/%k _ (5

':l 47 1 /' / y //’, -
{// AL [ —¢ O

Because, by Theorem 7.1b, every = (gbo) is nonempty, our argumentation leading to (E.14) can
be repeated for arbitrary £, i.e. (E.14) holds for every £ € R% Thus under the assumption

that a(Ug,, A) is continuous in ¢o, we have shown that all A{ M(-; d))) are equal.

Thus it remains to be proven that this assumption is true. If X\ is not in Y[, then, by
Corollary A.2¢, a(Uy,, A\) = 0 so that in this case the continuity in ¢g is obvious. We thus
have to consider only the case when \ € Y, i.e. A = m -w + mg with m € Z% my € Z. We
first define, for every ¢y, the continuous and 27—periodic function g(+; ¢o) : R¢ — SO(3) by
g(¢; go) :==v(0, o + ¢). We obtain, for all ¢y, that

a(Ugy, m - w +mo) = a(Ugy, m - w) = a<g(27rw~; o), m - w) = gm(*; $o)
= exp(im - ¢o)gm(+;0) , (E.15)

where in the third and fifth equations we used Lemma A.lc and where g,,(+; ¢o) denotes the
m~th Fourier coefficient of g(-; ¢o). By (E.15), a(Ug,, m - w + my) is continuous in ¢y which
completes the proof. Note that (E.15) implies that a(Uy,, m-w—+mq) = exp(im - ¢o)a(Us, m
w +mg). O

F Example 3

One objective of this appendix will be to investigate, if the spin—orbit system (a, 1/2)
has m—turn invariant spin fields and n—turn invariant frame fields. Note that if S de-
notes an ISF then (recall (3.4) and Remark 1 in Sec. 3), S(0, -) satisfies the eigenproblem
Me(2; )S(0, -) = S(0, -), where M€ denotes the spin transfer matrix of the spin—orbit sys-
tem (a¢,1/2). Thus, computing the 2—-turn spin transfer matrix will be our first aim. Other
objectives of this section are the quasiperiodicity of the solutions of (2.3) and stroboscopic
sequences of polarization fields.

F.1
To meet the first objective we first conclude from (2.21) and (2.22) that

1—22 —2be 2ac
a(-+7)=| —2bc 1-—2b* 2ab : (F.1)
—2qc —2ab 2a%—1

From (2.21),(2.10),(F.1) it follows that the 2-turn spin transfer matrix reads as

1—8c%+8c* 4bc(l —2¢?) 4dac(l — 2¢?)
ME(2; ) =a’(- +ma“= | —4bc(l —2¢?) 1—8b*c? —8abc? . (B2
—4ac(l —2¢®)  —8abc? 1 — 8a%c?
As mentioned above, the eigenproblem

M(2;0)f(¢) = £(8) , (F.3)
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is essential for our objective so that we have to find a nonzero solution f(¢). By (F.2) the
skew-symmetric part of M¢(2; -) reads as

0 , 4bc(1 —2¢%) dac(1 - 2¢?)
<Me(2; N — (MT(2; .)> /2= —;Lbcg - gczg 8 8 , (F.4)

so that the eigenproblem (F.3) is satisfied by
f= (o, 4ac(l — 2c%), —4bc(1 — 202)> . (F.5)

Multiplying this solution by a scalar gives another solution of (F.3) - in particular f(¢) =
h(¢) satisfies (F.3), if h denotes the continuous and 2r—periodic function  : R — R3, defined
by '

hi=(0,ab,~b%). (F.6)
Note that, by (2.23) and (F.6),
|| = |b]vV1—c2. (F.7)

Thus h is not S*~valued so that & still is not convenient (the same holds for the r.h.s. of (F.5)).

We therefore will normalize & and we observe that, if |h(¢)| # 0, then f(¢) = h(¢)/|h(¢)]
satisfies the eigenproblem (F.3) and that

_ ho)
)= )

_ cos(me/2)
| cos(me/2)|v/1 — sin®(me/2) cos? ()

@ﬂwwmmwwmem). (F3)

It is obvious that, for all ¢, n(¢) is well-defined and satisfies

ME(2;¢)n(¢) = n(9) , (F.9)

if | sin(me/2)| neither equals 0 or 1, i.e. if € is not an integer. It is thus convenient to meet
our objective separately for two cases, which we denote by Case 1 (€ is not an integer) and
by Case 2 (¢ is an integer).

We begin with Case 1. Then e is not an integer so that n, defined by (F.8), is a continuous
and 2m—periodic function n : R — $? which satisfies the eigenproblem (F.9). Note that if S
is a spin field such that M¢(2; -)S(0, -) = S(0, -), then, by (3.4), S is a 2-turn invariant spin
field. It follows that the spin field S, fixed by S (0, -) := n, is a 2-turn invariant spin field.
Because the first component of S vanishes, one observes that v, defined by

vi=[e! xS, e, S], (F.10)

is a 2-turn invariant frame field which will be useful lateron.
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THE FOLLOWING TRICK HAS SHORTENED THE TREATMENT OF THE 2-SNAKE
MODEL BY ONE PAGE IN COMPARISON WITH FEBRUARY

Let f : R — S? be a continuous and 27—periodic function which satisfies (F.3) for all
¢. Defining M := {¢ € R : M¢(2;¢) = I}, we observe by (F.9) that, for ¢ € R\ M,
|£(#) - n(4)| = 1. Note that, by (F.2), M = {¢ € R: ¢(¢)(c*(¢) — 1) = 0} so that M consists
only of isolated points (recall that this means that each point of M is contained in an open
interval which contains no other point of M). Because |f(¢) - n(¢)| is continuous in ¢, it
follows that |f(¢) - n(¢)| = 1 holds for every ¢. Thus either f =n or f = —n so that S and
—S are the only 2-turn invariant spin fields. We conclude from (2.21),(3.1) and (F.8) that

S(1,-+7) = a<8(0, ) = —S(0, - + ) . (F.11)

Eq. (F.11) implies that neither S nor —& is an ISF. We thus have shown that none of the
2-turn invariant spin fields is an ISF. We conclude that (a€,1/2) has no ISF.
We now come to Case 2. Then ¢ is an integer so that, by (2.21), the 1-turn spin transfer
1—-2¢2 0 2ac
matrix obtains the simple form a¢ = 0 1 0 , which implies that e? is an
—2ac 0 2a%2-1
ISF. Thus [e3, ¢!, €?] is an IFF. -
This completes the study of the existence problem of the ISF and IFF and we can sum-
marize the above by the following

Proposition F.1 a) The spin—orbit system (a¢, 1/2) has an ISF, iff € is an integer. If € is
an integer, then an IFF exists.

b) The spin—orbit system (a¢,1/2) has, for every value of €, a 2-turn invariant frame field.
O

Remark:

(1) We now review Case 1 from a general point of view by considering a spin—orbit system
(a,w) on orbital resonance for which d = 1, i.e. w = p/q, where ¢ > 0, p denote integers
(note that the spin—orbit system (a€,1/2) is a special case). Recalling from @ hat

aM(q; Yot = M(q;- + 2mw) , (F.12)
we obtain that a”’S(0, - + 2mw) satisfies the eigenproblem

M(q; )a¥S(0,- + 2nw) = a7 M(q; - + 27w)S(0, - + 2mw) = a’S(q, - + 27w(g + 1))
= a’S8(0, + 2mw) , (F.13)
if S is a g—turn invariant spin field. Eq. (F.13) implies that the spin field S, fixed by
S(0, -) :=al'S(0, - + 27mw), is a g—turn invariant spin field so that, if S and —S are the

only g—turn invariant spin fields, then S is either equal to S or =S, i.e. a £ exists in
{-=1,1} such that

aS(0, -) = &S(0, - + 27w) . / (F.14)
This is the situation of Case 1 and it is therefore no coincidence that the r.h.s. of

(F.11) has the form £S(0, - + 27w).

64



F.2

We now will meet the second objective, which is to investigate the quasiperiodicity of the
solutions of (2.3) and related questions. As in the previous section, we consider Case 1 and
Case 2 separately.

- We begin with Case 1, where € is not an integer and we first of all will search for an
w—quasiperiodic SPF. ‘

IT NOW PAYS OFF THAT, IN THE NEW DESIGN OF THE PAPER, FRAME
FIELDS (AS WELL AS SPIN FIELDS) ARE EXPLICITLY TIME DEPENDENT SO
THAT THE 2-TURN IFF v ‘AUTOMATICALLY’ IS A GENERATOR OF A SPF. THE
LATTER PROPERTY WAS NOT TRUE IN THE OLD DESIGN AND, ACCORDINGLY,
THIS FURTHER SHORTENS THE TREATMENT OF EXAMPLE 3 IN COMPARISON
WITH FEBRUARY

We consider the 2—turn invariant frame field v given by (F.10) where the 2-turn invariant
spin field S is fixed by the condition S(0, -) = n with n given by (F.8). Note that S and v
were already used in the previous section. Because v is a frame field, it follows from Remark
1 in Sec. 6 that Uy,, defined by Uy, (n) := v(n, ¢ + 7n), is a SPF starting at ¢y. Because v
is a 2-turn invariant frame field we have for arbitrary integer n that

U¢o (277') = ’U(Zn, Po + 27rn) = U(O) ¢0) = U¢o (0) )
Upo(2n+1) =v(@2n+ 1,90+ m(2n + 1)) = v(1, ¢o +7) = W, (L) 5

Also we have by (F.10),(F.11) that

v(1, o +7) = [e' x S(1, ¢o + ), €', S(1, o + 7)]
= [—€' x (0, ¢o + ), e, —=S(0, ¢ + )]

(F.15)

0 0
=[e' x S(0,¢0 +7),e",5(0,90+7)]| 0 1 0
0 0

=v(0,¢0+m) | O =: v(0, o + )T . (F.16)
A 0

It follows from (F.15),(F.16) that for all n

cos(mnm) 0 —sin(wn)
Ugo(n) = v(0, o + 1) 0 1 0 = (0, ¢ +mn)J", (F.17)
sin(7m) 0 cos(mn)

cos(¢) 0 —sin(g)
so that Uy, is generated by wug,, defined by ug,(¢) := v(0, ¢o + ¢) 0 1 0 :
sin(¢) 0 cos(9)
Le. Ugy(n) = ugy(mn). Thus Uy, is an w-quasiperiodic SPF starting at ¢o. We now check if
this SPF is a UPF. To apply Remark 1 in Sec. 5, we compute, for every ¢o and every integer
n,

Ugo (1 +1)a(do + 1)Uy, (n)
_ jn—f-lvT(O’ b0 + m(n + 1))a(¢o + 7n)v(0, do + Trn)j‘” ; (F.18)
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where we used (F.17). We also have

v7(0, - 4+ m)a‘v(0, -)

0 —ng —ng 1—2¢% 2bc 2ac 0 1 0
— N [ 0 2bc  1—20* —2ab —ng 0 mg
0 —ne ng —2ac 2ab  2a%—1 ng 0 ng
2 -1 el O
cos(me/2
= | Az 1-22 0 |, (F.19)
0 0 1 o nets]

where in the second equation we used (2.22). From (F.18) and (F.19) it follows, for every
¢o and every integer n, that :

Uy, (n+ 1)a(¢o + mn)Us, (n)
V2b(po+mn)c(po+mn)4/ 1—c(po+mn)

202(¢0 s Wn) -1 | cos(me/2)| 0
= An+1 mTn)c T —C ™ An
=J V2b(¢o+7n) |(z>s?ﬂ;)2\)/| 1—c(go+mn) 1 — 2(¢ho + 71) 0 |J
0 -1
n \/Eb(qb )c ¢ ) 1—C(¢
2¢*(¢o) — 1 (1] Tco(s(gre/2)| 2 0
_ An+l 5 — an
== (_1)n \/§b(¢0|)co(i(7)r)€\//2)1l (¢0) e 202(¢0) 0 J
0 0 -1
V2b c z/1—c
—2¢*(¢ho) +1 (1" (QS(;)co(squT)e/Z)[ @ g
_ An+l . = 7n+1
=J —(=1) ﬁb(¢7>c O(:E;)G\//ml[ (¢0) 1 — 2¢%(do) 0 |
0 0 1
V2b c 1—c
_202(¢0) +1 (¢(?)CO(§ST)E/2)I (¢0) 0
= V/2b(0)c(¢0)4/1—c(¢o) , F.20
——Tcos(me/2) 1-2(g0) O | : ->,_
0 0 1 Lo — 7[/!(’.? (e /ifia’.‘ y rl: £

where in the second equation we used (2.22). Therefore Uf (n 4 1)a*(dg/+ mn)Usy(n) is
independent of n so that, by Remark 1 in Sec. 5, we conclude that Uy, is a”UPF starting at
¢o. Using again Remark 1 in Sec. 5, we thus get for all integers n

UL (n+ 1)a%(¢o + mn)Up, (n) = exp(2mvg,T ) , (F.21)
where v, denotes the UPR corresponding to Ug,. From (2.22),(F.20) and (F.21) it follows
that, for every ¢y, - ;

S [ce A Vel ls

—1 — 8sin®(me/2) cos®(¢o) (sinz(we/2) cos®(¢o) — 1) =1 —2c%(do) = cos(2mvy,) (F.22)

By (F.22) we observe that = has uncountably many elements so that, by Theorem 6.1d, the
spin—orbit system (a¢,1/2) has no spin frequency hence:is ill-tuned.
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We now come to Case 2 so that € is an integer. We first assume that € is an even integer.
Then, by (2.21), the 1-turn spin transfer matrix obtains the simple form a¢ = J which
implies that w := [e, e, €’] is a uniform IFF. Thus, by Remark 3 in Sec. 6, the spin-orbit
system (a¢, 1/2).is well-tuned. We now assume that ¢ is an odd integer. Then, by (2.21),
the 1-turn spin transfer matrix obtains the simple form

—cos(4¢) 0 —sin(4e)
as(4) = 0 1 0 , (F.23)
sin(4¢) 0 —cos(4¢)

which implies that w is an IFF and that

—cos(4¢) sin(4¢) 0
w’ (0, ¢ + m)a()w(0,¢) = | — sin(4¢) —co(s)(élgb) 0 | =exp(—44J) . (F.24)
0 1

Because w is an IFF and by (F.24) and the remarks after eq. (8.4) we have for arbitrary

n, ¢0 ;
w? (0, ‘gbo + mn) M*(n; do)w(0, o) = exp(—4ngeJ) . - (F29)

Also, by Remark 2 in Sec. 6, Ty,, defined by Ty, (n) := w(0, ¢ + ™), is an w—quasiperiodic
SPF starting at ¢. Because of (F.25) and Remark 3 in Sec. 2 the phase function fig, of Ty,
reads as ‘

Lo (1) = exp(—dingy) =: exp(2winﬁ¢0) : (F.26)

where kg, 1= L—%J We conclude (recall Remark 1 in Sec. 5) that Ty, is an w—quasiperiodic
UPF starting at ¢y with UPR kg4,. By the special form of K¢, We observe that = has
uncountably many elements so that, by Theorem 6.1d, the spin—orbit system (a¢, 1/2) has
no spin frequency hence is ill=tuned. v '

This completes the study of well-tuning and quasiperiodicity and we can summarize the
above by the following

Proposition F.2 a) The spin-orbit system (a¢, 1 /2) is well-tuned and has a uniform IFF if
€ is an even integer. If € is not an even integer then no spin frequency exists and in particular
(a%,1/2) is ill-tuned.

b) The spin—orbit system (a¢,1/2) has, for'évery value of € and for every ¢o, an w—quasiperiodic
UPF starting at ¢o. Thus, for all values of e and ¢y, Z(¢) (hence Z(¢)) is nonempty, all
solutions of (2.3) are quasiperiodic and a normalized w—quasiperiodic solution of (2.3) exists.

O

F.3 Stroboscopic sequences

In this section we study the stroboscopic sequence of an arbitrary polarization field P with
the aim of proving Proposition F.3, stated below. For brevity we only consider the subcase
of Case 1 where 0 < ¢ < 1/2. Recall that stroboscopic sequences are defined in Section 3.3,
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Let N be a positive integer. Then by (2.11), M¢(2N +2; ) = M¢(2;-)M<(2N; -) hence,
by induction in N,

| M¢(2N; ) = (M(2; )N . (F.27)

We conclude from (3.1),(3.2) and (F.27) that
P(2N;-) = ME(2N;)P(0;-) = (M*(2;-))YP(0;-) , (F.28)
P@2N —1;)=a(- +m)P(2N - 2;- + 7). (F.29)

We will show, among other things, that the stroboscopic average of P exists, i.e. that the
stroboscopic sequence PV (n, ¢) converges for every n and ¢ as N — oco. It is clear by Section
3.3 that this happens iff PN(0,¢) converges for every ¢ as N — oo. Before that we will
show that P2V (0, ¢) converges for every ¢ as N — co. Note that by (F.28)

N-1

P0,6) = 5 > (P(Zn; ¢) +P(2n + 1;¢)> , (F-30)
1 N-1 1 N-1 . .
7 3 ool = gy 3 (WO P06 (F.31)

We will first show that (1/2N) SN0 P(2n; ¢) converges for every ¢ as N — oo. It is clear
that we have to compute the n-th powels of M¢(2;¢), which will be done by diagonalizing
M<(2; ). We have, by (F.19), that

a“(¢) = v(0,¢ + ) Mi(d)v" (0, 9) , (F.32)
where
M, = Z; —aél 8 , a=2"-1, ay:= % . (F.33)
0 0 -1
It follows from (F.32) that
a¢(- 4+ m) = (0, )M (- + )7 (0, - + ) , (F.34)

hence it follows from (F.2) and (F.32) and the SO(3)-property of v that

Me(2;-) = v(0, )M, (- + m) MyT(0, ) . (F.35)
Since, by (2.22), we have
a(p+7)=ai(¢), axp+m)=—a(s), (F.36)
we obtain
ap, —ag O
M(-+m)=| —as —a1 O , (F.37)
0 0 -1
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hence

az —a4 0
]\/[1( +7T)]V[1() - a4 as 0 s (F38)
0 0 1
where
az:=aj — a3, ay:= —2a1a . (F.39)
Defining
1 1 1 0 ‘
M, = \@ i 0 |, Myi=as—iay, (F.40)
0 0 V2
we obtain that M is unitary, i.e. ZVIZT.Mz = I, and that
My 0 0
Mng(- + )M (Y My = M3z = 0 Mz 0|, (F.41)
0 0 1

so that (F.35) yields the desired diagonalization of M¢(2;-), i.e.
ME(2;) = v(0, ) My My Miv™ (0, ) = MyMs M) | (F.42)

where in the first equality we used that M, is unitary and where in the second equality we
abbreviated

My = (0, )M, . | (F.43)
To complete the proof that (1/2N)3"N"' P(2n; ¢) converges we obtain from (F.41) and
(F.42) that ‘
(Ms)* 0 0
(M2 )" = MMM =My | 0 (M) 0 | M, (F.44)
0 0 1
hence
| N1 { N1 (M)t 00
o 2 (M) = M 0 (MH™ 0 | M
n=0 n=0 0 0 1
o Yoy (Mg)" 0 0 T
= M, 0 s ST (M 0 | M. (F.45)
0 0 1/2

Note that since M; is in SO(3) we have by (F.38) that a2 + a? = 1 hence, by (F.40),

|Ms|=1. | (F.46)
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Note also that by (2.22),(F.33),(F.39) and (F.40) and since ay, as, as, a4 are real, we have

{peR: Ms(d) =1} ={pcR:a3(¢) = 1,a4(¢) = 0} = {¢p € R: af(¢) = 1, ax(¢) = 0}

={¢eR:b(¢) =0}U{peR:c(¢) =0} U{p eR:c(¢) =1}

={peR:b(p)=0}={rn/2+j7:] €7}, (F.47)
where in the fourth equality we used the fact that 0 < e < 1/2. It follows from (F.47) that
Ms(¢p)=1iff p € {w/2+ jm: 5 € Z}. Thusif ¢ € {n/2+ jm:j € Z}, then

N-1

| 1 R
Jim. WZ (Me(9))" = Jim, 537 2, (@) =35 (F.48)
and, if ¢ & {n/2+ jm:j € Z},
1 N-1
i, 2y Z (V9" = Y, oy 2 MBI =0, (F49)

where we used (F.46). We conclude from (F.45) and (F.48) that, if ¢ € {n/2 + jm : y € 7},
1 = T
i (M€(2; F.
Jm 5% ; )" =5 (F.50)

hence, by (F.31) and if ¢ € {n/2+ jr: j € Z},

lm =S P(n; ) = (o 4. (F.51)

We conclude from (F.45) and (F.49) that, if ¢ & {7/2 + j7 : j € Z},

T, 00 O
Jim oS @y =M@ (00 0 | M@, @)
*© n=0 0 0 1/2
hence, by (F.31) and if ¢ & {n/2+ jw: j € Z},
T, 00 O
dim o P(2nig) =My(¢) | 0 0 0 MI($)P(0;¢) . (F.53)
e =0 00 1/2

0 0
8 (1) ) UT(O, ) = [Oa 0, S(O’ ’)]’UT(O? ) - [O’ 0, n(')]UT(O’ ) ’ (F'54)




hence, by (F.63) and if ¢ & {n/2+ j7 : j € Z},

lim —~Z = [0,0, (2¢)] (o,¢)7>(0,¢):?-%@n(¢)-7>(0,¢),(F.55)

where in the second equality we used (F.10). We thus have got: (1/2N)>°""' P(2n;¢)
converges for every ¢ as N — oo and the limit is given by (F.51) and (F.55).

We now will show that (1/2N) z 73(2n+ 1; ¢) converges for every ¢ as N — oo. We
have, by (F.29),

N-1 N

N
1 1
. W; P(2n+1;¢) = é-]\—f; P(n—1;6) = a(¢+m) g5 z:: (2n — 2, ¢+ )

| Nl |

= a’(¢p + W)ijv— ; P(2n; ¢+ 7). ' (F.56)
It follows from (F.51) that, if ¢ € {n/2+ jm: j € Z},
1

Jim Z P(2n;¢+m) = SPOp+m), (F.57)

hence, by (F.56) and if ¢ € {n/2 + jn : j € Z},

| N 1.
A}lm 5N P@2n+1;¢) = ae(gb +7)P(0;0+7) = —2—J73(0; ¢o+m), (F.58)
n=0

where in the second equality we used (2.21),(2.22) and the definition of J in (F.16). If
¢ g {m/2+jm:j €L} then ¢+ 7 & {m/2+ jw: j € Z} and, by (F.55),

N-1
Jim %V-Z P2n;p+m) = M n(¢+m) PO, ¢+m), (F.59)
hence, by (F.56) and if ¢ & {n/2+ jw:j € Z},
N-1
dim Z P2n+1;¢) = a“'(qﬁ +m)n(¢+ m)n(p+7) - PO, ¢ + )
- —%n(qb)n(qb )P0, 4 7)., | (F60)

where in the second equality we used (F.11). We thus have obtained that (1/2N) >-"" 1 P(2n+
1; ¢) converges for every ¢ as N — oo and that the limit is given by (F.58) and (F 60)

We can now make a first summary: P2V(0, ¢) converges for every ¢ as N — oo and the
limit is, if ¢ € {7/24 jn:j € Z}, given by (F.30),(F.51) and (F.58), i.e

| ﬁ(i ‘|‘j7r) = lim PQN((), T + gm) = 173(0

= .61
5 Jim 5 5 +m) + 5 JP( S +gm), (F.61)
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and, if ¢ & {w/2+ jn : j € Z}, the limit is given by (¥.30),(F.55) and (F.60), i.e.

P(6) = fm PP(0,6) = "Pn(s). Pl0.9)
~In(@)n(g+ ) - PO, B+ 7). (F.62)

2

As promised we now show that P¥(0, ¢) converges for every ¢ as N — oco. First of all,
P(0,-) is a bounded function since it is 27—periodic and continuous. Thus, and by (3.2), a
positive real constant as exists such that, for all n and ¢, we have |P(n, ¢)| < as. We thus
can estimate

n 2n—1
1 1

2n-+1 _ p2n — e Y T -
P20, 6) = P*(0, )] 12%1; Plk; §) — o ; P(k; 6)]
. 1 1 1 2n—1
= lmp(%; ¢) + (2n+ T~ 5;;) ; P(k; ¢)]

1 1 2n—1
< . —_ 2
1 1 1 as on

< . - o < —
S guan PO (g = gy 2 P < g + (L g s
_ %05 _ G5 (F.63)

2n+1 n

Since, as we have shown, P?V(0,-) converges everywhere to P(-) as N — oo, there exists,
for every 6 > 0 and every ¢, an integer N;(¢) such that, for all n > Ny (¢),

[P*(0,¢) — P(¢)| <6 <26 (F.64)

Clearly, since as/n converges to zero as n — oo, there exists also an integer N, such that,
for all n > Ny, we have as/n < §. Defining N3(¢) := max(N1(¢), Na) we conclude that, if
n Z NB(QS))
[P0, 4) = P(g)] < [P*HH(0, ) — P*(0, ¢)| + [P™(0, ¢) — P(¢)|
g%+6§25, (F.65)

where in the second inequality we used (F.63) and (F.64). We conclude from (F.64) and
(F.65) that, if £ > 2N3(¢), then '

|P*(0,6) —P(8)] <25 (F.66)

Since 4 is arbitrary, we thus have shown with (F.66) that, for every ¢, PN (0, $) converges
to P(¢) as N — oco.

We now investigate, under which conditions on P, the limit function P is continuous.
Since S(0, ¢) and P(0, ¢) are continuous in ¢ we see by (F.62) that P is continuous at every
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¢ which is not in {7/2+ jm : j € Z} and that P converges at every ¢ € {r/2 + jn: j € 7},
ie.

lim P(¢)= lim @%@n(gf)).’/D(O,(ﬁ)

p—m/2+jm d—m/2+jT
~sn(@n(@+ 1) PO,¢+7) = XD 1y (0, m/2 4 )
—%n(ﬂ/Z - mn(r/2 + w4 71) - P(O,7/2 + jr +7) | (F.67)

where in the first equality we used (F.62). Of course, P is everywhere continuous iff, at every
¢ € {m/2+ jw: j € Z}, it is equal to its limit at those ¢. In other words: P is everywhere
continuous iff, for every integer 7,

P(r/2 + jm) = ¢_}lri}121+jﬂ P(p) . ' (F.68)

We thus compute by using (F.61) and (F.67)

_ _ 1 I
P(r/2+jm)— lim  P¢) = 57’(0; /24 jm) + §J73(0; /24 jm + )

d—7/2+4-jmw: ]

M2 EIT 2+ ) PO, w2+ )

+%n(7r/2 T jm)n(n/2 + jr + 1) - P(0,1/2 4 4 7). - (F.69)

Thus P is everywhere continuous, iff, for every integer 7, P(0,-) solves the following linear
problem for P

0=P(0;7/2 + jr) + JP(0;7/2 + jm + )
—n(m/2 + jm)n{n/2 + jm) - P(O,7/2 + j7)
+n(m/2+ jm)n(n/2 + jm +7) - PO, 7/2 + jm + ) . (F.70)

We have, by (F.8) and (F.16), ,
JPO;m/2+ jm + ) + n(m/2 + jm)n(r/2 + jm + ) - P(0,7/2 + jm + 7)

-1 0 0
= ( 0 cos?(me/2) ~ —sin(me/2) cos(me/2) (1) ) P(0, —g + g+ )
0 sin(me/2) cos(me/2)(—1) — sin?(e/2)
- Mg7>(o,-723+j7r+7r), (F.71)
and
n(m/2+ jm)n(r/2 + jr) - PO, 7/2 + jm) — P(0,7/2 + j7)
-1 0 0
= ( 0 —cos®(me/2) . ~sin(me/2) cos(me/2)(—1)7 ) P(0, g + gm)
, 0 —sin(me/2) cos(me/2)(—1)! — sin?(me/2)
= MiP(0, g— + ) . (F.72)

73




It follows from (F.70),(F.71) and (F.72) that P is everywhere continuous, iff, for every integer
Js

MEP(0, 5 + jm +7) = MIP(0, 2 + ) (F.73)
Since

M = —JjmMith, (F.74)
we obtain by (F.73) that P is everywhere continuous, iff, for every integer 7,

MEP(0, % + g +m) = —TME PO, 2 + jm) (F.75)

Because P(0, ¢) is 2m—periodic in ¢, we conclude that (F.75) holds for every integer j iff it
holds for just for j = 0. We conclude that P is everywhere continuous, iff
0 i 2 1 T

By (F.71), eq. (F.76) is equivalent to

0=cl. (79(-0, g +7) — PO, 123)) . cos(me/2)e? - (P(O, g +m) +P(0, g))
— sin(re/2)e® - (79(0, g + 7r)‘— PO, g)> . | (F.77)

We thus have proved:

Proposition F.3 Let 0 < ¢ < 1/2 and let P be a polarization field. Then the following
holds.

a) For every ¢, PN (0, ¢) converges toP(¢) as N — co where P(¢) is defined by (F.61) and
(F.62).

b) P is everywhere continuous, iff (F.77) holds. o
Remark: It follows from Proposition F.3b that if P(0,-) is a constant function then P is
continuous everywhere iff 0 = e? - P(0, ). '
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Guide for the reader

Please note the following conventions used in this paper:

e Sec. 2.1: spin—orbit system, a(¢), A(n; $), resonant, nonresonant, off orbital resonance,
on orbital resonance, SO(3), Z, transpose of a matrix.
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