Electron/positron Polarisation?

D.P. Barber

Deutsches Elektronen–Synchrotron (DESY), Germany
University of Liverpool, UK
Cockcroft Institute, Daresbury, UK
2 September 2008
Plan

- SLC – a reminder
- LEP – a reminder
- HERA – a reminder
- Options
- Some theory and phenomenology
- Ring-ring
- Linac-ring and recirculator-ring
- Strategy
SLC

≈ 50 GeV polarised electrons, ≈ 80 percent
LEP

Polarisation from the Sokolov-Ternov effect at 46 GeV and above – the highest energy so far!
Highest polarization achieved:

Vertical polarisation by the S-T effect, no rotators. "Deterministic" harmonic orbit correction. 46 GeV, $\tau_{st} \approx 5$ hours
LEP features.

- Energy calibration by measuring $\gamma(g - 2)/2$ with RF depolarisation.

 Error of ≈ 1.6 MeV on the Z^0 mass.

- Detection of energy changes due to gravitationally induced changes in the size of the ring: ≈ 8 MeV.

- Some spin flip even in that environment.

- Checking the punctuality of the TGV.
HERA

The first and only e^\pm ring to supply longitudinal polarisation at high energy
— via the Sokolov-Ternov effect — also at 3 IP’s simultaneously!
≈ 30 GeV, $\tau_{st} \approx 30$ mins. Depolarisation not too strong.
Perfectly balanced parameters

LHeC: 70 GeV, $\tau_{st} \approx 30$ mins. Depolarisation strong.
A very exciting challenge for polarisation aficionados!
Polarisation vertical in the arcs – to drive the Sokolov-Ternov effect
HERA MiniRotator: Buon + Steffen

56 m ("short") → no quads.

27 – 39 GeV, both helicities, variable geometry

NO INTERNAL QUADRUPOLES!
HERMES on Friday July 21 2000

Average of Longitudinal Single Bunch Polarisation [%]

Time [h]
June 2007, the Fabry-Perot-Compton polarimeter of the POL2000 Project: Calibrating polarimeters

3 pairs of rotators (so max. Sokolov-Ternov polarisation = 83 %), solenoids on, no beam-beam
Charged Current e^+p Scattering

$e^+p \rightarrow \nu X$
- H1 2005 (prel.)
- H1 98-99
- ZEUS 04-05 (prel.)
- ZEUS 98-99
$e^+p \rightarrow \bar{\nu}X$
- H1 99-04
- ZEUS 06-07 (prel.)
- ZEUS 99-00

CTEQ6D
MRST 2004

$Q^2 > 400 \text{ GeV}^2$
$y < 0.9$
The options

<table>
<thead>
<tr>
<th>Option</th>
<th>Source</th>
<th>Polarisation loss</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linac-ring</td>
<td>?????</td>
<td>Small</td>
<td>No spin-orbit resonances</td>
</tr>
<tr>
<td>Linac-ring multi turn</td>
<td>?????</td>
<td>Small</td>
<td>No spin-orbit resonances</td>
</tr>
<tr>
<td>Recirculator</td>
<td>?????</td>
<td>Probably small</td>
<td>No spin-orbit resonances</td>
</tr>
<tr>
<td>Pre-accelerator ring</td>
<td></td>
<td>Large! –unless snake(s) to suppress spin-orbit resonances</td>
<td>Probably strong stochastic depolarisation at 70 GeV</td>
</tr>
<tr>
<td>Ring-ring</td>
<td></td>
<td>(\Rightarrow)</td>
<td>Probably strong stochastic depolarisation at 70 GeV</td>
</tr>
</tbody>
</table>
SOME THEORY and PHENOMENOLOGY
• Electrons (positrons) in storage rings can become spin POLARISED due to emission of synchrotron radiation: Sokolov–Ternov effect (1964).

• The polarisation is perpendicular to the machine plane in simple rings.

• The maximum value is then $P_{st} = 92.4\%$.

BUT!

• Sync. radn. also excites orbit motion. This leads to DEPOLARISATION!

• In any case, the **value** of the polarisation is the same at all azimuths — time scales.
The T-BMT equation.

\[\frac{d\vec{S}}{ds} = \vec{\Omega}(\gamma, \vec{v}, \vec{B}, \vec{E}) \times \vec{S} \]

Periodic solution \(\hat{n}_0 \) on closed orbit.

The real unit eigenvector of:

\[R_{3\times3}(s + C, s)\hat{n}_0 = \hat{n}_0 \]

\(\hat{n}_0 \) is 1–turn periodic: \(\hat{n}_0(s + C) = \hat{n}_0(s) \)

\(\hat{n}_0 \): direction of measured equilibrium radiative polarisation.

Closed orbit spin tune \(\nu_0 \): number of precessions per turn around \(\hat{n}_0 \) for a spin on the closed orbit. Extract from the eigenvalues of \(R_{3\times3}(s + C, s) \)
Spin motions

- Protons: largely deterministic — unless various noise (e.g. IBS).
- Electrons/positrons:
 If a photon causes a spin flip, what are the other $\approx 10^{10}$ photons doing? \Rightarrow

 Stochastic/damped orbital motion due to synchrotron radiation
 + inhomogeneous fields
 + spin–orbit coupling via T–BMT
 \Rightarrow spin diffusion i.e. depolarisation!!!

Self polarisation: Balance of poln. and depoln. \Rightarrow

$$P_\infty \approx P_{BK} \frac{1}{1 + \left(\frac{\tau_{dep}}{\tau_{BK}}\right)^{-1}} (P_{ST} \rightarrow P_{BK})$$

In any case:

$$\tau_{dep}^{-1} \propto \gamma^{2N} \tau_{st}^{-1} \quad \text{(actually a polynomial in γ^{2N})}$$

\Rightarrow Trouble at high energy!
Spin–orbit resonances

\[\nu_{\text{spin}} = k + k_I \nu_I + k_{II} \nu_{II} + k_{III} \nu_{III} \]

\(\nu_{\text{spin}} \) : amplitude dependent spin tune \(\approx \) closed orbit spin tune = precessions/turn on CO

- Orbit “drives spins” \(\Rightarrow \) Resonant enhancement of spin diffusion
 AT FIXED ENERGY EVEN AWAY FROM RESONANCES!
- Resonance order: \(|k_I| + |k_{II}| + |k_{III}| \)
- First order: \(|k_I| + |k_{II}| + |k_{III}| = 1 \) e.g. SLIM like formalisms.
- Strongest beyond first order:
 synchrotron sidebands of first order parent betatron or synchrotron resonances

\[\nu_{\text{spin}} = k + k_i \nu_i + k_{II} \nu_{II}, \quad i = I, II \text{ or } III \]
Sidebands of parent first order betatron resonances: a useful **approximation**

\[\tau_{dep}^{-1} \propto \frac{A}{(\nu_0 \pm Q_y)^2} \rightarrow \tau_{dep}^{-1} \propto \sum_{m_s=-\infty}^{\infty} \frac{AB(\xi; m_s)}{(\nu_0 \pm Q_y \pm m_s Q_s)^2} \]

\(A \) is an energy dependent factor

\(B(\xi; m_s) \)'s: **enhancement factors**, contain modified Bessel functions

\(I_{|m_s|}(\xi) \) and \(I_{|m_s|+1}(\xi) \) depending on the **modulation index**

\[\xi = \left(\frac{a \gamma \sigma_\delta}{Q_s} \right)^2 \]

in a flat ring.

\[\Rightarrow \text{very strong effects at high energy} \] — dominant source of trouble

Analogous formula for sidebands of first order synchrotron resonances.
R. Assmann, SPIN2000, Osaka, Japan
- For longitudinal polarisation the polarisation vector must be rotated into the longitudinal direction before an IP and back to the vertical afterwards \implies spin rotators.

- Vertical bends must be neutralised – otherwise \hat{n}_0 is not vertical \implies strong depolarisation

- Depolarisation can be strongly enhanced by misalignments, regions where the polarisation vector (\hat{n}_0) is horizontal between spin rotators etc, etc.....
∥∥ Linear spin matching

Skip the invariant spin field and the Derbenev-Kondratenko formula for today!

Heuristics instead!

\[\vec{S} \approx \hat{n}_0(s) + \alpha \hat{m}_0(s) + \beta \hat{l}_0(s) \]

\(\alpha, \beta \): 2 small spin tilt angles — have subtracted out the big rotations!

\[\hat{M}_{8 \times 8} = \begin{pmatrix} M_{6 \times 6} & 0_{6 \times 2} \\ G_{2 \times 6} & D_{2 \times 2} \end{pmatrix} \]

acting on \(\vec{u} = (x, x', y, y', l, \delta) \) and \(\alpha, \beta \)

This is the SLIM formalism for estimating depolarisation analytically at first order (Chao 1981).

To minimize depolarisation:

minimize appropriate bits of \(G_{2 \times 6} \) for appropriate stretches of ring

\(\implies \) lots of independent quadrupole circuits.
The structure of SLICKTRACK

```
Read optic/layout and control files
Choose misalignments
```

```
Correct the C.O. “in line”
6x6 formalism
Final C.O.
```

```
6x6 symplectic linearised optic wrt C.O.
Dispersion eigenvectors
tunes
```

```
6x6 damped linearised optic wrt C.O.
eigenvectors damping constants
Robinson theorem damping times
```

```
Orbit excitation from symp. E.V.s
damping constants
3 emittances
6x6 covariance matrix
```

```
6x6 damped non-linear M–C
orbit tracking ‘big photon noise’
3–D spin
also beam–beam
----> τ<sub>arp</sub> ----> p<sub>eq</sub>
```

```
6x6 damped linearised M–C
orbit tracking ‘big photon noise’
3–D spin
also beam–beam
----> τ<sub>arp</sub> ----> p<sub>eq</sub>
```

```
8x8 damped linearised M–C
orbit tracking with ‘big photon noise’
8x8 covariance mat
----> τ<sub>arp</sub> ----> p<sub>eq</sub>
as in analytical (D–K)
```

```
6x6 damped linearised M–C
orbit tracking with ‘big photon noise’
6x6 covariance mat
----> equl. 6x6 cov. mat
as in analytical
```

```
Polarisation with linearised spin motion using 8x8 matrices + D–K
----analytical
----> τ<sub>arp</sub> ----> p<sub>eq</sub>
```

- Old (SLICK) = old (done)
- New (done) = New (done)
- Old + New (done) = Old + New (done)
- New (in progress) = New (in progress)
- Planned = Planned
- Also: acceleration and spin flip

1st ECFA-CERN LHc Workshop, Divonne September 2008.
Spin coordinates

\[\hat{S} = \sqrt{1 - \alpha^2 - \beta^2} \hat{n}_0 + \alpha \hat{m} + \beta \hat{l} \]

Estimating depolarisation by M-C simulation \(\alpha^2 + \beta^2 \ll 1 \)

\[\Delta P \approx -\frac{1}{2} \Delta(\langle \alpha^2 + \beta^2 \rangle) = -\frac{1}{2} \Delta(\sigma^2_{\alpha} + \sigma^2_{\beta}) \quad \Rightarrow \quad \frac{dP}{dt} \approx -\frac{1}{2} \frac{d}{dt} (\sigma^2_{\alpha} + \sigma^2_{\beta}) \]

Spin–orbit covariance matrix

\[
\begin{pmatrix}
\sigma_x^2 & \sigma_{xx'} & . & . & . & . & . \\
\sigma_{xx'} & \sigma_{xx'} & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & \sigma^2_{\delta} & . & . \\
- & - & - & - & - & - & - \\
. & . & . & . & . & . & . \\
\sigma_{\beta x} & . & . & . & . & . & \\
\sigma_{\beta x'} & . & . & . & . & . & . \\
\end{pmatrix}
\]
Spin–orbit maps for sections

For linearised spin motion (SLIM/SLICK):

\[\hat{M} = \begin{pmatrix} M_{6 \times 6} & 0_{6 \times 2} \\ G_{2 \times 6} & D_{2 \times 2} \end{pmatrix} \]

The \(G_{2 \times 6} \times (x, x', y, y', \Delta l, \delta)^T \) delivers changes to the 2 small angles \(\alpha \) and \(\beta \)

For full 3–D spin motion:

\[\hat{M} = \begin{pmatrix} M_{6 \times 6} & 0_{6 \times 3} \\ G_{3 \times 6} & D_{3 \times 3} \end{pmatrix} \]

The \(G_{3 \times 6} \times (x, x', y, y', \Delta l, \delta)^T \) delivers rotations around \(\hat{n}_0, \hat{m}_0, \hat{l}_0 \)

The beam–beam (non–linear) kicks are applied at single points
eRHIC ring-ring option

- 5-10 GeV static electron ring
- Recirculating linac injector

RHIC

- EBIS
- BOOSTER
- LINAC
- AGS

E-cooling
Full 3–D spin motion: eRHIC \(\approx 9 \) GeV
Full 3–D spin motion: HERA-II ≈ 27.5 GeV

Diagnostics! Diagnostics! Diagnostics!

Switch spin-orbit coupling off/on to see what does what.
Recommendations for obtaining high self polarisation
or large lifetime for stored injected polarisation
in rings

• Include polarisation in the design (lattice, rotators, optic, spin matching) from the start — it should not be an “add on”.

• Pay particular attention to:
 – alignment control and beam position monitoring
 – → deterministic harmonic C.O. spin matching?
 – facilities for beam–based monitor calibration.
 – careful solenoid compensation → locally with anti–solenoids if possible.

• Use spin transfer matrix formalism for spin matching in exotic machines and understand the physics of the spin–orbit coupling of each section of the ring. Ensure that there are enough independent quadrupole circuits.

• There is plenty of software available for detailed numerical calculations of linearized spin motion. The theory for linear orbit motion is well established.

• Very interesting depolarisation effects due to beam–beam forces have been seen at HERA and LEP. For future high luminosity ring–ring colliders it will be very important to have a good understanding of these effects and to be able to carry out reliable simulations with tracking codes. This could become a high priority for running in the presence of intense proton beams.
/cont.

- Pay close attention to polarimetry: backgrounds!! \rightarrow build the machine around the polarimeter(s)! Fast precise polarimeters are essential for facilitating fast adjustment of the orbit or tunes. Build the machine around the polarimeter(s) so that bremsstrahlung and synchrotron radiation backgrounds are avoided.

- Don’t try to calibrate polarimeters during beam–beam collisions and be careful about the effects of kinetic polarisation if the ring is not flat.
The linac - ring option

Comments by Evgeni Tsentalovich on sources, August 2008

- Polarisation of 80 percent is certain. 90 percent might be possible.

- A peak current from of 10-20 Amps is feasible. Anything higher is very difficult – mainly because of space charge-related problems.

- Attaining high average current is the most difficult problem. The best existing sources produce routinely around 200 μA. In some tests - up to 1 mA with rather low lifetime. In one test - 10 mA with very low lifetime. Any gun with more than 1-5 mA must have active cathode cooling – none of the existing sources does.

- I am trying to build a source with active cathode cooling, large area cathode and ring-shaped emission. The hope is to boost the average current to tens of mA. Perhaps even hundreds —
High-Current Polarized Source Developments

Evgeni Tsentalovich

MIT

Electron-Ion Collider Collaboration Meeting Hampton University, May, 2008
http://web.mit.edu/eicc/Hampton08/index.html
Recirculators for acceleration

Accelerate very quickly: no chance for resonance phenomena to develop.
– or “Froissart-Stora” depolarisation is very small.
CEBAF

56-MeV Injector
(2 1/4 Cryomodules)

0.5-GeV Linac
(20 Cryomodules)

Recirculation Arcs

Extraction Elements

End Stations

A

B

C
ELFE@CERN
The options

<table>
<thead>
<tr>
<th>Option</th>
<th>Source</th>
<th>Polarisation loss</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linac-ring</td>
<td>???</td>
<td>Small</td>
<td>No spin-orbit resonances</td>
</tr>
<tr>
<td>Linac-ring multi turn</td>
<td>???</td>
<td>Small</td>
<td>No spin-orbit resonances</td>
</tr>
<tr>
<td>Recirculator</td>
<td>???</td>
<td>Probably small</td>
<td>No spin-orbit resonances</td>
</tr>
<tr>
<td>Pre-accelerator ring</td>
<td>???</td>
<td>Large! –unless snake(s) to suppress spin-orbit resonances</td>
<td>Probably strong stochastic depolarisation at 70 GeV</td>
</tr>
<tr>
<td>Ring-ring with Sokolov-Ternov</td>
<td></td>
<td>(\Rightarrow)</td>
<td>Probably strong stochastic depolarisation at 70 GeV</td>
</tr>
</tbody>
</table>
THE WAY FORWARD

Plan for polarisation from the start! Polarisation can never be an after thought!

Begin NOW with intense careful study based on experience to investigate tricks.

For the ring-ring option:

- Need very good alignment – better than at LEP.
- Siberian Snakes to suppress the effect of energy spread and synchrotron motion on spin motion?
 These are essential in proton rings to suppress depolarising resonances during acceleration (e.g., RHIC).
 But in electron rings they kill the S-T effect if the synchrotron radiation is evenly distributed around the ring!!!
- Can an arrangement be found based on a correct snake layout combined with uneven synchrotron radiation from super bends?

For the linac-ring or recirculator-ring option:

- Continue with intensive high-current source development.
By Brian Montague during the lead-up to LEP and HERA polarisation.