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Abstract. We complement the concept of the invariant spin field (ISF) in storage rings by defining
the invariant polarisation–tensor field (ITF) for spin-1 particles and we suggest how to calculate
it by stroboscopic averaging or directly from the invariant spin field. The ITF the ISF are used to
construct equilibrium spin density–matrix fields, and thereby offer a clean framework for describing
equilibrium ensembles of spin-1 particles such as deuterons in storage rings.
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INTRODUCTION

Spin motion for particles moving in electric and magnetic fields is governed by the
T–BMT equation [1]. This describes the rate of precession of the rest–frame, pure–
state, spin expectation value �S (“the spin”) of a particle. In circular particle accelerators
and storage rings we take the distance around the ring as the independent variable [2].
Then, at the position s along the design orbit and the point u in the 6–dimensional phase
space, we write the T–BMT equation as d�S�ds � �Ω�u;s���S where the vector �Ω�u;s�
describing the precession axis and the rate of precession, depends on the electric and
magnetic fields in the laboratory, and on the reference energy of the ring. The motion of
a particle is governed by the Lorentz force [1]. Thus both the motion of the particle and
the motion of the spin expectation value can be treated classically. Nevertheless, we still
need to look at the quantum mechanics. For this we exploit the spin density matrix.

The spin state of an ensemble of spin-1/2 fermions is completely specified by means
of the 2� 2 density matrix ρ � 1

2�I ��P ��σ� where �P is the vector polarisation, I is the
unit matrix, the

σ1 �

�
0 �i
i 0

�
� σ2 �

�
1 0
0 �1

�
� σ3 �

�
0 1
1 0

�
�

are the Pauli spin matrices [3] and �σ is the corresponding matrix-valued 3-vector. The
vector polarisation is ��σ� � �P � Tr �ρ�σ� where �� denotes a mixed-state expectation
value.
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Spin-1 particles such as deuterons need a 3�3 density matrix and we write it as [3]
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�

where the three matrices �
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representing the normalised spin operators ŝi �i � 1�2�3�, are the analogues for spin-
1 of the Pauli matrices and where �� is the corresponding matrix–valued 3–vector. The
rank–2, 3� 3, real, symmetric, traceless, Cartesian tensor T has just five independent
components. With the three components of the vector polarisation there is a total of
eight parameters for defining ρ as required for a Hermitian matrix with a definite trace

(unity). The degree of tensor polarisation�	



∑i� j T 2
i j �

�
Tr �T 2� is at most unity [3].

In accelerator physics, we define a density matrix for each point u and s. Then at
each u and s we write the density matrix for spin-1/2 fermions in terms of the local
vector polarisation �Ploc�u;s�. For spin-1 particles we need the local polarisation tensor
Tloc�u;s� too. If the vector polarisation for spin-1/2 fermions is periodic from turn to turn,
the density matrix can be described in terms of the vector n̂ of the Invariant Spin Field
(ISF) and the value of the equilibrium vector polarisation. Is there an analogous object
for the polarisation tensor? This paper answers this in the affirmative by describing the
new concepts of the Invariant Tensor Field (ITF) and the equilibrium tensor polarisation.
Together with the ISF and the equilibrium vector polarisation they provide a complete
description of the equilibrium spin state of a beam of spin-1 particles such as deuterons
in a storage ring.

This paper provides just a brief summary. More information can be found in [4].

THE INVARIANT SPIN AND TENSOR FIELDS

Since the T–BMT equation is linear in �S and since the particles at �u�s� all see the
same �Ω�u;s�, �Ploc�u�s�;s� obeys the T–BMT equation along trajectories. Furthermore,
Ploc 	 
�Ploc
 is constant along a trajectory. For a storage ring at fixed energy, �Ω is 1–turn
periodic in s at a fixed position in phase space u so that �Ω�u;s� � �Ω�u;s�C� where C
is the circumference. This opens the possibility that the polarisation is the same from
turn to turn in the sense that �Ploc�u;s�C� � �Ploc�u;s�. We denote such a �Ploc by �Peq
since, if the phase space density has the same periodicity, the polarisation of the whole
beam is 1-turn periodic, i.e. in equilibrium. Since �Peq also obeys the T–BMT equation
we then have �Peq�M�u;s�C�s�;s�C� � �Peq�M�u;s�C�s�;s� � R�u;s�C�s��Peq�u;s�.
where M�u;s�C�s� is the new position in phase space after one turn starting at u and s,
R�u;s�C�s� is the corresponding 3�3 spin transfer matrix representing the solution to
the T–BMT equation for one turn from s to s�C and where here, �Peq is represented by



a column matrix of its components.
These relations motivate the introduction of a vector field n̂�u;s� of unit length,

obeying similar constraints, namely n̂�M�u;s �C�s�;s �C� � n̂�M�u;s �C�s�;s� �
R�u;s�C�s�n̂�u;s� where n̂ is represented by a column matrix of its components. Since
the vector field n̂�u;s� is invariant from turn to turn and independent of the real state of
a beam it is called the invariant spin field (ISF) [5, 6]. We define n̂0�s�	 n̂�0;s�.

We assume that u can be parametrised in terms of three pairs of action–angle variables
�Ji�φi� i � 1�2�3� which we abbreviate by �J�φ�. The actions J are constants of motion.
Thus the orbital phase space is partitioned into disjoint tori characterised by unique sets
J. We also assume that the orbital motion is nonresonant so that, in time, a trajectory
could cover its torus. Then from the definition of �Peq, Peq 	 
�Peq
 must be the same at all
points φ on a torus but can depend on the J. Away from spin-orbit resonances and apart
from the sign, n̂�J�φ ;s� is a unique function of φ and s, 2π–periodic in φ [5]. So we
may write �Peq�J�φ ;s� � Peq�J� n̂�J�φ ;s�, bearing in mind that 
n̂
� 1. If we also require
that the particles on a torus are distributed uniformly in φ , we find that the polarisation
for the torus, defined as the average Peq�J���2π�3 � 2π

0
� 2π

0
� 2π

0 n̂�J�φ ;s�dφ , is invariant
from turn to turn, i.e., in equilibrium. The key aspects of the ISF are summarised in [5].
The existence of a 1–turn periodic �Peq and the corresponding ISF implies the existence
of an equilibrium spin density–matrix field (ESDeMF), ρ eq, obeying the periodicity
condition ρeq�u;s�C� � ρeq�u;s� and which we can write in obvious notation as:

ρeq
Peq�J�

�J�φ ;s� �
1
2
�I �Peq�J� n̂�J�φ ;s� ��σ� �

We now extend the concept of invariance to the polarisation tensor by defining
the Invariant Tensor Field T I by the periodicity condition T I�M�u;s�C�s�;s�C� �
T I�M�u;s�C�s�;s�� R�u;s�C�s� T I�u;s�RT�u;s�C�s� where we have used the trans-
formation rule [7] of a Cartesian tensor. We normalise so that

�
Tr ��T I�2� � 1.

Then we can construct an ESDeMF on a torus J for spin-1 particles too:

ρeq
�Peq��eq��J�
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1
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�
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3
2
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�

3
2
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�
�

where �eq�J� is the degree of equilibrium tensor polarisation on the torus. The ISF and
ITF provide “scaffolding” on which to “hang” equilibrium spin distributions for spin-
1 particles and the ESDeMF then depends on just two scalar parameters, Peq�J� and
�eq�J�.

The most general, model–independent way, to construct the ISF is by so–called
stroboscopic averaging [8, 9, 10, 11]. This just requires a spin–orbit tracking code such
as SPRINT [10] or EpsSLICK [12] which delivers 3� 3 spin transport matrices along
particle trajectories. As explained in [8, 9, 10, 11], with stroboscopic averaging the ISF,
n̂�u0;s0�, at the starting positions u0 and s � s0 can be found in terms of multi–turn spin
transfer matrices by taking the average

�fN�u0;s0�	 1
N �1

N

∑
k�0

R�u�s0� kC�;s0�s0� kC��n̂0�s0� �



for very large N and normalising this to unity: n̂�u0;s0� � �fN�u0;s0��
�fN�u0;s0�
. In this
expression we have used notation similar to that in [8, eq.22] and chosen the “seed” spin
field to be n̂0, although more general choices could be used [11].

The ITF can also be found by stroboscopic averaging:

gN�u0;s0�	 1
N �1

N

∑
k�0

R�u�s0� kC�;s0�s0� kC� T �s0� RT�u�s0� kC�;s0�s0� kC�

where N is very large and T �s0� is a fixed 3� 3 symmetric matrix with zero trace. The

ITF is obtained as T I�u0;s0�	 gN�



Tr�g2
N�.

Given the above periodicity condition defining the ITF it is tempting to try to express
the ITF in terms of the ISF. An ansatz in terms of n̂ fulfilling this condition is:

T I ��
�

3
2

�
n̂n̂T� 1

3
I


�

Moreover, using the relation Ti j �
1
2



3
2

��ŝiŝ j � ŝ j ŝi�� 4
3δi j
�

[3], we find that this form

for T I is precisely that required if ρeq�J�φ ;s� is to be able to represent an ensemble of
spins in the eigenstate of n̂ ��� whose eigenvalue is +1, -1 or 0. This is also the form
obtained numerically by stroboscopic averaging. If this ansatz is unique the equilibrium
spin-1 state on a torus J is then completely defined just by the vector field n̂�J�φ ;s� and
the scalars Peq�J� and �eq�J�:

ρeq �

�
I
3
�

1
2

Peq n̂ �����eq ∑
i� j
�n̂in̂ j � 1

3
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�
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For example, for the eigenvalues �1 of n̂ ��� we have Peq ��1 and �eq � 1�2. If the
eigenvalue is 0, Peq � 0 and �eq ��1.
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