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1 Prologue

The original version of this paper was based on a talk at the 11th Interna-
tional Symposium on High Energy Spin Physics, Bloomington, Indiana, USA,
September 1994 and it can be found in the proceedings, edited by Kenneth
J. Heller and Sandra L. Smith, and published as AIP Conf.Proc. 343 (1995).
The proceedings (and the paper) are also available at the CERN Document
Server.

Since then, a formula has been corrected and more details have been added
but now, following important numerical demonstrations and the appearance
of a relevant important paper, a section called Developments has been added
by D.P. Barber to cover them. Necessary extra citations have been added too.

2 Introduction

Stored electron(positron) beams can become spin polarised by the emission
of synchrotron polarisation—-the so-called Sokolov-Ternov effect [1, 2, 3]. In
rings without vertical bends and solenoids, the polarisation is vertical, antipar-
allel(parallel) to the guide field. It has recently been demonstrated at HERA
that spin rotators can be used to rotate the polarisation vector into the beam
direction just before an interaction point and back again after the interaction
point so that longitudinally polarised electrons or positrons are available for
the high energy physics experiment [4].

Periodic reversal of the helicity is essential for the physics programme and it
is clear that it would also be useful to have a means of flipping the polarisation
direction for short periods in order to check for systematic errors. The helicity
at the interaction point can be reversed by changing the geometry and fields
of the rotators but that would mean a temporary loss of polarisation or even
dumping the beam and refilling. However, a faster, more convenient method
was already considered many years ago [5, 6] and would utilize a horizontal
radio-frequency (rf) magnetic field.

The rf magnetic field (or a combination of fields forming a closed bump) [5,
7] would be installed at a position on the ring where the polarisation were
vertical and it would run in resonance with the natural spin precession fre-
quency i.e. at a frequency close to fflip = fc · ν̃0 or fflip = fc · (1− ν̃0) where
fc is the circulation frequency and ν̃0 is the fractional part of the closed-orbit
spin tune, ν0, which is the number of spin precessions per turn around the
ring on the closed orbit [8, 9, 10]. In calculations, ν̃0 is extracted from the
complex eigenvalues of the one-turn 3 x 3 spin-transport matrix on the closed
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orbit [8, 9, 10].
Flipping would involve sweeping slowly enough across resonance to ensure

that the polarisation vector were tipped over adiabatically. This would require
that the spins in a bunch remain tightly bundled. Such flipping techniques
are routine at the Budker Institute for Nuclear Physics (BINP) [11, 12] at
low energy. These techniques are very closely related to the method used to
depolarise a beam and hence measure its energy by noting the required rf
frequency [13, 14, 15, 16, 17].

It has been suggested that if flipping were repeated at the suitable intervals
it would perhaps be possible to reach a periodic limit cycle for the polarisa-
tion [18, 19, 20].

However, if the projections of the spins on the horizontal plane were to
become spread out uniformly over the range ±π (in an appropriate coordinate
system) during the sweep process, i.e. if there were complete decoherence, the
polarisation vector would not be flipped but instead the polarisation would
vanish. As we will see, one such source of decoherence is the stochastic nature
of synchrotron-radiation photon emission. In proton rings, decoherence of this
nature cannot occur and full spin flip is not difficult to achieve [21].

Spin flip was sometimes observed at LEP during energy calibrations [15]
using rf fields of just a few gauss-metres but the value of the polarisation
was much reduced and the effect was not consistently reproducible. It is also
unclear which are the best ranges of sweep rate and rf field strength [22].

But the fact that flip can be achieved suggests that the spin projections
remain coherent at least for several seconds during the sweep. Thus in or-
der to better understand the measurements it would be useful to estimate the
decoherence rate. One such calculation suggests that the characteristic deco-
herence time is proportional to the fourth power of the synchrotron tune and
could indeed be several minutes at LEP [23].

In this article we show, by a more complete treatment of the photon emis-
sion process and the subsequent development of the spin distribution function,
that with the same linear “smooth ring” model for the synchrotron motion
as in [23], the spin distribution actually reaches equilibrium in a few damping
times and that there need not be full decoherence. We then consider other
sources of decoherence and their consequences.

The calculation presented below is a very abbreviated version of a full
treatment based on a well defined and trusted formalism. The full calculation
together with other material has been published elsewhere as detailed in the
section on Developments.
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3 Equations of linearized orbital motion

The linearized equation of orbit motion with respect to the closed orbit in the
presence of stochastic excitation and damping due to synchrotron radiation
takes the form used in the SLIM program [8, 9, 10] :

d

ds
⃗̂y = Â · ⃗̂y + δÂ · ⃗̂y + δ⃗ĉ , (1)

where s is the distance around the ring and ⃗̂y is the vector of orbit variables
(x̂, p̂x, ẑ, p̂z, σ̂, p̂σ). Here, σ̂ is the distance to the centre of the bunch and p̂σ
is the fractional energy deviation. Â represents the “Hamiltonian” motion
due to the Lorentz forces and δÂ describes damping. Both are s–dependent
6 x 6 matrices. The vector δ⃗ĉ = (0, 0, 0, 0, 0, δc) accounts for the stochastic
excitation in the energy variable due to photon emission [24] :

δc =
√
ω · ξ(s) , (2)

where, in terms of the curvatures Kx and Kz, ω = (|Kx|3 + |Kz|3) · C with

C =
55

24
√
3
reλ̄eγ

5
0 (3)

where γ0 is the Lorentz factor on the design orbit for the chosen energy, where
re is the classical electron radius, where λ̄e is the reduced Compton wavelength
of the electron and where the stochastic averages of the kicks ξ(s) are

< ξ(s) · ξ(s′) > = δ(s− s′) ; < ξ(s) > = 0 . (4)

Thus, as is usual and sufficient [24, 25, 26], we take the synchrotron ra-
diation to be a white noise process. For our current purpose it will be more
convenient to work with dynamical variables which allow a clearer separation
of the influence of energy oscillations from the purely “betatron” motion due
to the quadrupoles. To achieve this we introduce the dispersion by means of a
canonical transformation to obtain a new set of variables y⃗ ≡ (x, px, z, pz, σ, pσ)
defined by :

x = x̂− p̂σ ·Dx ; (5)

px = p̂x − p̂σ ·D′
x ; (6)

z = ẑ − p̂σ ·Dz ; (7)

pz = p̂z − p̂σ ·D′
z , (8)

σ = σ̂ − p̂x ·Dx + x̂ ·D′
x − p̂z ·Dz + ẑ ·D′

z ; (9)

pσ = p̂σ (10)
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where the D′s are the components of the dispersion vector [27].
In terms of the variables x, px, z, pz, σ, pσ the equation of motion now

takes the form:

d

ds
y⃗ = A · y⃗ + δA · y⃗ + δc⃗ . (11)

If the dispersion is zero at the position of the rf cavities, there is no transverse–
longitudinal coupling and the matrices A and δA have a simple block diagonal
form. For example :

A(s) =

 A
(β)
(4×4)(s) 0(4×2)

0(2×4) A
(σ)
(2×2)(s)

 . (12)

The matrixA
(β)
(4×4)(s) describes betatron motion in the focussing fields. A

(σ)
(2×2)(s)

describes the synchrotron motion. When acting alone this gives :

d

ds
σ = −[Kx ·Dx +Kz ·Dz] · pσ ; (13)

d

ds
pσ = h · 2π

L
· eV (s)

E0

cosφ · σ , (14)

where the symbols have their usual meanings.
In this calculation we also work in the “smooth ring” approximation and

consider only synchrotron motion. Thus we will follow exactly the philosophy
of [23]. So the matrix elements in A

(σ)
(2×2) and δA

(σ)
(2×2) are averaged over one

turn (of length L) and we obtain :(
σ′

p′σ

)
=

(
0 −κ

Ω2
s/κ 0

)
·
(
σ
pσ

)
+ δA

(σ)
(2×2) ·

(
σ
pσ

)
+ δc⃗ , (15)

where δA
(σ)
(2×2) and δc⃗ take the forms:

δA
(σ)
(2×2) ≡

(
0 0
0 −2 · αs/L

)
, δc⃗ ≡

√
ω̃ ·

(
0
ξ(s)

)
. (16)

Here, αs is the one turn synchrotron damping decrement and ω̃ is the one-turn
averaged ω. Also, Ωs = 2π · Qs/L where Qs is the synchrotron tune and κ is
the compaction factor.

The equilibrium covariance matrix for σ and pσ then takes the usual value [28],
namely :

σ2(∞) =

(
σ2
σ 0
0 σ2

pσ

)
, σ2

pσ =
ω̃ · L
4 · αs

, σ2
σ =

κ2

Ω2
s

· σ2
pσ . (17)
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4 Inclusion of spin

After this recapitulation of the basis for the matrix formulation of the standard
smoothed description of damped stochastic synchrotron motion we are in a
position to introduce spin motion. Although spin is a quantum mechanical
phenomenon, spin motion in high energy storage rings can be treated at the
semiclassical level using the Thomas-BMT equation [8, 9, 10]

d

ds
S⃗ = Ω⃗(y⃗; s, γ0)× S⃗ , (18)

describing the precession of a single-particle spin-expectation value S⃗ (“the

spin”) in electric and magnetic fields. The precession vector Ω⃗(y⃗; s, γ0) is a
function of the magnetic and electric fields and of the particle velocity and
energy. As is usual for spin calculations in storage rings we now write Ω⃗ as
a sum of a piece Ω⃗0(s, γ0) accounting for the fields on the closed orbit and a

piece Ω⃗osc(y⃗; s, γ0) accounting for synchro-betatron motion with respect to the
closed orbit.

We will assume that the ring has no vertical bends, solenoids or skew
quadrupoles, and that it is perfectly aligned so that there is no vertical closed
orbit deviation. For electrons the vertical emittance can then be taken to
be zero and only motion in the horizontal plane need be considered but in
accordance with our picture of a smoothed ring, we also take the closed orbit to
be the design orbit. For this naive estimate the betatron motion and the radial
rf magnetic field will be ignored. Spin motion will be calculated with respect to
a pair of mutually orthogonal axes precessing at the rate |Ω⃗0| in the horizontal
plane around the vertical dipole field. The direction of a horizontal spin in
this frame is denoted by a phase angle ψ so that we have ψ′ = Ωosc(y⃗; s, γ0).
After averaging we then obtain ψ′ = 2πν0/L · pσ where ν0 is the design-orbit
spin tune, namely (g− 2)/2 · γ0. Thus ψ only couples to and is only driven by
pσ. When the spin phase ψ is included, the stochastic differential equation for
the system takes the form :

 σ′

pσ
′

ψ′

 =

 0 a 0
b 0 0
0 d 0

 ·

 σ
pσ
ψ


︸ ︷︷ ︸

Hamiltonian motion

+

 0 0 0
0 c 0
0 0 0

 ·

 σ
pσ
ψ


︸ ︷︷ ︸

Damping

+
√
ω̃ ·

 0
ξ
0


︸ ︷︷ ︸

Excitation

,

(19)

where the constants a, b, c and d are defined as :

a = −κ , b = Ω2
s/κ , c = −2 · αs/L , d = 2πν0/L . (20)

7



This can be rewritten in the form :

x⃗′ = A · x⃗+ δc⃗3 , (21)

where

x⃗ ≡

 σ
pσ
ψ

 , A ≡

 0 a 0
b c 0
0 d 0

 , δc⃗3 ≡
√
ω̃ ·

 0
ξ
0

 . (22)

This linear Langevin equation is interpreted according to the Stratonovich
convention and leads to the following Fokker-Planck equation [29, 30] for the
distribution function W (σ, pσ, ψ):

∂W

∂s
= −

3∑
j=1

∂

∂xj
[Dj ·W ] +

3∑
i,j=1

∂2

∂xi∂xj
[Dij ·W ] , (23)

where

Dj ≡
3∑

k=1

Ajk · xk , Dij ≡
ω̃

2
· δij · δi2 (i, j = 1, 2, 3) . (24)

So the Fokker-Planck equation has the final form :

∂W

∂s
= −c ·W − a · pσ ·

∂W

∂σ
− [b · σ + c · pσ] ·

∂W

∂pσ
− d · pσ ·

∂W

∂ψ

+
ω̃

2
· ∂

2W

∂pσ2
. (25)

With such Fokker-Planck formulations for this and more complicated mod-
els we can carry out perfectly standard detailed studies of spin decoherence
under all possible conditions just by looking for the possible solutions for
W (σ, pσ, ψ) compatible with the initial conditions. In our model, by starting
with a delta function distribution in σ, pσ and ψ, corresponding to a pointlike
beam and a tight bundle of spin projections, the distribution function (i.e. the
transition probability in this case ) evolves so that the covariance matrix for
the σ, pσ and ψ is given by [29, 30] :

σ3(s) = 2 ·
∫ s

0
ds′ M(s′) · D ·MT (s′) , (26)

where M is the real valued transfer matrix solving :

M ′ = A ·M , M(s = 0) = 1 . (27)
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After some initial damped oscillatory behaviour, in a few synchrotron damping
times the elements of σ3 reach the asymptotic values :

σ3(∞) =

 σ2
σ 0 d

a
· σ2

σ

0 σ2
pσ 0

d
a
· σ2

σ 0 d2

a2
· σ2

σ

 . (28)

This result follows exactly from the stochastic differential equation 19. Thus
the σ and pσ distributions acquire the equilibrium spreads given earlier. This
is to be expected since in these approximations the spin has no influence on the
orbital motion. However, and this is perhaps unexpected, equation 28 shows
that the distribution of ψ also reaches equilibrium (on the same time scale)
with

σ∞
ψ ≡ σψ(∞) = |d

a
| · σσ = ν0σpσ/Qs (29)

for the asymptotic variance of ψ which we call the decoherence index . Thus
apart from an initial decoherence lasting a few dampimg times there is no
continual decoherence in this model with these starting conditions! But of
course, if σψ(∞) were very large the spins would be effectively decoherent.

In the HERA electron ring at 27.5 GeV, ν0 is about 62.5, σpσ is about
10−3 and Qs is about 0.06. So the asymptotic σψ is about 60 degrees. So
far, we have allowed the azimuthal angle ψ to cover the range ±∞ whereas
the physical range is ±π. To account for this we calculate the corresponding
asymptotic polarisation, P (∞), for the Gaussian distribution of ψ as

P (∞) =
1√

2πσ∞
ψ

∫ +∞

−∞
e−ψ

2/2(σ∞
ψ )2 cosψ dψ = e−(σ∞

ψ )2/2 (30)

which is about 58%.
However, several extra points should be noted. Firstly, ψ is correlated to

σ, not as one might have expected, to the energy deviation pσ. Secondly,
the last column of A is empty and the σ3(s) is singular for all s. For a linear
problem such as this, one expects that the asymptoticW is always a generalized
Gaussian distribution in σ, pσ and ψ [33]. But, the coefficients of the quadratic
form in the exponent of this Gaussian clearly cannot be obtained by inverting
σ3(s). So another method suitable for problems of this type must be used [33].
Then one finds that the asymptotic W function is not unique but reaches an
equilibrium form depending on the initial conditions. For example to discuss
decoherence according to the picture in the Introduction, one begins with
Gaussian distributions in σ and pσ with their equilibrium asymptotic variances
and with a delta function distribution δ(ψ) in ψ. Then the asymptotic ψ
distribution has a variance of

√
2(ν0σpσ/Qs) =

√
2σ∞

ψ (31)
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which is about 85 degrees corresponding to an asymptotic polarisation, P (∞),
in this case of about 33%. This calculation and further aspects of the problem
will be treated in another article [33]. The asymptotic variances of σ and pσ
are unique. We note, with interest, that σψ(∞) is equal to the well-known, so-
called, spin-tune modulation index appearing as a scale factor for the strengths
of synchrotron-sideband resonances in equilibrium electron(positron) polarisa-
tion, as shown, for example, in [31, 32].1

According to our model, in machines running at one or two GeV, the asymp-
totic σψ is just a few degrees. So within this simple linear model there is no
complete decoherence in such machines. Conventional wisdom suggests in-
stead that σψ should increase as

√
s. This is not the case as we have just seen.

However, in the simpler 2 x 2 pure diffusion problem for pσ and ψ without
synchrotron oscillations the

√
s growth does emerge after a few damping times

and for HERA quickly results in complete decoherence. A similar conclusion
emerges at the beginning of [19] before the effects of an rf field are included.
So the synchrotron motion is an essential ingredient in our calculation.

So far we have neglected the detailed structure of the ring and misalign-
ments which tilt the equilibrium polarisation axis and generate vertical disper-
sion. Horizontal and vertical betatron motion have been neglected as have the
effects of sextupoles and spin rotators as well as any nonlinear dependence of
the spin precession rate on orbital variables. So our model is perhaps too sim-
ple to represent a realistic storage ring but it has enabled us to reconsider the
calculation in [23]. If a Siberian Snake is included in the otherwise smoothed
ring there is decoherence [33].

By considering decoherence in isolation, a key component, the rf field itself,
was ignored. Recall, however, that partial spin flip was sometimes seen at LEP
with small rf fields. This suggests that the predictions of the model are not
too unrealistic. For a treatment involving an rf field see [19].

5 Developments

There have been at least three important developments following the original
paper.

Firstly, the paper [33] foreseen earlier came to fruition. This covers the
model presented here, and other models, in great mathematical detail and it
is therefore an important source.

Then, with the need for a damping ring for the efficient injection of lon-
gitudinally polarised positrons into the positron linear accelerator of the pro-
posed International Linear Collider (ILC) [34], Monte-Carlo spin-orbit track-

1Note that the term “spin chromaticity” in the title of [31] is a misnomer. The quantity
. γ∂n/∂γ is now usually, and correctly, called the “spin-orbit coupling function”.
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ing simulations for the so-called OCS6 design [35] with SLICKTRACK [10] for
full linearized synchro-betatron motion and large initial transverse beam size,
showed almost exactly the level of decoherence for horizantal spin components
predicted by our model. This shows that even with the complex ring layout
involving asymmetric wigglers, the reservations above about a possible lack of
relevance for such a simple model are unfounded. It also shows that one cannot
assume that an initial horizontal polarisation component will necessarily damp
away before extraction and injection of the beam into the linear accelerator
via a spin rotator. This provides a nice illustration of the importance of our
simple, apparently naive model.

The third development concerns studies by Monte-Carlo spin-orbit tracking
of the effect of rf fields on the polarisation in LEP and the proposed FCC-ee
rings [36]. Thus we return to the motivation for this paper. In particular,
simulations of the motion of horizontal spins with the Xsuite software [37] at
45.6 GeV show almost perfect agreement with the level of decoherence, and its
dependence on Qs, predicted by our model [38] even though the model appears
to be too simple.
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