7.4 Applying the ToA to the left SO(3)-spaces (SO(3)/H,lg)

We now go beyond the familiar situation of Chapters 2-6 where the underlying left 5 0(3)-
space is %ﬂ lspin) as we have just shown. For this we introduce the quotient set (SO(3)/H
defined in (7.49) and consider those left SO(3)-spaces (SO(3}/H,ly) which are different
from {R?,lspin) and which, when used for the ToA, will give us the opportunity to learn
more about spin-orbit tori via the Z actions Lyl i © M4 and hgﬁi O Hya. We will
proceed as follows.

In Section 7.4.1, we consider an arbitrary closed subgroup, H, of SO(3), i.e., a subgroup
which is. at the same time, a closed subset of SO(3), i.e., H = H (see Appendix A). Then
with the quotient set (SO(3)/H of (7.49) we introduce %a left SO(3)-spaces (SO(3)/H, ).
4455 M‘Qm v\m ?L the ToA leads us to the Z actions Hi:i O] ﬂ._m A and Hﬁ?»i ) \m._ms_ A

In Section 7.4.2 the fixed points of Ly[lg] © Ha 4 are related with so-called structural
equations. In Section 7.4.4 these equations give us new insights into the nature of spin-orbit
resonances of the first kind via our First SOR Theorem. In Section 7.4.5 they give new
insights into the nature of ISFs via the First ISF Theorem. Every g in C (T¢,SO(3)/H)
defines a unique subset, Ey{g) of Ej to be introduced in Section 7.4.7 and we further
characterize the Ex(g), in Section 7.4.8, via the First Reduction Theorem. In Section 7.4.9
we study the cross sections of the functions ps|Ex(g) and thereby obtain new insights into
the nature of IFFs. In Sections 7.4.10 and 7.4.11 we revisit the First SOR and ISF Theorems
in terms of the Ex(g). The fundamental importance of the left SO(3)-spaces (SO(3)/H, lu)
will become clear in Section 7.5.

7.4.1 Defining the left SO(3)-spaces (SO(3)/H,lx)

We now apply the ToA to the left S0(3)-spaces (SO(3)/H,ly) where, by Appendix A2,
SO(3)/H is given by - _

SO(3)/H = SO(3)/Rsopyp = {rH 7 € SO3)}, rH={rh:heH}, (T.49)

and where, as in Appendix A.2, the left MQGV action N: = Lgoy,m is the function g :
S0(3) x SO(3)/H — SO(3)/H given, for r,r" € SO(3), b

by (r'sTH) = Lso@u(r'srH) = (r'r)H . (7.50)

To start with the dvnamical part of the ToA we have to consider the Z actions Lylly] ©
Heu,a 2nd bq:_imvfa 4. We define the functions Ly, 4 : ZXT¢x SO(3)/H — T¢xSO(3)/H
and Ly, 4 Z x C(T%, SO(3)/H) = C(T¢,S0O(3 u\m& by

Liwa = Lallg] ©Hun Lowa = Laliy] © Hua - (7.51)

However, in this work we do not study Ly, 4, but concentrate instead on L Huw.4, the entity
of major interest. Forn € Z, f € QQ_A SO(3)/H) and by (7.32)and (7 A 51), we have

Litwaln:g) = (Lally]) © Hua)(n; ) = Ly { Wu,a(n,)i9 ) © Lu(—n;-) . (7.52)



Lol | Ga(g2, k2); Lall]| @a(gn, B2)s ) | = Lall] 3@?&&%&?2?3oL‘:L
= I ko; l{ky; Fogrt ) o5
=1 ko gyl kot oz fodr oy
=i (kpogy ) (kog ogs ifoirtodst ), (7.42)
La[l]| @g(j2, ka)Qba(r, k)i f) = Lg[l)| ag| joo 1, (keodi)ki )i f
= 1| (kyoj)ky; f}ogr ody’
=1{ (kogz ) (ko ojs i foirofy ), (7.43)

so that indeed Lgy[i] is a left R, action on C(T¢, E). Note that in the third equality of
(7.41) and in the fourth equality of (7.42) we used the fact that [ is a left SO(3) action
on K. : O

While in this chapter the ToA is merely factory of %.96 actions, it will become clear in
Chapter ??, via the principal bundle ), that the ToA is deeply rooted in principal-bundle
theory.

7.3.2 Applying the ToA. to the left SO(3)-space (R?,lyn): Recovering L, 4

In this section we arrive at the already-announced left SO(3}-space (R, lspin) by applying
the ToA to the case of the spin-orbit motion introduced in Section 2.2. In particular we
show that a left SO(3)-space (F,1) exists such that, for all (w, A) in SOT(d), L., 4 is of the
form Ly[l] © H,.a4 and we identify the {. We also show that the transformation rule (3.6) is
a special case of (7.36).

Since, for every (w, A) in SOT(d), Ly 4 is a left Z action on T¢ x R* we need £ = R®.
Moreover by inspection of L, 4 in (2.28) and using (7.31) we are easily led to choose [ = lypin
where the function Iy, : SO(3) x B — R® is defined by

Lipin(r, S) =18 . (7.44)

Clearly (R?, ) is a left SO(3)-space and we see, by (7.31) and (7.44), that

AbAFEL Q\le&ugm <, ,wu. = | L,{(n; 2}, Lipin @a,mhsmwvmm = | L,(n; 2}, ¥y a(n; 2}S | ,

whence, by (2.28),
.H\&_Hmmﬁ._mﬂu_ @mﬂmﬁc:& = H\E,.& . mﬂm‘(_.wV
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x =V, 4, giving us
(La[l) © Huoa)(nyz,z) = | Lu(n; 2),1{ Yualns2hiz) |, (7.31)

(Lall) © Hoa) (5 ) = 1 Yua (i, ) f | 0 Lu(=m5), (7.32)

where z € T¢, 2 € E, f € C(T% E),n e Z and (w,A) € SOT(d)
. Of course Lyll] ©®Ho s and Ly[l] @ H,, 4 are Z-actions. Recalling Definition 2.4 and using
the fact that Z is equipped with the discrete topology and that [ is continuous 1t is an easy
exercise to even show, by (7.31), that (T¢ X E, Ly[l] © H.,.4) is a Z-space.
END NEW

Remark:

(3) For every left SO(3)-space (E,!) and every spin-orbit torus (w, 4) in SOT(d) the Z-
action Lg[l] ® M4 can be viewed as describing particle motion on the “phase space”
E. Moreover the Z-action Lg[l] © H,.a can be viewed as describing field motion on
the same phase space F. This view is further corroborated by using (7.31) and (7.32)
since they imply that

(Lall] © Hos)(ms 2, £(2)) = | Lu(n3 ) ngxg,\;gé (Lo(ni2) |, (733

which can be interpreted as the statement that the “characteristic curves” of the field
motion Lg[l] ©® H, 4 are trajectories of the particle motion Ly[l] © He,a. In particular
in the special case of the left SO(3)-space (R?,lspr) the characteristic curves of the
polarization fields will be spin-orbit trajectories. : ‘ O

We now take a closer look at how to use H" in the ToA. So let (E, ) be a left SO{3)-space.
Then the left C(T%, SO(3)) action Ly[l] © iiﬁ on T¢ x E and the left C(T¢, SO(3)) action
Lg[l) © Hirers on C(T%, E) satisfy

(Lall] © HE™)(T; 2,2) = Lalll (K (T); 2,3) = Lall] ?gaﬁ

= |z TEsz] ], , | | (7.34)

(Lofl] © HE“)(T; £) = LaJIHE(T); £) = Lall %&EZT%? (7.35)

where z € T¢, z € E, f € C(T¢, E) and T € C(T¢, SO(3)} and where we used (7.12), (7.24),
(7.25), (7.26) and (7 o@

We now see that every left SO(3)-space (E,l) leads to transformation rules since the
general transformation rule (7.14) which is an equality of group homomorphisms becomes,
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where g € G, z € T,z € E and f € C(T%, E).
Remark:

(1) We expect, that Ly[l] ©H and Ly[l] ©H to be left G actions and it is easy to show that
they are. In fact this follows from the following simple lemma.

Let G,G' be groups, let ¥ : G — G’ be a group homomorphism and let (X, L) be a
left G’ set. We then define the function (L @) : G x X — X by

(L ov)(g,z) = L(¥{g), 2) - | (7.

b

8)

Since 1 is a group homomorphism and (X, L) is a left G’ set, it is an easy exercise to
show by (7.28) that (X, L © ) is a left G-set.

Clearly this lemma provides us with group actions by combining the group actions Lyll]
and L,[l] with group homomorphisms. In fact in the special case where G' = 2, ¥ =
H, X =T¢x E and L = Ly[i] or L = L4[l] we find that Ly[l] © H and Lyl] © H are
left G actions, as was to be shown. O

Let £ denote the class of all those ] for which an E exists such that (E,1) is a left SO(3)-
space. We thus define the ToA as theé method which gives us the group actions L[] ©@#H and
Lq[llOH where [ varies over £ and where # is any group homomorphism into 2ly provided by
the cocycle theorem, Theorem 7.1. The name “Technique of Association” reflects its origin
in bundle theory as we will explain in Section ?? where we will tie the ToA with the notion
of “associated bundle”. Clearly the ToA is very general. So some words of clarification are
in order.

The ToA can be viewed as a machine fabricating group actions by turning the two
independent “knobs” A and (E,1). Since the knobs are independent, care is needed when
one is looking for group actions Lg[l] ® H and Ly[l] © H which give useful information about
spin-orbit tori.

We first discuss the knob . While H can be any group homomorphism into 24 provided
by Theorem 7.1, the only H we are interested in this work are the H, 4 and the Hirems | See
however, Remark 2 below. Thus the adjustments for the first knob are clear from the start.
Clearly our application of the ToA has a dynamical aspect via H,, 4 and a transformational
aspect via Hi™.

Remark:

(2) While the only group homomorphisms 7 that interest us in this work are the H,, and
the HZe" other group homomorphisms provided by Theorem 7.1 would be of interest
in further studies as well. In particular in so-called “rigidity” studies one supplements
each M, 4 by other group homomorphisms, say H,, 4, which extend H,, 4 (so that Z is
2 subgroup of the domain of H, ) or which restrict #,, 4 (so that the domain of H, 4
is a subgroup of Z). u}

The second knob, the left SO(3)-space (£, 1), determines the geometrical situation un-
derlying Ly[l] ® H and Ly[l] @ H. Thus the adjustments for the second knob will change as
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Theorem 7.1 (Cocycle Theorem) Let x € COC(T?, L, SO(3)) where (T L) is a 5& G-
space and G is a topological group (recall b&msaﬂos 2.6). Then the function Hx] : Q — Ay,
defined by

Hx(g) = aa{ L(g, ) x(9,) | » (7.15)

where g € G, is a group homomorphism from G to Uy,

Proof of Theorem 7.1: If g,¢' € G then from (7.15) we find that
HX)(9'9) = ba| L(g'g,"): x(¢'9,") } = &a| L(g',-) o L{g, "), x(g'9.")

Hx](g")OHXI(9) = da| L{g', ), x(¢'s ) ) Clia| Llg: -}, x(9,7) | (7.17)

where in the second equality of (7.16) we used the fact that L is a left G-action and where
in the third equality of {7.16) we used the cocycle condition (2.42) of x. It follows from (7.6)
and (7.17) that .

H()OHIN (o) = du( Lig' ) o Lo, ), (x(g') 0 Ligs Dl ) ) - (7.18)
whence, by (7.16), H[x](¢'g) = H[x](¢") OH[x](g) which implies, by Definition 2.1, that H[x]
is a group homomorphism. O

We now show that H,, 4 and H*" belong to this set of group homomorphisms.

We start with H, 4. So let maums € SOT(d,w). In fact inspection of (7.10) casily leads
us to the choice x = ¥, 4. Thus using (7.10) and (7.15) and recalling from Section 2.3 that
U,.4 € COC(T4, L, SO(3)), we obtain

igaubhiﬁ@ghe?tyée&hsivﬁ\le&?v“ Q.H@V
whence H,, 4 indeed belongs to the group homomorphisms provided by Theorem 7.1.

To do the same for HT™, ie., to identify HY® as an H[x], we obviously need
to belong to COC(T¢, Liems, SO(3)) where (L%, S0O(3)) is an appropriately chosen left
C(T¢, 50(3))-space. In ?S inspection of (7.12) and (7.15) easily leads us to the following
definitions. We first define the function L7 : C(T¢ SO(3)) x T¢ — T% by

LYas(T; 2) = _ (7.20)

and we see that L7 is a left Qﬂ%@@:-%sg on T¥. Clearly, regardless of the

topology chosen on C(T% SO(3)), the function L** is continuous whence, by Definition

2.4, (T4, Lirem) is a left C(T% SO(3))-space (recall from Definition 2.6 that the topol-
0gY on C(T?, SO(3)) x T¢ is the product topology). We now define the function "
C(T% SO(3)) x T¢ = SO(3) by

=1

]

Bt
——

g (T 2) =T (z) , (
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As always o denotes composition of functions. To see that the rhs of (7.5) is in 2, we note
that G.(j, k) maps (z,7) to (2',7) = (j{2), k(2)r) and 84(j', ) maps {2/,r") to

(G'(2), K {2)r") = (5'(5(2)), K ((2))k(z)r). Thus a4(5", &) © 8a(f, k) maps (z,7) to

(7'(j(2)), k' (j{(2))k(z)r) and we obtain for 7, j’ € Homeo(T?, T%) and k, &' € C(T% SO(3)),

aa(j', k) Qag(4, k) = aal ' 0 4, (K 0 5)k) ) (7.6)

which is in 2. Using (7.6) and noting that (idg,, idre) is the identity element of the group it
is straightforward to check the group axioms in Definition 2.1. In particular Gq{j =, k* 0 j")
is the inverse of @4(7, k) whence a4(j™1, k* 0 771) is the inverse of a4(], k) so that &4{j, k) €
Homeo(Ey). _

To introduce dynamics let {w, A) € SOT (d) and we consider the function P, 4 : By — Ey
defined by

Poalz,r) = AAWV \ (

where z € T¢ and r € SO(3). By (7.3) and (7.7) and since P,, € Homeo(T?),

=1
=1
—

ﬁﬁﬁ_buﬂﬁu = m_nmﬁc.;.\#v 1 mﬂmwv

50 that (P, 4, P.) € Yy and we thereby see how Ay provides a group structure for handling
familiar objects. Since (2, <) is a group, we can see that for n € Z the n-th power of
(Pu.4, P.) belongs-to Uy whence we define the function #,, 4 : Z — Ay by

Hopa() 1= (P, Pu)™ = (B2 4, P2) = ?5. (7.9)

Note that, for negative n, (Py.a, P.)" is the |n|-th iterate of the inverse (Pu.a, Pa)~t Note
also that, by (2.27), Aw.ub (7.6), (7.8) and (7.9},

Hoa(n) = G| Lu(n, ), Yua(n,-) | - (7.10)

Equations (7.9) and (7.10) show how both he dynamical data of the spin-orbit motion in
(2.28) and the polarization fields in (5.7) enter H,, 4. By (7.5) and (7.9) we see that

Heua(n+m) = ﬁsfsu i ﬁw& oﬂﬁ%ﬁm o P
o= E\»M\NUS <& <oﬂwb“qu§ = \*&Euhﬁﬁ\vo\m&:‘;bmsv N m...\.”_.u.v

whence according to Definition 2.1, H,, 4 is a group homomorphism from (Z, -+) into (g, ©)
so that the range of H, 4 is a mcwmwocﬁ of (A, ). It is easy to see, although it is of no
importance for us, that the range of H, 4 is rather simple since, by the isomorphism theorem
of group theory, it is an Abelian group which is either finite or MmoBoﬂuEn to (Z,+).
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7. Introducing the ToA. Applying the ToA to the left
SO(3)-spaces (SO(3)/H,ly) to §<mmﬁmmﬂm SORs, IFF's
“and ISF's _.

7.1 Preliminaries

In this chapter we revisit and generalize the studies of the previous ogvy_ﬁmam by using our

already-announced Technique of Association (ToA). In Chapters 2-6 we introduced the pair

of Z actions L, 4 and ha 4. We will now show how to arrive at these ; oﬂmrim/?o ToA.

In particular, we show how the ToA equips every spin-orbit torus with a pair of Z @oﬂosW/
go? SO(3)-space and thereby provides an infinite, but well defined ¢ aysof Z-actions”

to be used for every spin-orbit torus. Moreover, every such pair of Z actions contains one Z

action describing a particle motion on some “phase space” and one Z action of motion on

a field defined on that same phase spage. In the case of L, 4 and hs 4 the underlying left

S OA. }-space is called (R?,[,,,) and it will be defined in Section 7.3.

Then in Section 7.4 we go beyond the left SO(3)-space (R?,lgpin) by introducing an
infinite family of left SO(3)-spaces, (SO(3)/H,ly), where H is a subgroup of SO(3) and
where H is assumed to be a closed subset of SO(3). Then for each spin-orbit torus (w, 4)
and each (SO(3)/H, ), the ToA provides a pair of Z actions which we denote by Ly, 4 and
hmr 4 respectively. Im fact, as we shall see in Section 7.4, the Z actions h?a& give us new
insights into SORs, IFFs and I1SFs via elegant existence criteria which lead to new avenues
for studying spin-orbit tori. In Section 7.5 we show that in some sense the left SO(3)-spaces
(SO(3)/H, 1) contain all the data one will ever extract from the ToA.

The tools of this chapter are as elementary as the ones in the @wmﬁosm chapters. We
postpone the use of the more subtle tools of bundle theory to Chapter ? 2 (77777) but then
we will gain further insight into the constructions of this chapter via %m principal bundle
Mg In fact, as we shall see, the ToA will turn out to be a technique having its origin in the
bundles associated with Ag.

We will proceed as follows. In Section 7.2 we will introduce the group (%4, ¢} and the
group homomorphisms ., 4 and HY** into this group. In Section 7.3 the group homo-
morphism H,, 4 will turn out to be the crucial tool by which the ToA provides the pair of
Z actions for AE A) from every given left SO{3)-space. Moreover Hg“"™ will be presented
as the tool which provides the ﬁEzmmoH.Bgﬁou rules for each pair of Z actions. In Section

7.4 the ToA will provide us with the Z actions Ly, 4 and Ly w4 and demonstrate the im-
pact of h:a 4 on the SOR, IFF and ISF. In Section 7.5 we show that the left SO(3)-spaces
(SO(3)/H,1y) are fundamental in the sense that left SO(3)-spaces (E,(} can be “decom-
posed” into left SO(3)-spaces of the form (SO(3)/H, lx). So when applying the ToA to a left
SO(3)-space {E,[) one can use the machinery of Section 7.4 on the individual components.
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(7) Let (w, A) € SOT(d,w). It is clear, by (5.10), that (5.22) maps the set PF(w, A) of
polarization fields of (w, A) bijectively onto the set PF(w, A"}. Moreover it is clear,
by (5.13), that (5.22) maps ZSF{w, A) bijectively onto ZSF (w, A'). In particular two
similar spin-orbit tori have the same number of ISFs. Thus we arrived at another
property shared by similar spin-orbit tori.

(8) Clearly the transformation rule (5.23) of the polarization field and the transformation
rule (3.4) of spin trajectories are very similar. Unsurprisingly, one can even show the
following. Let (w,4) € SOT(d,w) and let S be a polarization field of (w, 4). Also,
(w, A") := Ry, (T;w, A) where of course T € C(T%, SO(3)) and let &' be the polarization
field of (w, A’) which is the transform of S as in (5.22). Clearly by Definition 5.1, if we
pick z € T then the function S, defined by S;(n) := S{n, P2(2)) is a spin trajectory of
(s, A) over z and the function S, defined by S.(n) := S'(n, P(z)) is a spin trajectory
of {w, A’) over z. The point here is that S is the transform of S, via (3.4). O

5.3 Polarization -

We now tie together the concepts of polarization field and polarization. Thus consider a
family (w(.J), A7) sea of spin-orbit tori where (w(J), A;) € SOT(d,w(J})) and A is the set of
action values.

We note (see also [BH, BV]) that for every .JJ € A, we have a so-called “local polarization”,
say Siges Which by definition is a polarization field of (w(.J), 4;) satisfying

|St0e.s] < 1. (5.24)

The associated bunch polarization is then given by

.NUTDV = \ chﬁomqm.wv \Eo . &%»m_mankhﬁx T&&u 3 hmwmv

<A

where pe; = peg() is the equilibrium orbital phase space density. In the so-called “spin equi-
librium” the polarization fields Sy, are, by the definition of the spin equilibrium, invariant.
Thus the bunch polarization for the combined beam equilibrium and spin equilibrium reads
as :

P(n) = P(0) = \> d.J peg (1) \ d¢Sioes (0, [¢la)| 5 (5.26)

4 [0,27)

whence
P(0) < \ &égi \ d65100.1(0, [61a)] - (5.97)
JA J 0,253

Note that we assume that the function p,, is regular enough to ensure that the integrals in
(5.25), (5.26) and (5.27) are meaningful. Then under the assumption that every (w(./), A/)
has an ISF and since |Sige.s| < 1, with (5.27) we have

P(0) £ Praz(0) (5.28)
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If a spin-orbit torus (w, A) has an ISF S then —& is also g ISF of {w, A). So since
S # =8, if (w, A) has a finite number of ISF’s, then this numberis ven. The important
subcase where (w, A) has exactly two ISF’s is dealt with ig"Chapter 6,/It is known [BV] that
spin-orbit tori exist which are on orbital resonance and which-hae no ISF. Note that the
spin-orbit torus of this example is on orbital resonance. There are some indications, mainly
from numerical computations on ISF’s, that practically relevant spin-orbit tori which have no
ISF are “rare”. Thus we state the following conjecture, which we call the “ISF-conjecture”:
If a spin-orbit torus (w, A) is off 'orbital resonance, then it has an ISF. The ISF-conjecture
is, at least to our knowledge, unsettled. The existence problem of the ISF is important both
theoretically and practically and Chapter 7 presents a new framework for discussing it.

We now make some remarks on the relationship between ISFs and [FFs.

MATHIAS: explain why the ISF is tricky/special — continuity everywhere etc.

Remarks:

(3) Let (w,A) € CBsppy(d,w). Then (w, A) has an ISF. To show that, we recall from
Section 4.3 that (w, A} has an IFF, say T, whence N € Z¢ and h € C(T% R) exist such
that (4.35) holds. This implies that

A([Rl)T ([9le) = T([¢ + 27mw]a) exp(T[N - & + 2wh{[]a)]) - (5.16)
Then by multiplying (5.16) from the right by (0,0,1)¢ and by using (4.3) we have,

A(B)T([612)(0,0,1)* = T([6 + 2mle) exp(TIN - 6+ wag&éxp 0,1)*

| Next, with f € C(T% R®) defined by f(z) := T(2)(0,0,1)%, we see that |f(z)| =
e F(3)(0,0,1)/| = [(0,0,1)! = 1 so that f € C(T¢,S2). Then from (5.17) f o P, = Af.

“ AY \\l\l .
qﬁ% ' o f satisfies the ISF criterion for (w, 4) whence (w, A) indeed has an ISF. We have
thereby shown that the third column of every IFF is the generator of an ISI".

(4) Let (w, A) € SOT(d,w). We now prove the converse of Remark 3. Thus let {w, A)
have an ISF so that, by the ISF criterion, a f € C{T¢,$?) exists such that foP, = Af.
Let T € C{T%, SO(3)) and let the third column of T be f. Then by the ISF criterion

T([¢ + 27w])4)(0,0,1) = f([o + 2nw]s) = A([d]a) F{[¢]a) .

whence (0,0,1)¢ = T%([¢ + 2rw]s) A{[¢]a)T([¢)a)(0,0,1)". This implies, by (4.3), that

TH[¢ + 2nw]) A[¢)a)T([¢la) so that by Definition 4.5, T € TFsor){w, A} whence

T is an IFF of (w, A)» This raises the natural question about the conditions under
%dﬂmemﬁH\.dwmam with ISF has an IFF. Of course by Remark 3 we know that
! there are many situations where such a T exists. However, as shown in [He2], it
i can happen that (w, A) has an ISF but no IFF. Thus the following question arises:

Under which conditions on a f € C(T%,8?%) does a T € C(T% SO{3)) exist such that .
f = 7(0,0,1)7 In Chapter 7 of [He2] this question was studied by using simple
arguments from Homotopy Theory. In Chapter 7 of the current work we will consider
this question from another point of view.

LIRS

hd

Wy
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where A" € C(T¢, 50(3)) is defined by @.w..wr ie., A" == (A’ o P,)A, whence

Pua="P, m 0 Poa (5.4)
W)
so that the inverse, que L, of P4 is given by Hw&
EE AT ﬁo At © ..NUIE Ado - A.m.v.m\vv

Thus P, 4 is a bijection whence the function Lya:ZxC(T¢R?) — C(T¢ R®), defined by

me,\;sQ“n Pl 4 (5.6)

is a Z-action on C(T¢4,R®) where uma A aowsgm the n-th iteration of ﬁa 4. Clearly

(C(T% R*), L, ) is a Z-set. Note that, by (2.34), (5.2) and (5.6),
\
s £ _
Loa(nif) = { Wualns)f ) o Lu(—ns-) - | (5.7)

Of course, with (3.2) the evolution equation (5.1} can be written as S(n+1,-) = P, a(S(n, )
whence, by (5.6), for every polarization field &

Sin,-) = La(n; S(0,)) . (5.8)

N E&;\h

Remark:
A

T
(2) Let (w, A) € SOT(d,w). Comparing {5.1) and (2.37) we see they are both linear Sys:
tems. However (5.1) is more complex in that it depends on two independent var, L5163
but it is simpler in that it is antonomous. Accordingly, the transformation EHAuuw
of the polarization field is autonomous while the transformation rule (3.4) of th
trajectories is nonautonomous.

Before we take a closer look at the linearity of (5.1) we make some general comments
on linearity. Let & be a group and (E, L) be a left G set. Also let £ be a vector
space and let every L(g,-) be linear where, of course, ¢ € . Recalling Definition 2.3,
the L{g, -} are bijections whence, since they are linear, they are automorphisms of the
vector space E, i.e., L(g,-) € GL({F) where GL{E} denotes the set of automorphisms
of the vector space E. One can cast the data of L into the function L™ : G — GL(E)
defined by L*™(g) := L{g,-). The key point bm@;wvﬂ% t, since L(g,-) € GL(F), the
function L™ is a :oBoEoHUEmB from th€ group Z ingd the group Qh?m_v where the
group multiplication in GL(E) is understegd to e composition of functions. In
other words L™ is a so-called “representation” of the group Z on the linear space F.
Thus the notion of group representation emerges as a specialization of the notion of left
. group action. In fact the first contact of a physicist with group actions typically occurs
via group representations. For the definition of group and group homomorphism, see
Definition 2.1. _
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Now let (w, A) € SOT so(2)(d,w) so that, by (4.1b), A € C(T%, SO(2)). Then, by (4.33),
N € Z% and a € C(T¢,R) exist such that _

A([8le) = exp(T[N - & + 2ma([0]4)]) - (4.34)

The elements of TFgop)(w, A) are the discrete-time analogues of the invariant frame field
(IFF) described in the continuous-time formalism, e.g., in [BEH]. This can be seen as follows.

 Let (wiA) € CBsogy(d, w) and let us pick a T € T Fsog){w, A). Then, by (3.10), (4.1b),
(4.34)y{43TY N € Z¢ and h € Gﬁﬁﬁ R) exist such that (4.387777777)
ad TH([¢ + 2mw]a) A[#]a) T([8le) = exp(T[N - ¢ + 27h([¢d)]) - (4.35)

Of course the rhs of (4.35) is the 1-turn spin transfer matrix of Ry, (T;w, A). If S is a spin
trajectory of (w, A) over zg = [¢]q, then by our transformation rule (3.4) we can transform
S into a spin trajectory S'(n) = T*(L,(n;20))S(n) of Ry ,(T;w, A) and we see by {2.37) and
(4.35) that S’ obeys the simple EOM:

S'(n+1) =exp Ahﬁ/w (g + 2mwn) + 2rh(L,(n; £))] 1 S'(n) . (4.36)

We now define

H.un..ﬂ.ﬁﬁu MC = Q&.ﬂ.mog mr‘: H\S
= {T € C(T¢, 50(3)) : Rup(T;w, A) € SOT s02)(ds )} . (4.37)

We call every element of ZF F(w, A) an “IFF of (w, A)”. Clearly, by Definition 4.5, ZF F(w, A)
is nonempty iff (w, A} € CBsoa(d,w). _

For the case when T is chosen so that the argument of the exponential is independent of
¢, T(¢) is analogous to the uniform IFF of the continuous-time formalism [BEH]. In that
case we can write the argument as 27v where v is the ADST. Of course since, by (4.18) and
(4.30), TFSH (W, A) € TFso(w, A) we have, by (4.20) and (4.37),

UTFF(w, A) C IFF(w, A) . (4.38)

Tt is noteworthy that the constant N in (4.35) carries interesting information about A. For
example for (w, A) to be proper it is necessary that all d components of N are even integers.
This is shown in Section 7.2 of [He2] by using simple arguments from Homotopy Theory. We
will return to (4.35} later on. _

Let (w, A) € ACB(d,w). By Remark 2 in Section 4.1 the set UZFF(w, A) is nonempty
so that, by (4.38), ZFF(w, A} is nonempty. Then we have

.kﬁﬁmﬁ&u c(_v C Qmmonmvh&ugu . ﬁ#wov

Let {w,A) € ACB(d,w). We will now briefly discuss how IFFs are important from a
practical point of view. In fact in the computer code SPRINT {EPAC98, BHV98, Ho, Vo,
BHV00, BEH00] one computes a spin tune v of the first kind in two steps. By (4.39)
IFF(w, A) is nonempty. Then in the first step of SPRINT one computes an IFF of {w, A),
say T. By (4.35), an N € Z% and a h € C(T%, R) exist such that (4.35) holds. In the second
step of SPRINT one computes v by doing some averaging (NEEDS FIXING 77777) Fourier
Analysis of h. For more remarks on the first step see Remark 6 in Chapter 5.
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us to the Uniqueness Theorem for the ISF [Yol, DK73]. A rigorous definition, as in
Definition 4.4, is therefore very relevant for understanding real spin motion.

p mo&o.ﬁwmonoHEm:mBmmeo&ocEﬂowméEowr%ﬁ%Bozmﬁmmdm&gm ﬁoﬁomﬁﬁ
N Lo i A for a Eu.,mm m@wwm& of the ISF near spin-orbit resonances. For detailed further comments -

@&, ,zz\: see Section X in [BEH].
¢) SPECIAL STRUCTURE IN CHAPTER 9,

2m
C vLet {w, A) € ACB(d,w) and let us perturb P, 4{z, S) into P, 4(z,5) +¢ A mﬁmwﬁm v

K\TW Then on the basis of the above notion of spin-orbit resonance of the first kind, we

will have motions far from leading order resonances (FLOR) and near to leading order
. resonances (NLOR), where a € R , B(z) € R¥*, For example, v —m-w —n will appear
i as a small divisor in the analysis. QSWWO/\.M,.V..YW..V.J O

L
u
ff ?a rﬁ 3 H normal forms and the subsets CByg of %Sﬂ
s /zf mu, Wmomm again that each spin-orbit torus shares many properties with all similar ones so that
Od\é/u & in order to study these properties of (w, A) one should look for the simple elements of (w, A).
/L In Sections 4.1 and 4.2 we studied this-igsue for when these simple elements belong to
//w_\zz SOT$5 (4, ?v Of course, then (w, AY everi contains spin-orbit tori from SOT 5 (d, w) C
SOT 5o (d,w). g, _
Thus it is a natural to look into the more general situation when (w, 4) NSOT sor)(d, w)
is nonempty or the even more general case when (w, kc NSOT g{d,w) is nonempty. Note
that SOT §57)(d,w) is a proper subset of MGﬂmo y(d, w). So this point of view is indeed a
O mmbmw@r\@aon Om the one in Sections 4.1 A;\:uWO/\m TEXT?77?77)
Thus in this section we discuss those (w, .3 for which {w, A) contains elements in SOT g (d, w)
where H is a subgroup of SO(3) with special emphasis on the case H = SO(2). This leads
to the concept of “H normal form” given by the following definition.

Definition 4.5 (H normal form, CBy(d,w),CBy)

Let H be a subgroup of SO(3) and let (w, A) be in SOT(d, Ev Then we call a (w, A") in
SOT y(d,w) an “H normal form of (w, A)” if (w, A) ~ (w, A"), ie, (w, A) € (w,A). We
denote by CBy(d,w) the set of all spin-orbit tori in SOT (d,w) which have an H normal
form, t.e.,

CBy(d,w) = U (w,A). (4.28)

ﬁrc_ipvm'we\wl:ﬁ&usv
Thus (w, A) € CBy(d,w) iff T € C(T%,SO(3)) ewists such that
THP,(2)A(NT(z) € H ‘ (4.29)

holds for every z € T We denote, for fired H, the union of all CBy(d,w) by CBy. The
acronym CBy will be explained further below. We also define

TFulw, A) = ? € C(T%, 50(3)) : Ryw(T;w, A) € msﬁe?a; .
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m.mm.cua 3: A symbolic representation of the relations between the sets ACS etc........

4.2 Spin tunes and spin-orbit resonances of the first kind

We now come to the definition of spin tune. A v € [0, 5. is said to be a spin tune for
(w, A) € SOT(d,w) if (w, A) ~uw (w,exp(27T)). More formally we have the definition

Definition 4.3 (Spin tune of the first kind)
If (w,A) € SOT (d,w) we define the set

Ei(w,A) = {v e 0,1} 1 {w,A) € ACB,} = {v € [0,1) : (w, A) € (w, Ag,)} . (4.25)

(
We call the &mﬂ;mim of Z1{w, ?& the spin tunes of the first kind of (w, A). |
It follows from Definitions 4.1,4.3 that, for every (w, A) € SOT(d,w), the set Z(w, A) is
nonempty iff (w, A) € ACB{d, EV Note also, by Definitions 4.2 v% 3, that 0 is a spin tune of
the first kind of a spin-orbit torus iff that m?szogz torus is in'CB. Most importantly, for

every (w, A) € ACB{d,w) and every v € Z;(w, A) we have the relation

Z{w, 4)=10,1)N %m~\+3.€+3 cee{l,~1},meZ%ne NW . (4.26)

In fact the inclusion Z(w, 4) D ﬁou 1) N *\ +m-w+n:meZine NW is very easily

demonstrated as follows.

So let v € Z;(w, A). Then, by Definition 4.3, (w, 4) € {w, Aq4,,) whence recalling Defini-
tion 3.1, the function " € C(T¥, m@@z. defined by T([¢]s) := 967%3 - ¢)) with m € Z¢,
belongs to ql%waa?{ v m{ ) where v/ € [0,1) is defined by ¢/ := v+ m-w mod 1. Thus, by

Definition 3.2, (w, Ag,) &= Y (w, Ag) so that (w, 4) € (w, Agr Z, which implies, by Definition

§
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Figure 2: A symbolic representation of the relations between the sets SOT (d,w), AT {d,w), ACB{d,w)
and ACBo{d,w) defined in the text. The pink area represents a part of SO7 (d,w} ard the red, blue and
green locii represent AT (d,w), ACBo(d,w) and ACB(d, w) respectively. The ACBo(d,w) crosses the AT (d,w) -

acronym ACB in Definition 4.1 since the spin transfer matrices of the spin-orbit tori in ACE
are so-called “almost coboundaries” (see, e.g., [KR]).

Remark:

(1) Definition 4.1 gives us'another property shared by similar spin-orbit tori since it implies
that if (w, A) belongs to ACB then every spin-orbit torusin (w, A) belongs to ACB. O

We now formalize the transfer fields associated with SOT* (d,w). Let (w,A) €
SOT (d,w). Then we define
TFerst(, A) = {T € C(T,SO(3)) : Ryw(T;w, A) € SOTE (d,w)}, (4.18)
e., TFE™ (w, A) is the set of all transfer fields from (w, A) to spin-orbit tori in SOT $™(d, w).
Hu %o special case H = SO(2), (4.18) gives us
TFEgsw, A) = | {T € TFuul4 4a,)} - (4.19)
ve0,1)

By Definition 4.1 it.is clear that a spin-orbit torus (w, A) € SOT (d,w) belongs to ACB(d, w)
iff 7FE50 (w, A) is nonexepty, i.e., iff T F&5i(w, A) is nonempty. Note also that the argu-
ments that led to (4.4) imply that if (w, A} € %Gq‘ei (d,w) then TF§5%) (w, A) contains
a transfer field which is constant valued. _

Remark:



The set in {4.7) contains the most important spin-orbit tori in applications. For the subgroup

G, = {exp2rnvT):n €L}, (4.8)
of SO(2) we see that Ay, € G, and that
.m,m\w ne:,.\; C SO ngmﬁm&ugv u
vE[0,1)
SOT55i = J sorert.
ve[0,1) p : .
A\"\M\ﬁ mw Tmov

Of course, wi > the trivial subgroup of SO(3] is Gy, i.e.,

N

o oA (L dT 5
A S ‘ Go = {I3x3} , (4.10)
and by (4.1b), (4.5) and(4.8) we have

SOT gy = SOTE™! = {(w, Ago) : d € Nw € R}, (4.11)

where, by (4.5), Ago is the I3x; valued ?boSou on R?. Note that all spin-orbit tori in every
%Gﬂmﬁ%@ w) are proper, 1.e.,

| SOTE (d,w) C SOT somilds ) (4.12)
-~ a‘hzbs

./ In ?S\m‘ A AeS GQA%; {d,w a&% a mrms‘ symmetric matrix L exists in R**® such that

(4.13)

_ for mé@.(wvm R. We now formalize these ideas into a definition.

Definition 4.1 (ACB,(d,»), ACB,, ACB(d,w), ACB) |
For v € [0,1),w € R* we denote the set &q those spin-orbit tori in SOT (d,w) which are
similar to {w,exp(2mvT)) by ACB,(d,w), 1

ACB,(d,w) = {w, Ay,) = ﬁmsaﬁﬁﬁ.@%v : T € C(T% S0(3))}, (4.14)
and we denote, for fired v, their union by ACB,, i.e |
ACB, = | ACB,(dw). | (4.15)
deNweRd ‘

We also define
ACB(d, w) C ACB,(d,w) C (w, Au,)

vE[0,1) €[0,1

= C (w, A) = C (w,4), (4.16)

(w,A)ESOT $5 ) (duw) (w. A)ESOT G55, (dow)

where in the third and fourth equolities we used Q 7). We abbreviate their union by ACB,
ie., ACB = {Jyen yepe ACBd, w). 0

B
o



whence

.&. Apﬁwa,E mm.ﬂu W, \Cv = .mw&mlﬁ pﬂ %Agu .&.vyu
. t\.ﬂm\
so that; by Defifiition-3:6, f is & C{T¢, SO(3))-map from

AMQ/MEFR\v\ﬁo ﬁpm.eq‘m&u .loc,vu mwnrlﬁv.
The function f has an obvious interpretation in terms of time reversal as follows. Using

the EOM (2.37), we see that if S is a spin trajectory of (w, A) over z then the “time
inverted” function S, defined by S'(n) = S{—n), is a spin trajectory over zy of the
spin-orbit torus f(w, A). Note also that f is a bijection onto SOT (d, ~w) since f is
its own inverse, that is, f o f is the identity function on SO7T(d,w). Thus recalling
Definition 3.6, the right C(T¢, SO(3)) sets (SOT (d,w), Ryy) and (SOT (d, —w), Ry )
are isomorphic right G sets. .

-

(7) Let G be a topological group and let (E, R) be a right G space. Then, by Definitions
3.5 and 3.6, pr is a topological G-map from (F, R) to the trivial right G space over
E/R. | M

4 Spin tunes and spin-orbit resonances of first kind
and H normal forms

WE NO LONGER HAVE SPIN TUNES OF THE SECOND KIND. 3O WE SHOULD

One important motivation for the transformation rule of Definition 3.1 is that, under
certain circumstances, a spin-orbit torus can be transformed into a simpler one. In fact as
mentioned in Chapter 3 each spin-orbit torus shares many properties with all similar ones
so that in order to study these properties of (w, A) one should look for the simple elements
of {w,A). This is the subject of this section and it will enable us to associate extra tunes,
namely spin tunes, with our spin-orbit tori. As in other dynamical systems, tunes can lead
to the recognition of resonances and consequent instabilities. Here, spin tunes will lead to
recognition of spin-orbit resonances. In the case of real spin motion, where spins are subject
to the electric and magnetic fields on synchro-betatron trajectories, the definition of spin-
orbit resonance allows us predict at which orbital tunes spin motion might be particularly
unstable. The definition of spin tune is also associated with the concept of normal forms for
spin. Here, we will go beyond the usual definition of normal form for spin [Yo2] to take a
broader view by introducing H normal forms where H is a subgroup of SO(3).

We thus define, for an arbitrary subgroup H of SO(3),

SOT y(d,w) == {(w,A) € SOT(d,w): Ae C(T¢ H)},
§SO0Tg= |J 8O0Tx(dw), | (4.1a)

dENweR .

where, as always in this work, the topology of a subgroup H of SO(3) is the relative topology
from SO(3). Clearly the sets in (4.1a) give us spin-orbit torl which are the simpler the smaller
e RIS e

20 g \m_% 7 yRue

-



If G is an Abelian group then every right G action R is also called ¢ “G action” and
every right G set is also called “G set”. Thus if G is an Abelian group then the notions right
G action, left G action, and G action ore synonymous and the notions right G set, left G
set, and G set are synonymous. ]

END NEW
Remark:

(5) The notions of left and right are dual. In fact if R is a right G action on E then the
function L : G x E — E defined by L(g;z) := R(g~%;z) is a left G action on E.
Moreover if L is a left G action on £ then the function R : G x £ — E defined by
R{g;x):= L{g~"';z) is a right G action on E. , O

To show that Ry, is a right action, note that (G, ) = (C(T% SO(3)},) is a group with
identity element e where = denotes pointwise multiplication. In particular, 7"+ 7" is defined
by (T «T")(2) := T(2)T'(z) where eg is the constant I3.3 valued function, i.e., eg = Ay
where 440 € C(T%, SO(3)) is defined by Ago(z) = I3x3. Using Definition 3.1 and (3.10) we
obtain _

.ﬂma,ﬁﬂmmﬂw W, .hC =W .\@Mb.\#kﬁgmo = hoc,q kﬁv 1
Ry |\ T Ry (Tyw, A) ) = Ry | T, (T 0 P)AT
= (6, () o )T 0 PL)ATT' | = Ryu(TT' 0, 4) (3.13)

whence Ry, is indeed a right C(T¢, SO(3)) action on SOT (d,w) so that (SOT (d,w), Ry.)
is a right C(T¢, SO(3)) set. The orbits of the group action Ry, are the equivalence classes
of ~4,,. Note also that the group C(T¢, SO(3)) is not Abelian since the group SO(3) is not
Abelian so that the right action R, is not a left action.

While Ry, is of course important in this work since it amﬁmHEEmm the transformation
rule, the fact that Ry, is a group action does not play a major role in this paper. In fact
we introduced the right group action Ry, just to prepare the reader for important right
actions in Chapter 7. These right group actions have additional structure as formalized in
the following definition.

NEW

Definition 3.5 (Right G space)

Let E be a topological space where E is nonemptly, G be a topological group, and let R be
a right G action on E with R being continuous where G X E carries the product topology.
Then the pair (E, R) is called o “right G space”. Note that each R{g;-) is a homeomorphism.
Recalling from Definition (3.4) the notation E/R and pr, we equip E/R with its natural
topology, i.e., a subset M of E/R is open iff pp'(M) is open in E. Thus the function
pr 15 onto E/R and identifying and one calls E/R an *“orbit space”. Also each orbit is

equipped with the relative topology from E. In the important subcase when the topology of
G is discrete (e.g., when G = Z) the condition that R is continuous is equivalent to R(g;-)

18
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3.2 Topological G-maps of left G spaces

We now look at how the left Z spaces (T% x R*, L, 1), defined in Section 2.3, are related for
similar spin-orbit tori. From {3.1) .

PoroPiacPor=Piu. (3.5)
Therefore, by (2.28), L, a(n;-) = ﬁcﬂ o Lya(n;-) o Por, so that
PiroLoa(n;) =Loa(n;-)oPor. T (3.6)

Thus according to the following definition, Py and Py, 1 are topological Z-maps.
NEW

Definition 3.3 (G-maps of left G sets, topological G-maps of left G spaces)
a) Let G be a group and let (E, L), (E',L') be left G sets and consider the function f: E —
E. Ifforge G,z € E, f satisfies ,

F{L{g;2)) = L'(g; f(z)) , | _ | (3.7)

then f is called a “G-map from (E,L) to (E',L")”.
b) Let G be a topologicol group. Let (E, L), (E', L") be left G spaces and let f € C(E, E"). If
f satisfies (5.7) then f is called a “topological G-map from (E, L) to (E',L)". m

If f is a G-mapfrom the left G set (F, L) to the left G set (E', L) and if f is a bijection onto

-

E' then f~!is a G-map from (E’,L') to (E, L) and (E', L) and (E, L) are called “isomor-
phic” mba&%dgt c-same. We then also say that L' and L are “isomorphic”.
\\fﬂ%omocm? when f is a topological G-map from the left G space (E,L) to the left
G space (E', L") and if : eomorphism onto £’ then (E',L"} and (E, L) are called
,;moﬁo%bpnl@c, are effectively the m@Em/

“"In our special casé 1t tollows frond (3. 8 and Definitions 3.1 and 3.3 that if T is a transfer
field from (w,A) to (w,A’) then the quo_u, is a topological Z-map from the left Z space
(T¢ x R®, Ly, 4) to the left Z space (T¢ x R®, L, «) and, since Py7 € Homeo(T x R®), Por
is a topological Z-map from {T¢ x B®, L, 4} to (T x R®, L, 4).

END NEW

Remark:

(4) Eqn. (2.28) provides another example of a topological Z-map in our context. Thus let
f e C(T? x R*, T¢) be defined by f(z,5) := z. Then, by (2.28),

f ?ﬁism z, mvv = Ly(n;2) = Lu(n; f(2,9)), ie.,
foLya(ni-) = Ly(n;-)o f. (3.8)
So we see by (3.8) and Definition w.w_gmﬁ f is a topological Z-map from the Z space

(T¢ <R3, L, 4) to the Z space {T%, L,). Since T¢ xR? is the cartesian product of T and
R? and f is the projection onto T, the fact that f is a topological Z-map means that

16



MATHIAS: where is K in this definition? That’s why the ezamples are quoted.
We denote the collection of all K cocycles over (E, L) by COC(E,L,K). Notethat GXE
carries the product topology. For literature on cocycles, see, e.g., [HK1, KR, Zil]. O

The reader will easily appreciate the similarity between the structures of (2.33) and
(2.42) and the correspondence between the functions ¥, 4 € C{Z x T¢,SO(3)) and f €
C(G x F,K). Since (T% L,) is a left Z space and SO(3) is a topological group, the set
COC(TY, Ly, SO(3)) is well defined. In fact since ¥, 4 € C(Z x T% SO(3)) it follows from
(2:33) that, for every (w, A) € SOT(d,w), Vo4 € QQQS? Ly, mOﬁ }). Conversely, every
¥ in COC(T?, L, SO(3)) is the spin transfer matrix of a spin-orbit torus since, by defining
A= ¥(1;-), we have ¥, o = ¥ so that ¥ is the spin transfer matrix of (w, 4). We thus
arrive at

COC(T?, L., SO(3)) = (Vs : (w, A) € SOT(d,w)} - (2.43)

Clearly the cocycles W, 4 are important for spin-orbit motion of spin-orbit tori. Further
below when we will see more Z sets carrying valuable information about {(w, A) that all of
them carry ¥, 4 in an explicit way (see Chapter 7).

THIS SENTENCE 7@MUm WORK ON THE SYNTAX. WHY NOT MENTION CH.7

3 Transforming spin-orbit tori

3.1 Conjugacies and the transformation rule of spin-orbit tori

We now consider the basic structure of SOT(d,w). The dynamics of each element of
SOT(d,w) is given by its I-turn map P, and we are interested.in those (w,A) which
have similar dynamics. This is made precise by the notion of conjugacy. Recall that
P, € Homeo(T¢ x R?). Two functions f, g € Homeo(T* x R?) are said to be “conjugate” if
at € Homeo(T¢ x R®) exists such that g = t7' o foz. We denote this similarity by f ~ g. To
see the effect on the dynamics we note that y, = ¢"(yo) = ({7 o fot)™(yo) = (t™ o fot) (1)
whence t{1,) = f*(¢(10)). So 2, = t(yn) where z,, := f™(z,) and many properties of zy, 21, .-
and yo, 11, ... are similar, e.g., existence of fixed points or periodic solutions. Furthermore
f ~ g defines an equivalence relation on A omeo(T? x R?*) whose equivalence classes form a
partition of Homeo(T¢ x R?).

We now formalize this in the context of SOT (d,w}. By (2.19), Po.a(z,S5) = _M MAMMW v

and we will focus on its spin component, i.¢., the A. Thus we consider the transformations

Por defined by Por(z, S) = m z v

Clearly if (w, A), (w, A"} € %Mmqu&u then, by (2.19), the equality
quoluw 0 PyaoPor = PFua (3.1)
holds iff
Al(z) = THP.(2)) A(2) T (2] (3.2)
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(G2) (Identity element eg) Hepec Vgec o =g *g=g*eg,
(G3) (Inverse owogoﬁmv ¥y 66 Jgaec € = 1% g2 = g2 * g1 ,

Note that =(g1, g2) 3%%& by o1 * go. (WHERE DOES THIS COME FROM?#2¢%2%%
Note that we always cbbreviate (G, ) as G when the operation * is clear from the contest
and that we often write g1 * g2 a$ G102 Ebms the operation = is clear from the context. The
inverse element of o g € G is denoted by g~*. Two subgroups G',G" of a group G are called
“congugate” if g € G exists such that G" = {gg'g™" : ¢’ € G'}.

A group (G, *) is called “Abelian” if

(G4) (Commutativity) Vo g §1 %02 = Ga% g1 -

IF (G, %) and (G, %) are groups then a function f : G — G' is called a group homomorphism
from (G, ) to (G, %%} if flgr % g2) = flg1) » xf(g2). If [ is even o bijection then it is
called o group isomorphism from (G, =) to (G', %%} and the groups (G, *), (G',*x) are called
“isomorphic”. Clearly conjugate subgroups are isomorphic. ]

If G is Abelian then = is often Hov_@oma with 4. Important examples of groups in Section
2.2 are (Z, +), (SO(3), ¥) (where the binary operation is matrix multiplication) and (R, +).
We abbreviate them by Z, SO{3) and R and note that Z and R are Abelian.

Definition 2.2 (Topological group)
A “topological group” is a group (G,*) where G is a topological space, where the binary
operation * is continuous and where the function g — g~ ! on G is also continuous. O

The above mentioned muocwm Z and SO(3) in Section 2.2 are topological as we consider them
to be equipped with their standard topologies. Thus a% ﬁo@oyomw of Z is discrete, i.e., every
subset of Z is open and SO(3) is equipped with the relative topology from R3*3,

NEW

Definition 2.3 (Left G action, left G set)
Let G be a group with identity element eq and let E be a nonempty set. Then a function
L:Gx E— E is called a “left G action on E7 if, for 1,9 € G,z € E,

Llegiz) = - (2.39)
L(g192;2) = L{g1; L{g2; 7)) - I, EK (2.40)
MATHIAS: mﬁcgs@q the symbol (F,L) to ﬁmx&:mm G2 oo .«M»\M.ﬁa&m P
If L is a left G action on E then the pair (B, s called o “left G set”. Since L{eg; z) =

J..ll

L{g; L{g™"; ) each L(g;-) is a bijection, i.e.. L{g;-) € Bij(E). If is o left G set and
x € E then the set {L{g;z): g € G} is ngm&.%;lacﬁ?ﬁ%p N\:Rmﬁ hv We denote the set
of orbits by E/L and define the ?3&53 pr: E— E/L bypo(z) = {L(g;x): g€ G} Thus

pu(z) the orbit of x under L. Note that the orbits form: \m @@R&S& of E. If the orbit of x

only consists of T itself then x is called g/f\ﬂa!mm point” of (E, L) arid of L and the set of fized
points of {E, L) is denoted by Fiz(L). Note that this noti b/m orbit” is different from the
physical notion of “orbital motion”. For the m@ms&ﬁ\gﬁ p:& bijection, see Appendiz
A. If G is an Abelian group then every left G actionp 5173 8:& a “G action” and every

left G set is also called “G set”. )

\_JC‘I-
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as we now argue. With this notation, we impose the convention that Pf 4 is the identity
function on T¢ x B? and that for n negative, PZ , is the |n|-th iterate of the inverse P77
From the first component of (2.19) we conclude that the function Z,, : Zx T¢ — T¢ in (2.26)
is given by

L,(n;z2) ”H_ Pr(z) = Puwlz) . (2.27)

From the second component of (2.19) we conclude that the function ¥, 4 is SO(3)-valued,
ie, W, 4:ZxT¢ — SO(3). We define the function Ly : Z x T x R® — T¢ x R’ for
neZ zeTSeR by

L (n; 2)
A "~ n > — ! ..v o
H\E,bmﬁu oy .m‘u . E“\wmf rm,,v .@S_\»Aﬁ\w Num hl.lmu
By the definition of composition
Pt =PoaoPia, (2.29)
and we have
Ly a(n+m,z, S) = Lya(n; Ly alm: 2,8)) ¢ (2.30)
This gives, by (2.28),
Ly{n 4 m; z) _ e R
%E,bﬁ‘_@ + m; Num - H\E,\pmﬁ + m, %, mv - H\Evbﬁﬁu H_E,_bﬁsu Nu vm_vv
— 7 A L,(m; z) _ L, (n; L,{m; z)) |
AU W, a(my 2)S T U, an; Ly (m; 2)) Ty, a(m; 2)S ’
(2.31)
which implies
Lu(n +m,2) = Ly(n; Ly(m; 2)) | (2.32)
MATHIAS: mention cocycles here already?
and
%Euhﬁ\; + m; Nv = ,H\.Eubﬁﬂam .H\EASW vaﬁs,bﬁsw Nv . ' hwwwu
As a consequence of @wwv we get
@E,LADW Nu = I3x3 ,
U, aln;z) = A(Ly(n = 1;2)) - -- A(Lw(1; 2)) Alz) (n=1,2,..),
@E,LAB\M Uv - \nwnm.ﬁe...?@ va e \Hnﬁhc\mlrmuv : TJ\ = —1, -2, . V ’
_ (2.34)
where we also used (2.27). It is easy to obtain (2.33) directly by iteration of (2.19), i.e

-3
without using L, 4, however the procedure here is more pedagogical since the pairs (1%, L)

10
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With Remark 1 we define 4, 4 € C(T¢, S Qﬁwuv by

A al[8la) = Bu,a (213 6) (2.14)
and we abbzestmT m\w\\mﬁ\f
SOT com(d. w) = {{w, Au,a} : (w, A € SOT(d,w)} (2.15)

where the suffix “cont” indicates that the elements of SOT yon:(d, w) come from a continuous

Q ~~time treatment. Moreover we define the function P, 4 € C(T% x B, T¢ x R*) by

'S

Paa6la8) = (G770 ) .16

ote th the P,.4 is the PM on T¢ x R?.

PYergds ngmww.

¥
\

ﬁ\

(2) It is worthwile to show how one proves the continuity of A, 4 since we will use this

method time and again. First of all we note that A, 4 is well defined since, if [¢]s = [¢/]4
then (¢ — )/2 € Z* whenc Ay a(19la) = Dua(2m; ) = Rua(2m8) = Aual(])
where in the second equality w Ve s”\“%m that @, 4(27; ¢) is 2m-periodic in the components
of ¢. To show that A, 4 is continuous we recall from Remark 1 above that my is
identifying. Since my is identifying and ®,, 4(2m;-) is continuous and since, by (2.14),
A a0y = B, 4(27;+) we conclude that A, 4 is continuous, ie., A, 4 €C ﬁa S50(3)).
As always o denotes composition of functions (see Appendix 3

The continuity of P, 4 can be shown by the same method. a

2.2 Introducing the set SOT of spin-orbit tori
We now generalize SOT woni(d,w) by defining, for every w € R?,

SOT(d,w) = {(w, A) : A € C(T%, SO(3))} , (2.17)

where A need not be derivable from (2.1, 2.2) via (2.14) as we will see below. We denote
the union of the SOT(d,w) over w by SOT (d) and the union of the SOT(d,w) over d and
w by SOT and call every pair {(w, A) in SOT a “spin-orbit torus”. Since the function 4, 4
belongs to C(T%, SO(3)) we see from (2.15) and (2.17) that

SOT womld,w) C SOT(dyw) . | (2.18)

We call w the “orbital tune vector” of a spin-orbit torus (w, A) and A its “1-turn spin transfer
matrix”. Next, motivated by (2.10) we define, for every (w, 4) in SOT{d,w), the function
Poa: T¢ x R® — T¢ x R® by

Pua(2,8) 1= m Mmm v u (2.19)



ww. —ABH)S, SO =S eR, (2.2)
where w € R? and where the function A : R4 — R**? ig continuous in ¢ and piecewise
continuous in §. More precisely A is either continuous or a finite number of 8 values 01, ..., fn
exist such that A is continuous on (R\ {#1,...,8~}) x R? and such that A(f;-), ..., A(fn; )
are continuous. For the - notion see Appendix A. Moreover we assume that A is 27-periodic
in each of its d + 1 arguments and that it is skew—symmetric, i.e., A*(0, ¢) = —A(8, $). We
denote the set of pairs (w,.4), where w € R* and where A satisfies the above conditions, by
SOT(d,w). _

As is clear from the Introduction, the above IVP and the assumptions on A are motivated
by our underlying interest in spin-orbit motion in storage rings. In the application to spin
motion in storage rings, S is a column vector of components of the spin S and A8, ¢) =
As(0, ) represents the rotation rate vector Q(8, J, ¢) of the T-BMT equation [BEH]. Here
J, & are the action-angle variables of an integrable orbital motion. In this work we are only
occasionally interested in the J-dependence. So we suppress the .J unless we need it since
most definitions in this work do not involve the .J. The acronym SOT stands for spin-orbit
torus, reflecting the fact that orbital motion, ¢(f) = ¢¢ + wf can be represented on a torus
T¢. In fact from Section 2.2 onwards the orbital motion will be on T¢. The set 50T (d,w)
includes standard spin-orbit motion but need not, and is therefore more general, in keeping -
with our wish to investigate the properties of any system defined by (2.1, 2.2).

Since the system (2.1, 2.2) is periodic in @ it is convenient to study the behavior of
solutions in terms of the Poincaré map (PM) [AP, HK2]. We now derive a convenient
representation for the PM. Solving (2.1) gives

. W&\ 2. .suu \ﬂ}:.fl
e $(6) = o+, (2.3)

whence (2.2) reads as

mw = A, do+wh)S, SO)=SeR . (2.4)

Since A(6; ¢) is piecewise continuous in 8 it can be shown [Cr] that the IVP {2.4) has a
unique solution S in the sense that _

S(0) = Sy + \Q Alt, do + wt)S{t)dt . (2.5)

It follows that S(#) is continuous in 8. The proof in Cronin [Cr| doesn’t include the @@5533
¢p but it is easily added. ,
Since the EOM (2.4) is linear in S the general solution of (2.5) can be written

S(8) = Pu,u(f; ¢0)S0 , (2.6)

where the function ®,, 4 : R x R — SO(3) satisfies, due to (2.5,

bo
-~
—

g
By 4(8; 0) = s + \ AL, G0+ t) B (0 do)dt (
Jo
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In storage-ring physics there are two main approaches for dealing with the independent
variable in the equations of motion (EOM), namely use of the flow formalism or the map
formalism. In the flow formalism the EOM is an ODE, whence the independent variable is
the continuous variable § € R describing the distance around the ring. In the map formalism
the independent variable in the EOM is the discrete variable n € Z labelling the turn number
where Z denotes the set of integers. In Dynamical-Systems theory it is common practice to
refer to the independent variable in the EOM such as 8, the “time” and that is the convention
that we will use here. Thus the two approaches are based on continuous time and discrete
time and in the following we will refer to these as the continuous-time and discrete-time
formalisms. In [BEH] we used the continuous-time formalism. Here, the emphasis is on use
of discrete-time. .

Physical electric and magnetic fields are smooth. So the assumption of smoothness
adopted in [BEH] appears to be perfectly reasonable. On the other hand, practical numerical
spin—orbit tracking simulations are usually carried out with fields which cut off sharply at
the ends of magnets and/or with thin-lens approximations. Thus in [BEH] our formalism
involved smoothness in the time variable ¢ although numerical calculations cited there in-
Sec. X had been obtained using hard-edged and thin-lens fields. However, hard-edged and
thin-lens ring elements fit naturally into the discrete-time formalism. In particular, for this,
we merely require that the fields are continuous (i.e., of class C°) in the orbital phases and
we allow jump discontinuities in 8. Of course, this still allows study of systems with fields
smooth in 8 and/or the orbital phases. The way that the discrete-time formalism derives
from the continuous-time formalism is explained in Section 2.1. It is also an easy exercise
to translate the machinery of the present work to the continuous-time formalism and this
would give results which substantially go beyond those in [BEH].

This work is designed so that it can be read independently of [BEH]. However, we wish to
avoid repeating the copious contextual material contained in [BEH]. We therefore invite the
reader to consult the Introduction and the Summary and Conclusion in [BEH] in order to
acquire a better appreciation of the context. In this work, as in [BEH], the orbital motion is
integrable and we allow the number of angle variables, d, to be arbitrary (but > 1) although
for spin-orbit motion in storage rings, the case d = 3 is the most important. We use the
symbols ¢ = (¢1, ..., ®a)t, J = (J1, -, Ju)t and w(J) = (w1 (J), ..., wa(J))" respectively the lists
of orbital angles, orbital actions and orbital tunes where with continuous time d¢/df = w{.J)
. Note that ! denotes the transpose. In the continuous-time formalism, the T-BMT equation
is written as dS/df = (6, J, $(6)) x S where the vector S is the spin expectation value (“the
spin”} in the rest frame of a particle and £ is the precession vector obtained as indicated
in [BEH] from the electric and magnetic fields on the particle trajectory. Note that ¢ € R?
but as it is common and convenient we replace R® by the torus T¢ and thereby map ¢ to
é mod 27 in T¢. For the purposes of this work we don’t need to consider the whole (.7, ¢)
phase space since it will suffice to confine ourselves to a fixed .J-value whence to spin-orbit
motion on a single torus. Thus the actions J are just parameters. However it is likely that
our work can be easily generalized to arbitrary orbital motion if one maintains our condition
that the orbital motion is unaffected by the spin motion.

The work is structured as follows. In Section 2.1 we discuss the continuous-time formalism
which will motivate, in Section 2.2, the discrete-time concept of the spin-orbit torus. In
Section 2.1 we also define those spin-orbit tori which can be derived from the continuous-
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