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Abstra
t

This is an addendum to the paper \Some models of spin 
oheren
e and de
oheren
e in

storage rings" by one of the authors [1℄ in whi
h spin di�usion in simple ele
tron storage

rings is studied. In parti
ular, we illustrate in a 
ompa
t way, a key impli
ation in the

Epilogue of [1℄, namely that the exa
t formalism of [1℄ delivers a rate of depolarisation

whi
h 
an di�er from that obtained by the 
onventional treatments of spin di�usion whi
h

rely on the use of the derivative �n̂=�� [2, 3, 4℄. As a vehi
le we 
onsider a ring with a

Siberian Snake and ele
tron polarisation in the plane of the ring (Ma
hine II in [1℄ ). For

this simple setup with its one-dimensional spin motion, we avoid having to deal dire
tly

with the Blo
h equation [5, 6℄ for the polarisation density.

Our treatment, whi
h is deliberately pedagogi
al, shows that the use of �n̂=�� provides

a very good approximation to the rate of spin depolarisation in the model 
onsidered. But

it then shows that the exa
t rate of depolarisation 
an be obtained by repla
ing �n̂=�� by

another derivative as suggested in the Epilogue of [1℄, while giving a heuristi
 justi�
ation

for the new derivative.

�
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1 Introdu
tion

1

The paper \Some models of spin 
oheren
e and de
oheren
e in storage rings" by one of the au-

thors [1℄ provides an introdu
tion to the use of spin-polarisation transport equations of Fokker-

Plan
k and Liouville type in ele
tron storage rings. The work goes into great and 
areful detail

and it uses two exa
tly solvable but simple model 
on�gurations 
alled Ma
hine I and Ma
hine

II as vehi
les. These are perfe
tly aligned 
at rings and only the e�e
ts of syn
hrotron radia-

tion and of longitudinal os
illations on ele
tron spins lying in the ma
hine plane are 
onsidered.

Moreover the orbit and spin dynami
s are approximated by smoothed equations of motion with

azimuth-independent parameters given by averages around the ring. Ma
hine II 
ontains a

point{like Siberian Snake in addition [9℄. As is often the 
ase with \toy" models, the exa
t

results for the spin distributions for Ma
hines I and II 
an be expe
ted to deliver useful insights

and expose essential features. This is indeed the 
ase and in this paper we use Ma
hine II to:

� 
over a topi
 mentioned, but not treated in detail in [1℄, namely the 
ontrast between the

exa
t 
al
ulations of the rate of depolarisation in [1℄ and the 
onventional approa
h to

estimating depolarisation due to Derbenev, Kondratenko and Mane (DKM) [2, 3℄.

� in the pro
ess:

{ give, and 
omment on, the form of the derivative �n̂=�� in the DKM formula for

this 
ase,

{ show how to improve the DKM 
al
ulation in a heuristi
ally obvious way, while


on�rming a 
laim in the Epilogue of [1℄ and thereby 
alibrating the DKM approa
h

in this 
ase.

� dis
uss approximations to �n̂=�� and misunderstandings in the literature.

� suggest further avenues of investigation.

For both model ma
hines, polarisation build{up due to the Sokolov{Ternov e�e
t [10, 4℄ is

ignored. In any 
ase the Sokolov{Ternov me
hanism is ine�e
tive in Ma
hine II as explained

in Se
tion 3.2.

In Se
tion 2 we outline the models. In Se
tion 3 we present the exa
t solution for the rate of

depolarisation of Ma
hine II and the rate from the DKM theory. Then, after 
omparing the two

results we show how to modify the DKM 
al
ulation to get agreement with the exa
t solution.

Finally, in Se
tion 4 we make further relevant 
omments and dis
uss other approximations and

their utility. Ma
hine II is the simplest non{trivial exa
tly solvable model that we are aware

of.

1

This paper was �rst prepared in 2000 following suggestions at that time that a Siberian Snake would help to

preserve the polarisation in a putative high energy ele
tron ring [7℄. It was then put aside when the proponents

sensibly dropped the idea. Now, after re
ent work [8℄, it is appropriate to make an updated version of this paper

available.
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2 The models

2.1 Ma
hine I

A

ording to (2.5) in [1℄, for Ma
hine I the Langevin equations of motion for the orbit and the

spin-expe
tation value (the \spin") are

0

�

�

0

(s)

�

0

(s)

 

0

(s)

1

A

=

0

�

0 �� 0




2

s

=� �2 �
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=L 0
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1
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�
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�

�(s)
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1
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p
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0

�

0

�(s)

0

1

A

; (2.1)

where

� s denotes the distan
e around the ring (the \azimuth"),

� L is the length of the ring,

� � is the distan
e to the 
entre of the bun
h,

� � is the fra
tional energy deviation,

�  (s) is the angular position of the spin in the ma
hine plane w.r.t. a horizontal dire
tion

pre
essing a

ording to the T{BMT equation [11℄ at the rate 2�f(g � 2)=2g


0

=L on the

design orbit, where (g � 2)=2 is the gyromagneti
 anomaly and where 


0

= E

0

=(m

0




0

2

)

is the Lorentz fa
tor at the design orbit energy E

0

, whereby 


0

is the va
uum velo
ity of

light and m

0

is the rest mass of the ele
tron,

� �

s

is the 1{turn syn
hrotron damping de
rement,

� � is the 
ompa
tion fa
tor,

� 


s

= 2� �Q

s

=L where Q

s

is the syn
hrotron tune for undamped motion.

� ~� = f(g � 2)=2g


0

,

� ! is s-independent and is the 1{turn averaged sto
hasti
 ki
k strength whi
h is expressed

in terms of an s-independent 
urvature

�

K

x

! =

55

24

p

3

r

e

�

�

e




5

0

�

K

3

x

:=

55

24

p

3

r

e

�

�

e




5

0

1

L

Z

L

0

ds jK

x

j

3

;

where r

e

in the 
lassi
al ele
tron radius,

�

�

e

is the redu
ed Compton wavelength of the

ele
tron and where

�

K

3

x

is determined by the lo
al 
urvature K

x

(s) of the design orbit in

the horizontal plane of the original ring via the 1-turn average in the se
ond equality,

2

� � simulates the noise ki
ks due to the syn
hrotron radiation, via a Gaussian white noise

pro
ess, i.e. with sto
hasti
 averages < �(s

1

) � �(s

2

) >= Æ(s

1

� s

2

); < �(s) >= 0, where

Æ denotes the Dira
 delta fun
tion.

2

In [1℄ ! was written in Gaussian units and in terms of a produ
t of fa
tors C

1

and C

2

. Here we work in SI

units and express the produ
t in terms of more 
onvenient fa
tors.
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More details 
an be found in [1℄ but the 
ontent of (2.1) is 
lear: the motion of � and � is that

of a damped harmoni
 os
illator subje
t to the noise

p

! � in the variable �. Moreover spin

is a \passenger", and w.r.t. the rotating referen
e dire
tion it pre
esses at the rate (2�~�=L)�.

Then the noise a
ting on � feeds through onto the spin to 
ause the spin di�usion whi
h we

wish to study. Equation (2.1) is the 
leanest way to pa
kage that message.

In terms of the parameters

a � �� ; b � 


2

s

=� = (4�

2

Q

2

s

)=(�L

2

) ; 
 � �2�

s

=L ; (2.2)

the asymptoti
 (s! +1) r.m.s widths of the distributions of � and � are given by

�

2

�

�

!a

2b


> 0 ; �

2

�

� �

!

2


=

!L

4�

s

= �

b

a

�

2

�

> 0 : (2.3)

We also need d � 2�~�=L. For Ma
hine I the 1-turn periodi
 solution to the T-BMT equation

on the design orbit, n̂

0

, is perpendi
ular to the ma
hine plane and ~� is the design-orbit spin

tune, �

0

, namely the number of spin pre
essions around n̂

0

per turn around the ring for a

parti
le on the design orbit.

For the HERA ele
tron ring [12℄ running at about 27 GeV the values of the parameters are

Q

s

� 6:0 � 10

�2

; �

s

� 3:2 � 10

�3

; � � 6:9 � 10

�4

;

! � 2:0 � 10

�12

m

�1

; L � 6:3 � 10

3

m; d � 6:2 � 10

�2

m

�1

;

and we adopt these parameters to illustrate our arguments. Then

a � �6:9 � 10

�4

; b � 5:2 � 10

�6

m

�2

; ab � �3:6 � 10

�9

m

�2

; 
 � �1:0 � 10

�6

m

�1

;

while

�

2

�

� 1:0 � 10

�6

; �

2

�

� 1:3 � 10

�4

m

2

; (2.4)

For Ma
hine I, the 
orresponding �

2

 

depends on the initial distribution of  and an inter-

esting point there is that the distribution of  rea
hes a stationary form after a few damping

times. Details 
an be found in [1, 13, 14℄. This is in 
ontrast to earlier 
al
ulations whi
h

suggest that the  distribution spreads out with a width proportional to

p

s [15℄.

However, when viewed from the �xed ma
hine 
oordinates the spin distribution is not sta-

tionary. On the 
ontrary it is rotating 
ontinuously in the ma
hine plane at the rate 2��

0

=L

and 
annot be periodi
 if �

0

6= integer. Su
h a distribution 
annot be handled using DKM

methods for reasons to be explained in the Commentary.

2.2 Ma
hine II

For Ma
hine II a single point{like Siberian Snake is in
luded at s = 0. This rotates a spin by

the angle � around the radial dire
tion independently of � and �, so that it is a \Type 2" snake

[16℄. In Ma
hine I, n̂

0

, is perpendi
ular to the ma
hine plane. But for Ma
hine II n̂

0

is in the

horizontal plane and is given by (3.3) in [1℄

3

:

n̂

0

(s) � 
os

�

g

6

(s)

�

ê

1

+ sin

�

g

6

(s)

�

ê

2

; (2.5)

3

For 
larity we omit the subs
ript II used in [1℄.
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where ê

1

and ê

2

are unit ve
tors transverse and parallel to the design orbit respe
tively and

g

6

(s) � d

�

s� L=2� LG(s=L)

�

; (2.6)

where the \stairway" fun
tion G is de�ned by:

G(s=L) � N if N < s=L < (N + 1) ; (2.7)

for whi
h N is an integer. In the range 0 < s < L one has

g

6

(s) = d

�

s� L=2

�

: (2.8)

For Ma
hine II it is this horizontal n̂

0

(s) whi
h is taken as the referen
e dire
tion so that

for Ma
hine II  is the angle between a spin and n̂

0

(s). The 
on
lusions of this paper are the

same for a snake with a longitudinal rotation axis (\Type 1"), provided, for example, in the

real world, by a solenoid. In that 
ase the spin motion on the design orbit is illustrated in

Figure 8 in [16℄. The reader 
an easily make a 
orresponding sket
h for our Type 2 snake.

Owing to the presen
e of the snake, �

0

is not ~� but 1/2 [1, 16℄. Thus the 
ondition spin{orbit

resonan
e o

urs around Q

s

= 1=2. Near resonan
e, spin di�usion e�e
ts 
an be parti
ularly

strong.

4

3 The polarisation evolution for Ma
hine II

3.1 Using exa
t distribution fun
tions

We now look again at the exa
t evaluation of the distribution fun
tions for Pro
ess 3 of Ma
hine

II [1, Se
tion 3.5℄. For this pro
ess the orbital phase-spa
e distribution is in its stationary state

and the spins are initially all parallel to n̂

0

. Then by (3.58) and (3.62) in [1℄, and after transients

have died away in the �rst few damping times the polarisation of the whole beam evolves like

jj

~

P

w

3

tot

(s)jj / exp

�

�

g

14

(s)

2

�

� exp

�

�

s g

15

2

�

(3.1)

where the fun
tion g

14

is 1{turn periodi
 and g

15

, whi
h is positive, is given by

g

15

�

2 d

2

g

11

�

2

�

a b L �

�

2� sinh(
L=2)� 
 sin(�L)

�

; (3.2)

with � �

p

�ab� 


2

=4 and g

11

� 1=f
osh(
L=2) + 
os(�L)g.

Whereas �

0

�

p

�ab = 


s

is proportional to the syn
hrotron tune in the absen
e of damp-

ing, � �

p

�ab� 


2

=4 is the 
orresponding tune in the presen
e of damping. Sin
e 


2

<< �ab,

� � �

0

.

At large times the polarisation vanishes:

jj

~

P

w

3

tot

(+1)jj = 0 : (3.3)

4

The resonan
e 
ondition should be more pre
isely expressed in terms of the amplitude-dependent spin tune

[17, 18℄. But for typi
al ele
tron/positron rings the amplitude-dependent spin tune di�ers only insigni�
antly

from �

0

.
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The depolarisation rate w.r.t. distan
e is:

1

�

spin

�

g

15

2

: (3.4)

For the HERA ele
tron ring parameters listed above one gets

�

spin

� 7:6 � 10

7

m ; (3.5)

whi
h 
orresponds to about 12000 turns, i.e. about 250 millise
onds.

For the HERA parameters, and when transients have died away after about 1000 turns

(s � 6:3 � 10

6

m), the variation of g

14

(s) over a turn 
auses a variation of g

14

(s) + sg

15

in the

exponent of (3.1) of about 15 per
ent. If Q

s

were 
lose to 1/2 so that �L were 
lose to �,

g

15

would, be
ause of its fa
tor g

11

, be
ome very large and �

spin

would be very small. This is

exa
tly what one expe
ts when sitting 
lose to a spin-orbit resonan
e [17℄.

Of 
ourse this model only in
ludes the e�e
ts on spin of smoothed syn
hrotron motion and

radiation in the main body of the ring. No a

ount is taken here of the detailed dependen
e

of spin motion on the orbital variables in a real snake and there is no horizontal or verti
al

betatron motion.

It 
an be seen from [1℄ that the asymptoti
 depolarisation rate is g

15

=2 for any initial

distribution of spins in the ma
hine plane.

For 
omparison with the results of the next se
tion we use the relations �

2

�

= �!=2
 and

�

0

=

p

�ab to obtain

�

�1

spin

=

d

2

�

2

0

�

!

2 
 � L

�

1

f
osh(
L=2) + 
os(�L)g

�

�

2� sinh(
L=2)� 
 sin(�L)

�

: (3.6)

3.2 Using the Derbenev{Kondratenko{Mane approa
h

The 
onventional way to 
al
ulate the rate of depolarisation is to use the spin di�usion term

in the Derbenev{Kondratenko{Mane formula [2, 3℄ for the equilibrium polarisation. In this

approa
h it is assumed that at orbital equilibrium, the 
ombined e�e
t of the depolarisation

and the S{T me
hanism is to 
ause the polarisation at a point in phase spa
e to be aligned along

the ve
tor n̂ of the invariant spin �eld [17, 18℄. This is a spe
ial solution to the T{BMT equation

along the traje
tory (�(s); �(s)) satisfying the periodi
ity 
ondition n̂(�; �; s) = n̂(�; �; s+ L).

In general n̂ is a fun
tion of all six phase-spa
e 
oordinates but in our models only � and � 
ome

into play. In the absen
e of radiation, and spin-orbit equilibrium, the polarisation at a point

in phase spa
e, whi
h we 
all the lo
al polarisation is indeed aligned along n̂ [19℄. Then, sin
e

the 
hara
teristi
 times for the a
tion of syn
hrotron radiation, namely the damping time and

the polarisation and depolarisation times, are very large 
ompared to the 
hara
teristi
 times

for the orbital and spin-pre
ession dynami
s, the above assumption about the dire
tion of the

lo
al polarisation for ele
trons with radiation is reasonable sin
e the orbital and spin dynami
s

still dominate on short time s
ales, at least away from spin-orbit resonan
es. We return to this

in Se
tion 3.4. The DKM approa
h also assumes that the value of the lo
al polarisation and

its rate of 
hange are independent of the position in phase spa
e. These two assumptions are

motivated by re
ognition that the sto
hasti
 photon emission and damping 
ause ele
trons to


ontinually di�use through phase spa
e and thereby, in the end, have e�e
tively inter
hangeable

histories.
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A

ording to the DKM approa
h, with a stable phase-spa
e distribution, the lo
al polari-

sation settles to the equilibrium value

P

dkm

= �

8

5

p

3

H

ds

D

jK(s)j

3

^

b � (n̂�

�n̂

��

)

E

s

H

ds

�

jK(s)j

3

(1�

2

9

(n̂ � ŝ)

2

+

11

18

�

�n̂

��

�

2

)

�

s

(3.7)

where ŝ = dire
tion of the parti
le motion,

^

b = (ŝ �

_

ŝ)=j

_

ŝj, K(s) is the 
urvature (in the

horizontal or verti
al planes) and < >

s

denotes an average over phase spa
e at azimuth s.

The unit ve
tor

^

b is the magneti
 �eld dire
tion if the ele
tri
 �eld vanishes and the motion is

perpendi
ular to the magneti
 �eld. The polarisation of the beam as a whole is

~

P

dkm

(s) = P

dkm

hn̂i

s

(3.8)

In the DKM formula, the depolarisation rate w.r.t. time is

�

�1

dep

=

5

p

3

8

r

e

�

�

e




0




5

1

L

I

ds

*

jK(s)j

3

11

18

�

�n̂

��

�

2

+

s

(3.9)

where, by the very nature of the DKM approa
h, it is assumed that all transients have died

away. By (3.8) this is also the depolarisation rate of the whole beam. For a ring with 
onstant


urvature

�

K

x

(3.9) be
omes

�

�1

dep

=

55

48

p

3

r

e

�

�

e




0




5

�

K

3

x

L

I

ds

*

�

�n̂

��

�

2

+

s

so that the depolarisation rate w.r.t. distan
e is

(


0

�

dep

)

�1

=

!

2L

L

Z

0

ds

*

�

�n̂

��

�

2

+

s

: (3.10)

To evaluate this we need to know n̂ at ea
h azimuth and at ea
h point in phase spa
e. From

(B.1) in Appendix B in [1℄, in the ar
 the T{BMT equation reads as

�n̂

�s

= �a �

�n̂

��

� b �

�n̂

��

+ d(1 + �)ê

3

� n̂ : (3.11)

This is in fa
t just the partial di�erential form of the T{BMT equation

�n̂

�s

+

d�

ds

�n̂

��

+

d�

ds

�n̂

��

= d(1 + �)ê

3

� n̂ (3.12)

for whi
h the derivatives d�=ds and d�=ds have been obtained from (2.1) by swit
hing o� the

radiation.

By 
hoosing the ansatz

5

n̂ � 
os(f)ê

1

+ sin(f)ê

2

(3.13)

5

For 
larity we still omit the subs
ript II used in [1℄.
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(3.11) be
omes

�f

�s

= �a �

�f

��

� b �

�f

��

+ d � + d : (3.14)

Then by taking the snake into a

ount and enfor
ing 1{turn periodi
ity we obtain

f(�; �; s) = g

6

(s) + �g

19

(s) + �g

20

(s) ; (3.15)

with

g

19

(s) =

d b

�

2

0

1

1 + 
os(�

0

L)

�


os

�

�

0

[s� L� LG(s=L)℄

�

+
os

�

�

0

[s� LG(s=L)℄

�

� 
os(�

0

L)� 1

�

;

g

20

(s) =

d

�

0

1

1 + 
os(�

0

L)

�

sin

�

�

0

[s� L� LG(s=L)℄

�

+ sin

�

�

0

[s� LG(s=L)℄

��

(3.16)

where both are independent of � and �.

The resulting n̂ is a solution of the T{BMT equation along the traje
tory (�(s); �(s)) and

like n̂

0

it lies in the ma
hine plane. As required, it is 1{turn periodi
 in s for all � and � and

redu
es to n̂

0

at � = 0; � = 0. If n̂ had a 
omponent perpendi
ular to the ma
hine plane it

would, at simplest, be 2{turn periodi
.

One also sees that a singularity in n̂ o

urs if the fra
tional part of the orbital tune Q

s

=

(�

0

� L)=(2�) equals 1=2, i.e. if one is at a spin-orbit resonan
e de�ned in terms of �

0

(see

Footnote 3). In that 
ase n̂(�; �; s) is not unique and a di�erent formulation is needed.

Obviously, (�n̂=��)

2

= g

2

20

whi
h is independent of � and �. Then to obtain the rate of

depolarisation within the DKM framework we just need to evaluate

(


0

�

dep

)

�1

=

!

2L

L

Z

0

g

2

20

(s

0

) ds

0

: (3.17)

In the range 0 < s < L we have

g

20

(s) =

d

�

0

1

1 + 
os(�

0

L)

�

sin

�

�

0

(s� L)

�

+ sin(�

0

s)

�

(3.18)

so that we �nd

(


0

�

dep

)

�1

=

d

2

�

0

2

�

!

2 �

0

L

�

1

f1 + 
os(�

0

L)g

�

�

�

0

L� sin(�

0

L)

�

: (3.19)

This s
ales like 


7

0

at �xed �

0

. Thus the depolarisation due to noisy damped syn
hrotron

motion be
omes very strong at high energy.

For Ma
hine II, the ve
tor n̂ is in the ma
hine plane so that

^

b � n̂ is zero and the

S{T me
hanism is inoperative [4℄. However, in this 
ase the ve
tor �n̂=�� a
quires a verti
al


omponent. This leads to the phenomenon of kineti
 polarisation embodied in the term linear

in �n̂=�� in the numerator in (3.7) [20, 16℄. We will not pursue that here. The formalisms

in [2, 3℄ leading to (3.7) and (3.9) are semi
lassi
al and the 
on
ept of depolarisation does

not immediately appear in those papers, Nevertheless, the expression for �

�1

dep

in (3.9) 
an be

obtained from 
lassi
al notions as in [21, 22℄. This fa
t will be useful in later dis
ussions.
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3.3 Comparison

Sin
e 
 L � �6:3 � 10

�3

, and � � �

0

it is immediately 
lear that the result for (


0

�

dep

)

�1

in

(3.19) is very 
lose to �

�1

spin

in (3.6) and in fa
t the relative di�eren
e between the two rates is

� 4 � 10

�6

.

Thus the DKM estimate, that is used in all analyti
al 
al
ulations of the depolarisation rate,

is very a

urate and perfe
tly adequate for Ma
hine II with the parameters used here. In fa
t

it is expe
ted to be very a

urate in general. But it is not exa
t. This is easy to understand:

the DKM result is based on the impressive insight that the equilibrium polarisation should be

parallel to n̂ at ea
h point in phase spa
e but as we will see in the next se
tion the polarisation

is not exa
tly parallel to n̂.

If we set Q

s


lose to 1/2 so that we are 
lose to spin orbit resonan
e

6

the DKM estimate

deviates signi�
antly from the exa
t result. For example for Q

s

= 0:4998 the relative di�er-

en
e is about 65%. We expe
t this to be the 
ase in general for realisti
 rings too. But the

depolarisation rate would then be so large that the results would be of no pra
ti
al interest.

3.4 A modi�ed DKM 
al
ulation

Given the (admittedly small) di�eren
es between the two values for the depolarisation rate we

are motivated to explain them by exploiting our exa
t expressions in [1℄ for the asymptoti


spin distributions and thereby examine the assumptions in Se
tion 3.2 underlying the DKM

approa
h.

Thus, as shown by (2.120) in [1℄, the unit ve
tor

~

P

w

dir

(�; �; s) des
ribing the polarisation

dire
tion at ea
h point in phase spa
e does not(!) obey the T{BMT equation. In parti
u-

lar, damping and di�usion e�e
ts must be in
luded. Then at orbital equilibrium and after

transforming (3.33) in [1℄ into the ma
hine frame we �nd

�

~

P

w

dir

�s

= �a �

�

~

P

w

dir

��

� b �

�

~

P

w

dir

��

+

~




II

�

~

P

w

dir

+ 
 �

�

~

P

w

dir

��

: (3.20)

It was shown in [1℄ that after transients have died away in the �rst few damping times,

~

P

w

dir

(�; �; s) be
omes 1{turn periodi
 is s although the lo
al polarisation itself then de
reases

smoothly to zero. From now on we will denote the periodi


~

P

w

dir

(�; �; s) by the unit ve
-

tor p̂(�; �; s) and we will now show how to obtain it in a way paralleling the 
onstru
tion of

n̂(�; �; s). A

ording to (3.20), in the ar
 p̂ ful�lls

�p̂

�s

= �a �

�p̂

��

� b �

�p̂

��

+ 
 �

�p̂

��

+ d(1 + �)ê

3

� p̂ : (3.21)

Then, writing

p̂ � 
os(

~

f)ê

1

+ sin(

~

f)ê

2

: (3.22)

we have, in 
ontrast to (3.14),

�

~

f

�s

= �a �

�

~

f

��

� b �

�

~

f

��

+ 
 �

�

~

f

��

+ d � + d : (3.23)

6

Of 
ourse one never tries to run a storage ring in that way | the r.f. 
avity voltage would be enormous

and the smoothed equations of motion used in the model would no longer be reasonable.
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So there is an extra term depending on the damping rate. Taking into a

ount the a
tion of

the snake, the 1{turn periodi
 solution for

~

f is

~

f(�; �; s) = g

6

(s) + �~g

19

(s) + �~g

20

(s) (3.24)

where in the range 0 < s < L

~g

19

(s) = �

d

2� a

�

i g

1

(s) g

11

exp(�
 L=2) + i g

1

(s� L) g

11

exp(
 L=2)� 2 �

�

; (3.25)

~g

20

(s) = �

d

2 �

�

i g

2

(s) g

11

exp(�
 L=2) + i g

2

(s� L) g

11

exp(
 L=2)

�

: (3.26)

with

g

1

(s) = i exp(
 s=2) [
 sin(� s)� 2 � 
os(� s)℄ ;

g

2

(s) = 2i sin(� s) exp(
 s=2) ; (3.27)

so that (3.22) and (3.24) are equivalent to (3.72) in [1℄. Thus p̂(�; �; s) 6= n̂(�; �; s) owing to

the dependen
e of p̂ on 
 but for 
! 0 we see that ~g

19

(s)! g

19

(s), ~g

20

(s)! g

20

(s) and p̂! n̂

as one would expe
t. Moreover, the expression for �

�1

spin

in (3.6) then redu
es to the expression

for (


0

�

dep

)

�1

in (3.16). The fun
tion ~g

20

(s) 
an be written in the form

~g

20

(s) =

d

�

g

11

�

sin(� s) exp(
 (s� L)=2) + sin(� (s� L)) exp(
 s=2)

�

(3.28)

and apart from the exponential fa
tors 
ontaining 
, it is reminis
ent of g

20

in (3.18).

We now turn to the lo
al polarisation jj

~

P

w

3

lo


(�; �; s)jj. In the DKM pi
ture it is assumed

that at orbital equilibrium jj

~

P

w

3

lo


(�; �; s)jj and its rate of 
hange are independent of (�; �). As

seen in (3.71) in [1℄, this is indeed the 
ase in our model after transients have died away. This

emerges naturally { there has been no need to appeal to heuristi
 arguments. In parti
ular,

at orbital equilibrium the long-term s dependen
e of jj

~

P

w

3

tot

(s)jj re
e
ts the s dependen
e of

jj

~

P

w

3

lo


(�; �; s)jj. However the dire
tion of the lo
al polarisation is p̂, not n̂. Pro
esses 4 and 5 in

[1℄ re
e
t on this too.

As we are seeing, instead of relying on intuition, for Ma
hine II one 
an �nd the exa
t

result for the asymptoti
 depolarisation rate by examining the development of the distribution

fun
tions. In the general 
ase, su
h an analyti
al treatment is not available. But to stay 
lose

to the philosophy of using distribution fun
tions one 
an examine the properties of solutions of

the Blo
h equation for the polarisation density [1, 5, 6℄ and then, as suggested in the Epilogue

in [1℄, (�n̂=��)

2

should be repla
ed by (�p̂=��)

2

in the expression for (


0

�

dep

)

�1

of the DKM

pi
ture. It is then no surprise to �nd that

(


0

~�

dep

)

�1

=

!

2L

L

Z

0

~g

2

20

(s

0

) ds

0

: (3.29)

gives pre
isely the �

�1

spin

in (3.6)!
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This is also exa
tly what one expe
ts given the physi
al pi
ture in [21, 22℄ used to arrive at

the use of (�n̂=��)

2

if the polarisation were parallel to n̂. There, a simple geometri
al 
onstru
-

tion was used to estimate the rate of 
hange of the average of spin proje
tions along the lo
al

polarisation dire
tion, whi
h was taken to be n̂. For a stored non{radiating beam in a station-

ary spin{orbit state, i.e. a non{radiating beam for whi
h the phase-spa
e distribution and the

polarisation distribution repeat from turn to turn after a 
hosen starting s, the polarisation

is indeed parallel to n̂ at ea
h point in phase spa
e [17℄. But in the presen
e of radiation the

dire
tion of the polarisation is p̂ and if p̂ had been used in [21, 22℄ instead, then (�p̂=��)

2

would

have been needed as we have already dis
overed by appealing to the Epilogue in [1℄. Thus the

exa
t agreement between (3.29) and (3.6) supports the 
onstru
tion used in [21, 22℄ on
e n̂ has

been repla
ed by p̂. The ne
essity of using p̂ instead of n̂ emphasises that the DKM approa
h

is essentially perturbative beginning with n̂.

Of 
ourse, the \improvement" embodied in (3.29) is so small that it is of no pra
ti
al

signi�
an
e. Nevertheless our dis
ussion demonstrates how our toy model 
an be used to

expose details of spin dynami
s whi
h would not otherwise be a

essible.

As seen in [1℄, at the phase-spa
e point where � = �

�

and � = �

�

and for Q

s

well away from

1/2, the angle between n̂ and p̂ at the snake is given approximately by

d � 
 � �

�

2 � �

2

0

�

�

0

� L� sin(�

0

� L)

1 + 
os(�

0

� L)

:

For HERA parameters this is about 0.04 milliradians whereas the angle between n̂ and

n̂

0

is of the order of 200 milliradians. The angle between n̂ and p̂ is proportional to 
 so

that, as one might expe
t, the angle be
omes larger as stronger damping 
auses the equation

of motion for p̂ to deviate more from the T-BMT equation. Moreover, by 
omparing the

denominators in g

11

and (3.16) we see that p̂ di�ers strongly from n̂ near Q

s

= 1=2, thereby


on�rming our suspi
ion in Se
tion 3.2 that near spin-orbit resonan
es, 
are is needed with the

argument based on time s
ales. This, then, is the origin of the failure of the near-resonan
e

DKM estimate for the depolarisation rate mentioned in Se
tion 3.3. Note that as seen in [1℄

the 
hara
teristi
 time for the de
ay of transients remains the damping time, even 
lose to the

resonan
e. In [23℄ it is suggested that very 
lose to spin-orbit resonan
es, extra terms 
ontaining

delta fun
tions should be added to the DKM value (3.9) for the rate of depolarisation as a result

of so-
alled un
orrelated resonan
e 
rossing. These would be due to 
u
tuations in the rate

of spin pre
ession around n̂

0


aused by energy 
u
tuations. See [8℄. However, for Ma
hine II

spins pre
ess only around the verti
al in the ar
, not around n̂

0

whi
h is horizontal in the ar
.

So this e�e
t will not be seen here.

4 Commentary

Some further remarks are now in order |some obvious, some less so.

(1) It is 
lear from the dis
ussion above that n̂

0

and n̂ are two di�erent quantities whi
h only


oin
ide on the 
losed design orbit. Indeed, as we have just mentioned, the angle between

them is of the order of 200 milliradians for our parameters. However, they have often been


onfused in the literature. For example �n̂=�� was originally written as 
(�n̂=�
) [21, 2℄

and that led some to 
al
ulate 


0

(�n̂

0

=�


0

). See, for example [16℄. For general problems

where all six phase-spa
e 
oordinates must be in
luded this 
an give 
ompletely misleading

results. In parti
ular there would be no resonant in
rease of the depolarisation rate when

12



an orbital tune were 
lose to �

0

. Nevertheless, if, as in our models, horizontal and verti
al

betatron motion are being negle
ted, it 
an happen that (


0

�n̂

0

=�


0

)

2

provides a useful

initial approximation to (�n̂=��)

2

. That is the 
ase with Ma
hine II as we now show.

Using (2.5) and (2.8) and the de�nition of d and ~�

(


0

�n̂

0

�


0

)

2

= (


0

�g

6

�


0

)

2

= d

2

(s� L=2)

2

= f~� (2� s=L� �)g

2

: (4.1)

This is to be 
ompared with

(

�n̂

��

)

2

= g

2

20

=

d

2

�

0

2

�

2

f1 + 
os(�

0

L)g

� sin

2

�

0

(s� L=2) : (4.2)

The expression f~� (2� s=L� �)g

2

in (4.1) is used in [20℄ and its origin is 
lear from the

absen
e of the resonan
e fa
tor 2=f1 + 
os(�

0

L)g whi
h takes the value � 1:036 instead

of 1 for our value: Q

s

= 6:0 � 10

�2

. By repla
ing (�n̂=��)

2

in (3.19) by (


0

�n̂

0

=�


0

)

2

and

using the result

1

L

L

Z

0

(


0

�g

6

�


0

)

2

ds

0

=

d

2

L

2

12

=

(��)

2

3

: (4.3)

one obtains a value about 3% lower than from (3.19) so that in this 
ase (


0

�n̂

0

=�


0

)

2

provides an adequate approximation. But of 
ourse it would be
ome a bad approximation

for a large Q

s

. Note that the approximation works for Ma
hine II be
ause the snake

ensures that the spin tune, �

0

, is far from Q

s

. In other situations one should never rely

on this approximation. The use of (


0

�n̂

0

=�


0

)

2

delivers the 
orre
t result for Ma
hine II

at Q

s

= 0, i.e. when the energy is the same from turn to turn.

(2) The ve
tor n̂ is a s{periodi
 solution to the partial di�erential equation (3.11). Whereas

n̂

0


an be obtained as the unit real eigenve
tor of the 1{turn spin map on the 
losed

orbit [16℄, n̂ is not the eigenve
tor of the 1{turn spin map beginning at some �; � and

s unless Q

s

is an integer. At ea
h 
hosen �xed s, ea
h of the three 
omponents of n̂

lies on a 
omponent-spe
i�
 
losed 
urve in the (�; �) plane 
orresponding to the 
losed

ellipse in the (�; �) plane mapped out by a non{radiating parti
le of �xed amplitude. But

if a parti
ular (�; �) pair are 
hosen at some initial s and the 
orresponding n̂(�; �; s)

is transported a

ording to (3.11) for one turn, this n̂ does not in general return to its

starting value so that it is not a \
losed spin solution".

(3) Some authors still use the symbol n̂ when they a
tually mean n̂

0

! The tenden
y to 
reate


onfusion seems to be deep rooted.

(4) The ve
tor �n̂=�� (whi
h is still often written as 
�n̂=�
) is sometimes 
alled the \spin


hromati
ity". We prefer the terms \spin{orbit 
oupling fun
tion" or \spin-�eld deriva-

tive" so that \spin 
hromati
ity" 
an be reserved for the rate of 
hange of a amplitude-

dependent spin tune w.r.t. a fra
tional energy 
hange. In any 
ase in the full theory, the

DKM formula (3.7) must be modi�ed to in
lude (usually) relatively small terms involving

derivatives of n̂ w.r.t. the two transverse 
anoni
al momenta [17, 24℄ and for su
h terms

the name \
hromati
ity" is 
learly unsuitable.
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(5) If j�g

19

+ �g

20

j << 1, i.e. if the angle between n̂ and n̂

0

is small, then n̂ in (3.13) and

(3.15) 
an be approximated by

n̂ = n̂

0

+

�

�g

19

(s) + �g

20

(s)

�

m̂ (4.4)

where

m̂ = � sin

�

g

6

(s)

�

ê

1

+ 
os

�

g

6

(s)

�

ê

2

(4.5)

is a unit ve
tor in the ma
hine plane perpendi
ular to n̂. This is the \SLIM approxima-

tion" [25℄ whereby n̂ deviates from n̂

0

by a fun
tion linear in the phase-spa
e 
oordinates

[4℄. In this approximation we again �nd (�n̂=��)

2

= g

2

20

so that for Ma
hine II the

SLIM approximation a
tually delivers the 
orre
t result for (�n̂=��)

2

. Of 
ourse, a dire
t

appli
ation of the eigenve
tors and matri
es of the SLIM formalism delivers (4.4) too.

(6) The reason that the DKM approa
h 
annot be used on the spin distribution of Ma
hine

I is as follows. The DKM formalism assumes that transients have died away and that the

polarisation is lo
ally parallel to n̂. But in Ma
hine I the magneti
 �eld is perpendi
ular

to the ma
hine plane everywhere so that n̂

0

and n̂ are also perpendi
ular to the ma
hine

plane. Then sin
e the spin distribution of Ma
hine I is set up in the ma
hine plane the

spins are perpendi
ular to n̂ and the distribution pre
esses at the rate �

0

around n̂

0

. In

Ma
hine II there is a magneti
 �eld in the ma
hine plane at the snake and n̂

0

and n̂ are

in the ma
hine plane together with the spins themselves. In this 
ase the polarisation 
an

settle down to be almost parallel to n̂.

(7) We have seen how the �elds n̂(�; �; s) and p̂(�; �; s) for Ma
hine II are found by enfor
-

ing 1-turn periodi
ity while solving the partial di�erential equations (PDE) (3.11) and

(3.21) respe
tively. For real rings, the most reliable method for �nding n̂ is strobos
opi


averaging [26℄ for a point in phase spa
e. That involves integrating the T-BMT equation

for spins along a parti
le traje
tory through that point in phase spa
e and averaging the

spins. The 1-turn periodi
ity emerges automati
ally from the algorithm. For (3.11) the

traje
tory is, of 
ourse, de�ned by the relations d�=ds = a� and d�=ds = b�. But these

just de�ne the 
hara
teristi
 
urves of the PDE, familiar from the method of 
hara
teris-

ti
s for solving linear PDE's [27℄. Strobos
opi
 averaging for n̂ relies on the fa
t that the

T-BMT equation (equivalently (3.11)) is linear. The equation of motion for p̂ in (3.21)

and for real rings is also linear. Thus, sin
e strobos
opi
 averaging works well for n̂, it

is tempting to use it for p̂. In that 
ase one would again integrate along a 
hara
teris-

ti
 
urve. However, the de�ning equations for a 
hara
teristi
 
urve would now in
lude

damping. Then 
are would be needed. In any 
ase strobos
opi
 averaging is only useful

if the average is normalisable.

(8) In prin
iple the asymptoti
 dire
tion of the lo
al polarisation at points in phase spa
e

and its dependen
e on the distan
e to spin-orbit resonan
e 
ould be dis
overed with a

Monte-Carlo spin-orbit tra
king simulation [28, 8℄. This would require a large number of

parti
les and 
orresponding 
omputing power in order to suÆ
iently populate a suÆ
ient

number of points in phase spa
e. In addition a pre
ise numeri
al determination of n̂ at

ea
h point in phase spa
e would be needed for 
omparison and that would require strobo-

s
opi
 averaging [26℄ or the SODOM algorithm [29℄. Away from spin-orbit resonan
es the
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required number of parti
les 
ould perhaps be redu
ed by just looking (say) turn-by-turn

at the proje
tion of a spin on the plane perpendi
ular to n̂ for ea
h parti
le and then

�nding the average proje
tion. This would represent the deviation of the dire
tion of the

lo
al polarisation from n̂, averaged over phase spa
e.

(9) Although it would be satisfying to 
al
ulate the rate of depolarisation for real ele
-

tron/positron ma
hines by integrating the Blo
h equation for the polarisation density,

that would be 
umbersome in pra
ti
e. In any 
ase the DKM approa
h, as well as be-

ing elegant, provides an extremely good approximation perfe
tly suited to the operating

regimes of storage rings in operation up to now and it provides the only pra
ti
al analyt-

i
al approa
h for real rings with arbitrary dis
rete magnet stru
tures. Computer 
odes

whi
h evaluate the DKM formula numeri
ally for real rings are listed in [4℄. Unfortu-

nately, beyond the �rst order approximation of SLIM, they all require large amounts of


omputing time.

Nevertheless, the Blo
h equation for the polarisation density, augmented by a Baier-

Katkov-Strakhovenko expression for the in
uen
e of the Sokolov-Ternov e�e
t [5, 6, 30℄

remains the key to a general des
ription of polarisation dynami
s in ele
tron/positron

rings. Note that as explained in [5, 6℄ and hinted at in the Epilogue in [1℄, with this


ombination it will be possible to arrive at the DKM estimates from �rst prin
iples. A

�rst approa
h, based on a semi
lassi
al 
al
ulation, 
an be found in [23℄. This programme

will involve approximations but will enable analyti
al exploration of the limitations of the

DKM formula without re
ourse to heuristi
s. See [8℄ for Monte-Carlo simulations of the

depolarisation pro
ess at very high energy and for a study of whether the extra terms for

the depolarisation rate mentioned in Se
tion 3.4 are needed.

Con
lusion

Analyti
al 
al
ulations for the polarisation in ele
tron/positron storage rings are usually based

on the DKM formalism. This, in turn, is based on some impli
it reasonable 
onsiderations

of the various time s
ales involved in spin-orbit motion. See, for example, Figure 1 in [16℄.

Nevertheless there are open questions about the appli
ability of the DKM formula at very high

energy [8℄.

It therefore seems desirable to return to �rst prin
iples and obtain the rate of depolarisation

from a study of the solutions of the Blo
h equation for the polarisation density [5, 6℄. To obtain

the equilibrium polarisation, the Sokolov-Ternov e�e
t must be in
luded via the Baier-Katkov-

Strakhovenko formalism.

This paper has used a simple, non-trivial model of spin di�usion to show that the DKM

expression for the depolarisation rate is only a good approximation in this 
ase. Although the

Blo
h equation for the polarisation density was not used dire
tly, its use was impli
it and our

results support the 
laim in the Epilogue of [1℄ that the derivative �n̂=�� should be repla
ed by

�p̂=��. Nevertheless, further work will be needed to properly establish the range of appli
ability

of the basi
 DKM formalism and to address the open questions mentioned in [8℄.
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