (‘]k)

my1,my,m3, ¢
(m1,m2,m3,q9) #(0,0,0,0)

et {m1 ®1(s) + ma ®rr(s) + ms®rrr(s) +q- 27 (5/L)} ‘
Here we have used the fact that the coefficient
N 1 so+L 1 3 27 27 27 N
Roopo = — / ds - <—) . d®; d®;; d®rrr - Ak(Py, Ji; 3)
L Js 2m 0 0 0
vanishes:
]%0000 = 0

as may be derived from eqn. (7.32), since

1 so+L 1 3 27 27 27
- / ds - (—) . dq)[ dq)[[/ dq)[[[ . Ak(q)k, Jk; 5)
L Js 2 0 0 0

27

- ROOOO — _f(stpin (Jk)

and

1 so+L 27 N
Z /50 ds - [T QSpin - ¢;pin(8)] = 0.
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Then, using eqn. (7.16), eqn. (7.31) can be written in the form:

X((I)kv Jk7 S)

= / dg . Z ﬁ{mﬂnﬂnsq (‘]k)

mi1,m2,m3, q
my,mg,m3, g 0,0,0,0

w e~ iAm1 @1(5) + ma @11(8) + ms @r11(5) + q - 2m (5/L)}

=Y Ruymany () e I ®ilso) £ ma @arlso) - ms Sy}

mi1,m2,m3,q
my,mg,m3, g 0,0,0,0

w ¢2m1 - (so/ L) {m1 Qr+ma2 Qrr +msQrir}
« /5 de' - e 2mi (') {mi Q1+ ma Qur +msQrir +q }

= Z ﬁ{mﬂnzms q (Jk) : G_i {ml (I)I(SO) + e (I)II(SO) + ms (I)III(SO)}

mi1,m2,m3,q
my,mg,m3, g 0,0,0,0

w2 (so/ L) {mi Qr +m2Qrr + msQrirt

=2 (/L) {m Q1 + ma Qrr +ms Qs+ g 317
| o (/L) - {my Qr +my Qrr +m3Qrir + q} e

50

= Z ﬁ{mﬂnzms q (Jk) ' G_i {ml (I)I(SO) + M2 (I)II(SO) T ms (I)III(SO)}

mi1,m2,m3,q
my,mg,m3, g 0,0,0,0

o2mi - (so/ L) {my Qr +my Qrr +msQrir}
" omi (1/L) - {m1 Qr +mq Qrr +m3 Qrir + q}

% {e—Qm' (/DY {m1 Qr+maQrr+msQrr+q}

_—2mi e (so/ L) {my Qr +ma Qrr + ms Quir + q }}

_ > Rovimams s (Ji) - e~ 0 ima @r(s) +ma ®1r(s) +ms @rpr(s) + 2mq - s/ L}

mi1,m2,m3,q
my,mg,m3, g 0,0,0,0

1
"~ omi (1/L) - {m1 Qr +mq Qrr +m3 Qrir + q}
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_ 3 ]%mlmmg L) - oA @r(so) + me @rr(s0) +ms @rir(so) +2mq - so/ L}

my, mg, m3, g
my,my,m3, q#0,0,0,0

1
* omi- (/L) - {my Qr +my Qrr +m3Qrir + q}
_ 3 B (i) - A @r(s) +ma @py(s) + ma @pyi(s) +2mq - s/L}
My ma, 4% 0,0,0,0
1
* omi- (/L) - {my Qr +my Qrr +m3Qrir + q}
— const. (7.34)

From (7.34) it is clear that x(®g, Ji; s) fulfils the periodicity conditions

X Jrn Jin @5, @, @i, s) = x (I, Jin Jir @ 4 27, @4, @r, )
= x(Jr, Jir, Jirr, @1, @ 4 2w, Py, 8)
= x(Jr, Jir, Jirr, @1, @, @rpp + 27, 8)
= x(Jr, Jir, Jirr, @1, @, @rpr, s+ L) (7.35)

Then by (7.30a) we see that ity and 75, fulfil the same periodicity relations as
X(®r(s), Jr; ) and thus as iy and 77y (see eqn. (6.1)) :

ﬁy(JI, Jin I, @1, 97, Opyp,8) = ﬁy(JI, Jir, Jirr, @+ 27, @1, @ppyy 8)
= 7%1/(&][7 Jiry Jirr, @1, @ + 21, @pp, 5)
(Jr, Jir, Jrir, @1, @, @rpr + 27, 5)
= 7%1/(&][7 Jirs i, @1, @, @, s+ L) 5 (7.36)

with v = 1, 2 for an arbitrary orbit.

Thus we have found that the dreibein (7%1, 7%2, 1) within which spin motion can be described
in terms of action—angle variables, is fully periodic in (®%, s). A numerically equivalent con-
struction of (7%1, 7%2) was used first in the program SPRINT [22, 23, 24, 25]. The need for
a periodic dreibein on arbitrary orbits is discussed in Ref. [4]. Recalling the behaviour of
spins on the closed orbit, we note (see section 4.1 and Appendix B) that in the non—periodic
(1o, Mo, l_g)) dreibein the spins are stationary, but in the (7ig, m, f) dreibein the phase function
) can be chosen so as to vary linearly in s so that the spins precess at a fixed frequency @ spi-

The quantity Qs is arbitrary up to an integer corresponding to various choices of (m, [).
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—

Moreover the vectors (m, [) are periodic in s. The construction that we have just carried out

is the generalisation of this to arbitrary integrable orbits. On the closed orbit (7%1, 7%2) reduce
to (I, —).

From (7.34) it is clear that our construction of the periodic (7%1, 7%2) becomes invalid on an
orbit resonance

m1Qr+meQrr+msQrr+q = 0
(mh ma, M3, ¢ 7£ 07 07 07 0)

for which ]%mlmz)mg) ¢ does not vanish. But this case had to be excluded in order to make Qspin
independent of orbit phase. Away from spin orbit resonances the whole dreibein (7%1, 7%2, )
is a single valued function of the phase space point (Ji, ®x, s) and the vectors (7iy,7i3) and
(7%1, 7%2) oscillate with respect to each other. In the neighbourhood of an orbital resonance the
oscillation amplitude becomes very large.

Remarks:

An alternative way, used in the earlier versions of this paper, to prove the periodicity of
(i1, 113) is to write (7.30b) in the special form

. . . S L 2T A . §
X(®k(3), Sz s) = lim - lim | d5- {k(@k(s),Jk; S+ Qspm(Jk)} et
) s . . 21 A .3
= lim ) ds {k(q)k(s)v S 8) + Qspin(Jk)} etV (13)

by making a special choice of y (P, Ji; so) and using the method of forced solution.
Then we have:

s+L
(@u(s), Ty s+ L) = lim dé-{k@k(é—L),Jk; 3+

0<y—=0 J_oo
s 7
= lim ds’ -
0<7=0 S oo

0<y—=0 J_oo
S

2T
= Gim [ ds' L), s')+%Qspm(Jk)}-e+’Y'S’

0<y—=0 J_oo

{
= lim ' ds’ - {k(q)k(sl), J; ')+ 2% Qspin(Jk)} ety (8 + L)
{

= X(Px(s), Ji; 3)

and

S

X(®p 421, S s) = lim dé-{k@ﬁ%% 9+

0<v—=0 J_oo L

Quanli) | - ¥
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S

0<y—=0 J_oo

= X(Px, Jx; 5)
since
@), Js s+ 1) = k(Du(s), Jis )
and
M@+ 27, Ty s) = k(@ Ty s) .

Thus the function x (P, Ji; s) indeed obeys the periodicity relation (7.35). Note, that this
analysis is not valid on resonances for which R, ,m, , does not vanish.

The proof of the periodicity condition (7.35) remains valid, if we use the ansatz:

I . -
_7T Qspzn(Jk)} . €‘|‘7 "8 9

(@u(s), Sy s) = C+ lim [ dg-{k(CDk(E),Jk; 9+

0<y—=0 J_no

by introducing an arbitrary additional integration constant C in (7.31). Using

. so N N 2T 4 s
¢ =~ im [" s {k((l)k(s),Jk; 8+ stpm(Jk)} Lt
we obtain (7.31) again:
(Pr(s), Jr; s) = lim Sd§-{k(<b (§)J§)—|-2—7TQ '(J)}-e+7'§
X\ Pk s Jky 0<r—0 S, k s Jky I spin\Jk

27 4

- / dg-{k(CDk(é),Jk; §)+stpm(Jk)} : (7.38)

2) Having established the periodic dreibein (7%1, 7%2, 77) in which spins precess uniformly,

we can construct another dreibein (72y, 12, 77) as

[
1

3 Coa
2 = [n1+@-nz]

x exp{—1[mi1®r(s) + ma®rs(s) + ma®rrr(s) + ¢ 27 (s/L)]} . (7.39)

1+

Since the spins precess at the rate
21 A
Q(Jk) — _f Qspin

with respect to (7%1, 7%2, 1) then they precess at the rate

() - F

L
2T [~
= 7 {Qspin+q+m1'QI‘|’m2'QII‘|’m3'QIII}

l[g+my-Qr +my-Qrr +ms- Qrryl
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with respect to (7, 12, 7).

By construction (i, fiz) is again periodic and the precession rate is uniform. Thus the

A~

(i1, 1g, 1) dreibein has the same status as (71, 713, 77) and is a perfectly valid dreibein. On
the resonance,

N

Qopin +q+m1-Qr+mo-Qrr+ms-Qrr = 0, (7.40)
the spins are stationary in the “resonance dreibein” (7%1, 7%2, 1) constructed using the

(my, mg, ms, q).

Thus at resonance these (7%1, fie, 1) all obey the T-BMT equation and the distinction between
1 and (7%1, 7%2) is lost. Then at a spin—orbit resonance (7.38) a dreibein can always be found

in which spins are stationary and for which the choice of (7%1, 7%2, 1) is not unique. This is
analogous to the situation with the closed orbit discussed in section 4.1 (see also Ref. [4]).

3) In arriving at action—angle variables for spin, either on the closed orbit or an arbitrary
trajectory, we can see an analogy with the case of the construction of action—angle variables
for orbital motion. In the latter case the orbital Hamiltonian is s—dependent (section 3.2.1)
but the s—dependence can be absorbed by applying an s—dependent canonical transformation
involving orbital eigenvectors (section 4.2.2) and the motion from then on is described with
respect to a basis of orbital eigenvectors with amplitudes that are written in terms of action—
angle variables. Actually, we use the “Floquetized” orbital eigenvectors periodic in s and a
uniformly increasing phase function. In the case of spin on the closed orbit we come to action—
angle variables by an s—dependent canonical transformation involving a spin phase function
i increasing linearly in s (section 4.1) and the corresponding s dependent orthonormal pair
(m, f) which is periodic in s. On an arbitrary orbit, we arrive at action—angle variables via a
canonical transformation to a dreibein which is periodic in @, as well as in s.

For an analysis of spin—orbit motion and the introduction of spin tune in terms of Floquet
theory see [26].

4) To construct (7%1, 7%2) we began by using the periodic vector product 7 x m. We could
instead have begun with the vector product 7 x €, or with 7 x ¢ (J=unit particle direction
vector) since €, is periodic in s and ¢ is periodic in s and ®;. Then we could have calculated
E(Jg, @, s) for these cases and proceeded with the canonical transformation. The resulting

various (7%1, 7%2) are presumably related by a transformation of the form (7.39).
5) Note that Qspin depends on the orbital actions J; and that an ensemble spans a range

of Ji. Thus more than one orbit in an ensemble can in principle be on resonance and some
orbits will have no associated unique dreibein i.e. no unique n—axis.
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8 Calculation of the Depolarisation Time

Having determined the ri-axis and investigated the spin motion in the special coordinate
system

(7%17 7%27 ﬁ)

associated with the fi—axis, we are now in a position to study classical spin diffusion and to
calculate the depolarisation time.

The spin diffusion is caused by radiation processes which can be characterised by a stochas-
tic differential equation for the orbital coefficients Ay [12, 7]:

A(s) = +i-vs(s) yfw(s) P(s) ; (8.1a)
AL(s) = [Au(s)]” (8.1b)
(k=1,11,11I)
with
< P(s),P(s) > = b(s—45). (8.2)
and
w(s) = (K +[K.[°)- O (8.3)

where the coefficient Cy is given by:

55 - /3 . h 2 5
CQ = 48 . Cl . A . ")/02 Wlth A = m—oc and Cl = gez ' E_OO . (84)

Equations (8.1a, b) may be written in a combined form as:

AL(S) = +V.(s) - yw(s) P(s) (8.5)

with
Vi(s) = +i-vgs(s); (8.6a)
Voe(s) = [Vi(s)]™ . (8.6b)

In the following we shall use the notation:
o= (&)
L /oy a L 1. . Lo
= {1—5 (a —|—ﬁ)}-n0+a¢1—1 (a2+ﬁ2)-m+ﬁ¢1—

for the ni—axis, denoting the a— and f—component of 7 by & and B

(624 )T

]
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8.1 Depolarisation Degree due to an Orbital Jump

We consider the case where at each point in phase space the spins are initially all parallel to
the respective ri—axes and that orbital equilibrium characterised by the distribution function

WO (g, ,):

O

W (g &) = 1 - Al L [JI/JI + Jrr/Jr + JIH/JHI} (8.7)
27)* Jr-Ju-Jin
with
joo= M
Zak
1 So-I—L
- 2—/ di - |ops(3)? - w(3): (=1, I, I11). (8.8)
(043 50

(see Ref. [12]) has already been established.

After a jump to a new position in phase space

Jp — J+AJ;

caused by the emission of a photon, the spin of the particle has the direction of the old 7i—
axis, nold, characterised by the components & and [3 but the spin now precesses around the
New 7—axis, Mpew = Toig + A, with components & + Aa, [3 + Aﬁ corresponding to the new
orbital position. Only the projection of 7,4 onto i, survives, since the spin component
perpendicular to i, (= (& + A&, B+ AB) ) averages away due to the uniform precession
of the spin with respect to the dreibein

(7%17 7%27 ﬁ)new .

Thus the depolarisation takes place along the latest i—axis, 7i,,c,, and by simple geometrical
considerations one finds that the degree of depolarisation due to the jump

a — a+Aa;
Bo— B+AS

reads exactly as [27] :

1
AP = 3" |A7|* . (8.9)
By writing A7 as
on on .«
An = - Ad ~ - A 1
n 5 Aa + E: 3 (8.10)



with
on

on = G
+ w——(&?ﬂ??)— 10‘2 7
4 w—z(o&u@?)
- ap [ (8.11a)
4-%—%(@%@2)
Z_g = _B‘ﬁo
e
4-%—%(@%@2)
+ w—i(&ufﬂ)— p 1. (8.11D)

1 22 1 32
4.%_1(@ +3)

and putting (8.11a, b) into (8.10), we then obtain:

L[ for\* ., AN AN
ar = ) wa () seare () o) o

with
(%)2 = 1+i(072 — )+ s EZ(EZ(J;;?W)} : (8.13a)
(% | Z—g) - %&B+ 16 - Eé(f(j?@” i (8.13D)
(Z_Z)Z = 1- i(@z — )+ — ﬁz (f(zf?gz)} (8.13¢)
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8.2 Stochastic Behaviour of Spin Motion

The stochastic behaviour of the orbital motion characterised by eqn. (8.5) is transferred
to the spin motion. Thus we have:

(#5), = San s
SPr L RACRIEERLE
_ ;;jﬂ‘e_i'%Q“'S/L‘Vu(S)‘ o(s) - P(s)
S r ACREREE
= Fi(s) - Jwls) P(s) ; (8.14a)
(j—sg})m = Fy(s) - Jw(s) - P(s) (8.14b)
with
Fi(s) = zﬂ:;j‘“-m(s); (8.15a)
Fy(s) = ;%-VM(S) (8.15h)
and

Vus) = et I/ ly ()

~

Integration of eqn. (8.14) leads to:
a(s) = (sl = [ d5-0e(3) - FA(3) (8.17a)
[Bls) = Bso)] = [ ds-se(3)- Fu(s) . (8.17h)

50

From eqn. (8.17) we obtain:

< [d(s0) = 6(51)],0g - [B(50) = Bls1)] >

rad
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= /51 ds’ - /51 ds"- < de(s) de(s") > - Fi(s) - Fa(s")

= /51 ds' - /51 ds" - w(s') - 6(s" —s") - Fy(s) - Fa(s")

= [l () - Bl (8.18a)
and

< ([a6s0) —ae)] ) > = / ds' - w(s') - Fi(s')? ; (8.18D)

< ([Btso)=Besn)] )" > = / ds' - w(s') - Fy(s')? (8.18¢)

8.3 Depolarisation Time

For the stochastic average of AP in (8.12) we get, using eqns. (8.18a, b, ¢) :

1
< AP(Jy, s 8) > = As- 5@(5)

X {(gi) CFy(s)? 42 (gz : Zg) S Fy(8) Fy(s) + (Zg) -FQ(S)Z}. (8.19)

Taking an average of < AP(Jy, ®y;s) > over one revolution and over the orbital phase
space by using the distribution function (8.7), eqn. (8.19) then leads to the characteristic spin
depolarisation time 7p for the diffusion of spins resulting from stochastic orbit motion given

c s+L 27 27 27 00 00 00
TEl = - / ds - dq)[ dq)[[ dq)[[[/ dJ[/ dJ[[/ dJ[[[
L Js 0 0 0 0 0 0

< AP(Jk,(I)k,S) >

XW(Stat)(le (I)l) . v

orbit

_ i /:+L d3 - w(3) - R(3)

c so+L £ B R(s 3.20
= op [ dseels) - BE) (8:20)
with
N _ N - {JI/JAI—I—JH/JAU‘FJHI/JAHI}
R(s) = / dJI/ dJU/ dJrir -
0 0 0

Jr-Jrr - Jrr
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1 2T 2T 2T
XW o dq)[ o dq)[[ o dq)III
o , (07 o o )
{(aa) s (5508 no i+ () -F2<s>}
= R(s+1). (8.21)

Taking into account the 1st order relations:

aW(s)\ L3 (e
(o)) = ZAeino 822

)\ L o g
(Ho) = T,
= Z W, (5) Vi

1
= i > A{Wvis + compl.conj.}
k=1, 11,111

= —2-Qm > Wy ivs (8.23)
k=I,11,1IT

1

(see eqns. (6.11) and (8.15) ) the depolarisation rate 7p~! reads as:

5t =2 £ S°+l/dg-¢u(§)- > (E}nz > [UZ5(§)-1ukM(§)]) . (8.24)

50 k=I,11,11T

This result has already been derived in a different manner by A. Chao [15]) (see also
Refs. [7, 12]), and serves as the basis of various schemes for maximising the polarisation

16, 28, 29, 30, 31, 32, 33].
In the same way higher orders of 7p may be obtained by using eqns. (6.26) and (8.15).

Remark:

Note that since
27

dOp - (Ap)* (A_p)” = 0 for p+v#£0

0

(with Ay given by eqn. (4.24)), many terms of the integral (8.21) vanish. Only terms con-
taining even balanced products of Ay’s such as A A_j remain [18].
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9 Summary

We have investigated a number of aspects of spin dynamics in storage rings on the basis
of the T-BMT equation.

The orbital motion was described in terms of the fully coupled 6—dimensional formalism
with the canonical variables x, p., z, p., o, p, = (1/53) 7.

Orbital action—angle variables in linear approximation were introduced via a canonical
transformation taking into account all kinds of coupling (synchro-betatron coupling and cou-
pling of the betatron oscillations by skew quadrupoles and solenoids).

In addition to the wellknown orbital variables =, p., z, p., o, p, of the fully coupled
6—dimensional formalism we defined the canonical spin variables o and 3 which were used to
determine the ri—axis by the method of forced solution.

In order to describe spin motion, various coordinate systems were introduced, characterised
by the triad (€, €., €5), and the dreibeins (7ig, i, f) (riy, 79, 7) and (71, N2, 7).

With respect to the dreibein (7%1, 7%2, i7) we were then able to define action—angle variables
of spin motion on an arbitrary particle path characterised by the orbital variables Ji, ®; and
to calculate the spin tune as a function of J.

The dreibein (71, 7iz, 71) is a single valued function of the orbital coordinates (®y, Ji, s).

Then we presented a way to derive the general formula of the characteristic spin depolar-
isation time 7p for the diffusion of spins resulting from stochastic orbit motion and in linear
approximation obtained the usual result.

The equations presented in this report can serve to develop an 8-dimensional tracking
program for the combined spin—orbit system, taking into account nonlinear spin motion.

Finally we remark that, starting from the variables z, p,, z, p., 0, p, «, § and using
analytical techniques as described in Refs. [9, 10, 34] one can also develop an 8-dimensional
dispersion formalism.

In this paper we have neglected the Stern—Gerlach forces [1]. We shall incorporate these
in another report.

Acknowledgements
We wish to thank G. Hoffstatter and M. Vogt for useful discussions on the numerical
evaluation of spin tune in the program SPRINT.

Appendix A: The Hamiltonian for Spin Motion

A.1 The Spin Hamiltonian

Spin motion can be described in terms of a spin Hamiltonian, namely:

d OHopin
Eoz = 4+ o5 (A.la)
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S o= o (A.1b)

where H,i, reads as [1]

Hopin(, 35 1) = ¢1—i(a2—|—ﬁ2)-[ﬂ1-a—l—ﬂz-ﬁ]—|— [1—%(@24—52)] Q3. (A.2)

Then:
d_ . aHspin
ar @ 9
—f 1
= + 1 et Qe Bl L= (0 +67) - Q2 = 5 Q55 (A3a)
4¢1— — (a2 + 3?)
4
. aHspin
dt b= - Jdo
o

- _ 1_ .[QI.Q+Q2.Q]_\/1—i(a2+ﬁ2)-ﬂl—l—oz-ﬂg.(A.gb)
4\/1—Z(Oé2—|—ﬂ2)

The components &, &, &5 of the spin vector E

£ = G a+& a+E & (A4)
are given by:
& = a-¢1—i(a2—l—ﬁ2); (A.ba)
b= Bl e (A3h)
1
o= 1- 3 (042 + 52) ; (A.5c)
— Hspin = Ql : 51 + QQ : 52 + QS : 53 . (A6)
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A.2 The Equations of Spin Motion

In terms of the components & we have:

d d d
E&)’ = —a'ga—ﬁ'gﬁ

1 2 2) . _laz 2) .
= —Ovl—g(a +5)92+5¢1 4( +03%) -

= O &H—09 &

Q- 8= a

s | T

(Oz2+52)‘91— [1_2(02—'_@)2)] D+ &-Qs
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= —[1—%(a2+52)]‘91+§1‘93

= Q-6 -0 & (A.7c)

d &1 0 &1
= di &2 = QG [ x| & |- (A.8)
& Qs {3
The last formula is identical with the T-BMT equation (2.7a) or (2.10).

—

Appendix B: The Periodic Spin Frame (7iy, 7, () along the
Closed Orbit

In order to investigate spin motion along the closed orbit, we write eqn. (4.2b) ? in the

form: J
- bols) = Q(5) - &ols) (B.1)
where we have set
5 505
fo = §ou (B.2a)
502
and
0 —0© QO
Q9= Q@ o -0 | . (B.2b)
-0 Q) 0

The transfer matrix M,,;.)(s,s0) for the spin motion defined by

— —

o(s) = M(spin)(87 50) + $o(s0)
satisfies the relationships:

MT (87 SO) . M(spin)(87 SO) = l 7 (Bga)

L2 (spin)

det [M(spin)(‘s?‘so)] =1 (ng)

3This equation can be solved by methods as described in Appendix C, using Q) instead of €.
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since (using eqn. (B.1))

d
% M(spin)(87 SO) — Q(O)(S) . M(Spin)(87 SO) 7

[—

M(spin)(s(h 80) =
and therefore (with [Q©]7 = —Q(©))
% {M(spin)(87 80) ) M(Spin)(87 SO)} = {Q (S) ) M(spin)(87 SO)} ) M(spin)(87 80)
ML (5,50) - [2O(8) - M (5, 50)

= _M(spin)(87 SO)T ) Q(O)(S) ) M(spin)(87 SO)
A Mo (5,50) - Q0 () - Mgy (5, 50)

(spin

det M(spin)(s,50) = det Mgpin)(s0,50) =1,
i.e. M (;pin)(5,50) is an orthogonal matrix with determinant 1.

Let us now consider the eigenvalue problem for the revolution matrix M ;. (so + L, 5o)
with the eigenvalues o, and eigenvectors 7, (so):

M(spm)(So + L, 50) Tuls0) = - 7u(s0) 5 (B.4)

(w=1, 2, 3)

— —
Ty €s
— ~ — —
r, = Ty €x .
— —
Ty €.

Because of (B.3a,b) we can write [35]:

using the notation

ap = 1;
a; = €'’ 2T+ Qpin ; (B.5)
as —1 27+ Qspin
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(Qspin= real number)

and
m1(s0) = To(so) ; ) (B.6a)
7 (s0) = nig(so) +1- @(So) ; (B.6b)
73(s0) = 1o(so) — - lo(so) ; (B.6¢)

(1ig, Mo, l_g) =real vectors) .
If we require that

Pem o= 1 (B.7a)
Fr o= =2 (B.7h)

(normalising conditions)

we find, using eqn. (B.3a) [35]:
fio(so) = lito(so)| = llo(so)| = 1 (B.3a)

Po(s0) L molse) L lo(so) - (B.8b)

Thus the vectors 7ig(sg), Mo(se) and l_g)(so) form an orthogonal system of unit vectors.
Choosing the direction of 7ig(sg) such that

o(s0) = mo(soe) X lo(so) (B.8c)

these vectors form a righthanded coordinate system.

In this way we have found a coordinate frame for the position s = sq.

An orthogonal system of unit vectors at an arbitrary position s can be defined by applying
the transfer matrix M(Spm)(s, s0) to the vectors 7g(so), mo(sg) and l_g)(so):

fio(s) = Mgin)(S:50) To(s0) ; (B.9a)
mo(s) = M(sin)(s,50) Mmo(s0) ; (B.9b)
lo(s) = Mgpin(s,50) lols0) . (B.9¢)
Because of eqn. (B.3a,b) the orthogonality relations remain unchanged:
o(s) = 1io(s) x lo(s) (B.10a)
mo(s) L lo(s) (B.10b)
() = fito(s)| = [o(s) = 1. (B.10c)

The coordinate frame defined by 7ig(s), mo(s) and lo( ) is not yet appropriate for a description
of the spin motion, because it does not transform into itself after one revolution of the particles:

mo(so + L) + il—EJ(SO +L) = M(spm)(so + L, s0) {77760(50) + iﬁ)(so)}
_ 27 Qupin [mo(so) + i%(So)}
# mo(so) + il—EJ(SO)
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(if Qspin # integer).

i.e. although 7ig(s) is periodic by eqns. (B.5), (B.6a), mig(s) and l_g)(s) are not periodic.

But by introducing a phase function t(s) and using another orthogonal matrix D(s):

N(s) = co8[epin(s)]  sin[tspin(s)]
D(s) = ( — sin[Yspin(8)]  cos[spin(s)] ) (B.11)

with

D'(s)-D(s) = 1; (B.12a)

det [D(s)] = 1 (B.12D)

we can construct a periodic orthogonal system of unit vectors from rig(s), mo(s) and Z_EJ(S).
Namely, if we put [36]:
(790) = (749
(s) lo(s)

—  (s) +ills) = e Pl g (s) 4 ilo(s)] (B.13)

no(s) = m(s) xI(s); (B.14a)
m(s) L (s): (B.14b)
[o(s)] = [m(s)| = li{s)] = 1. (B.14¢)

Since

(s + L) +i- s+ L) = ¢ 0 Vopin(s+ L) ol + L)+ - lofs + L)
e_i.;bspm(su),ez'-%Qspm.[~ : )+z‘-fo( )
= e a5 D)2 Qi 90 L) 44 0(s) )
= Wain(s + L) = b)) 27 Qunin () 40 1))

it follows, that the condition of periodicity for 1y, m and [
(no, n, Z)S:SO+L = (no, m, Z)S:SO (B.15)
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can indeed be fulfilled if the phase function ¢ (s) satisfies the following relationship:
77Z)spin(3 —I' L) - 77Z)spin(5) =2m - Qspin 3 (B16EL)

(Qspin, = spin tune).
For instance we can choose:
S

77Z)sym'n(5) = 2m - Qspin : z . (B16b)
In this frame, spins on the closed orbit precess uniformly with respect to m and L.

Note that the spin tune (), can be separated into an arbitrary integer part x and a

fractional part Q) :

Qspin = K-+ Qspin ;
0 < Qspm <1.

—

Taking the derivatives of m(s) and [(s) with respect to s, and taking into account eqns.
(B.13), (B.9), and (4.2b) we get

P - €, [-é,
7 m - €y = Q(O)(S) m-é | +Y'(s)- | & | ; (B.17a)
S\ - €, [z
p [ ¢, [ ¢, - &,
o e, | = Qs | e [ —w'(s)- | m-& (B.17b)
S — - — —
and 7ip(s) satisfies (see (B.9a))
d Mg * €5 g * €5
5 ﬁO ) gz ﬁO ) gz

Finally, the vectors
fi(s) = no(s) = M(gin(s,s0) Ti(so) ;
Fa(s) = rio(s) +i-lo(s) = Myin(s,50) Fa(s0) ;
Pa(s) = mo(s) —i-lo(s) = Msn)(s,50) F(s0) (
are eigenvectors of the revolution matrix M, with the same eigenvalues as in (B.5):
M gpiny(s + L,s) Tu(s) = au-7u(s) . (B.19)
Thus, the eigenvalues «, and the quantity Qs,:, defined by eqn. (B.5) are independent of the

chosen initial position sg.
Finally, we remark that (7o, mo, l_g)) are all T-BMT solutions whereas (m, f) in general are

not T-BMT solutions.
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Appendix C: Solution of the Equations of Spin Motion

C.1 Thin Lens Approximation

1) Using the variables o and /3.

The solution of the canonical spin equation (5.14a, b) can approximated by the form:

a(s+As) = afs)+ As- aggm;
Bls+ As) = ﬁ(s)—As-mgizm.

Expanding the spin Hamiltonian (5.16) into a power series of a and 3, we obtain various
orders of approximation. The computer program “SLIM” [15] works with the linear order of
spin motion. In general this solution is not symplectic, i.e. the spin transformation is not
orthogonal.

2) Using the variables &,, &, and &.
For point-like fields, the matrix Q(S) appearing in (5.11) is given by

Q(s) = P(so)-8(s— so) - (C.1)
Writing P(so) in the form:
0 —-PFA B
B(So) = P3 0 —P1 (02)
-P, P 0

the solution of eqns. (5.11), (B.1) and (B.2) leads to the transfer matrix:
Mspin(so + 07 So — 0) =

]512(1 —cos P) + cos P ]51]52(1 —cos P) — Pysin P ]51]53(1 — oS P)—I—]% sin P
Py Pi(1 —cos P)+ Pssin P Pj}(1 — cos P) + cos P Py Ps(1 — cos P) — Pysin P
PsPi(1 —cos P) — Pysin P P3Py(1 — cos P) 4+ Pysin P P§(1 — cos P) + cos P

(C.3)

with

. 1

P, = R P,y (vr=1,2,3); (C.4a)

P = \JPE+ P} +P7. (C.4b)
If &, &m, & are known, the canonical variables a and (3 can be obtained from eqn. (5.13).
In this way, eqn. (B.3) represents a symplectic integration method of the canonical spin
equations (5.14a, b) on the basis of a thin lens approximation, i.e. the spin transformation is
orthogonal.
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C.2 Integration by Lie Series

A system of differential equations of the form:

d
Las) = Dilen e o)
(1=1,2,--n)
with
d
—v;, = 0,
0s
(no explicit s dependence) whereby the terms 9; (21, zq, - - -z,,) represent analytical functions,
can be solved by Lie series [37]:
z(s) = ebToIPz
with
d .. 0 .. 0

D — 191 (21, 22, . én)

+ 192 (217 227 o Zn)

0%
and
zi(so) = 2 .
Applying this result to the canonical spin equations (5.14a, b):

21 = a; oz = [

0
191 — —I_%Hsmn(avﬁvxvpmvazvo-vpcf);

0
vy = " Ja Hopinla, By, pey 2,2, 0, Po)
o

associated with the equations for orbital motion:

3 = Ty 24 = Pz
Z3 = T Z4 = P
Zs = 27 2 = Pz
Zr = 0, Z8 = Po;

0
193 - —I_a—pror’b(xvpl’vzvavo-va);

0
vy = _a_xHOrb(vamva“U’pg);
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we obtain:

with

and

Us

Us

U7

0
—I_a—pz Horb(J?,pvavavo-va) )

0
_a Horb(xapxazapzvo-vpg) )

0
—|—£ Horb($7px727p2707p0) )

0
_a_ ,Horb(xvvazvpmo-vpg)
ag

w(s) = el D
puls) = el Dy

z(s) = (lo=s0) D

pals) = elmPp

o(s) = =) Ps .

polo) = ebmD
:g—/} Hspm: g—& - lg—& HM] 273
:aa_p; Horbz % - l% Horb] a(j.a l,
:aa_p; Hors % - l% Horb] a‘%
_8%%”6] 5~ [g—& Horb] a%



o= x(SO ) pr = px(SO);
z = Z(SO) ) pAz = pz(SO) )
o6 = o0(s0); Po = polso) .- (C.7)
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