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� The problem:realisti
 simulation of spin-orbit motion for very large numbers of turns in a storage ring:bending magnets, quadrupoles, sextupoles, . . .� Why simulation?to assist design, to optimize performan
e, to lower 
osts (of ma
hine time), diagnosti
s,analysis, avoid disasters, . . .� Tools:numeri
al solution of the EOMs for orbit and spin� Challenges:speed (
omputing power), maintaining pre
ision and symmetries (symple
ti
ity,orthogonality).� Various 
ases:for the orbit: large/small beam sizes, high/low 
urvaturefor spin: large/small beam sizes, high/low energies� In
luding party-spoiling \extras":spa
e 
harge, wake �elds, . . .
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Literature� M. Berz: \Modern Map Methods in Parti
le Beam Physi
s"� A. Dragt: \Lie Methods for Nonlinear Dynami
s with Appli
ations to A

elerator Physi
s"� �E. Forest (for adventurers): \Beam Dynami
s: a New Attitude and Framework"� H. Goldstein (for nostalgi
s): \Classi
al Me
hani
s"� G.H. Ho�staetter: \High-Energy Polarized Proton Beams: a Modern View"� G.V. Jos�e and E.J. Saletan: \Classi
al Dynami
s: a Contemorary Approa
h"� R. Talman: \Geometri
 Me
hani
s"� M.Vogt, PhD thesis (2000): \Bounds on the Maximum Attainable Equilibrium SpinPolarisation of Protons at High Energy in HERA"
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The starting points:� The Lorentz for
e equation (LFE) des
ribes the orbital motion of parti
les in magneti
 andele
tri
 �elds: d~pdt = e( ~E + ~v � ~B)� The Thomas-BMT equation for spin pre
ession, in
luding the e�e
t of EDM, for the restframe single-parti
le spin expe
tation value:d~Sdt = ~
� ~S ; ~
 = ~
M + ~
DMagneti
 dipole plus Thomas pre
ession (a = (g � 2)=2) :~
M = � em
 �(a
 + 1) ~B � a(
 � 1)( ^� � ~B) ^� � �

 �a+ 11 + 
� ( ^� � ~E)� ;Ele
tri
 dipole: ~
D = � e�2m � ~E � 

 + 1 ~�(~� � ~E) + 
~� � ~B� :
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Part 1:a short survey of relevant 
lassi
al me
hani
s
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Equations of parti
le motion (EOM)Signi�
ant gains a

rue by repla
ing the LFE by the equivalent Hamiltonian:H =qm2
4 + (~p � e ~A)2
2 + e Time is not the natural independent variable in a

elerators: magnets are �xed, but 
ight timesvary. So transform to a Hamiltonian wrt the 
urvilinear (natural) 
oords of the ring and distan
es around the ring as the independent variable. In a frame with 
urvature � in the horizontalplane, H = �(1 + �x)q(p� � e )2=
2 �m2
2 � (~p? � e ~A?)2 � e(1 + �x)AsThe dynami
al variables u � (q; p) � (x; px; y; py ; � = �t; p� = m

2)EOM dxds = �H�px ; dpxds = ��H�x ; et
:Poisson bra
kets: ff; gg = Xi=1 :: 3� �f�qi �g�pi � �f�pi �g�qi�
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Fundamental Poisson bra
kets: fx; pxg = 1 et
:EOM duads = fua; Hg = �fH;uag � � :H :uaIn general, for a dynami
al fun
tion g,dgds = fg;Hg+ �g�s = � :H : g + �g�s
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Solutions of the EOM: maps� The solutions of the EOM 
an be represented as maps:(qf ; pf ) =M(sf ; si; qi; pi)� Composition of maps, e.g. from magnet to magnetM =Mn Æ � � �M2 ÆM1One-turn map (OTM): transport from s0 to s0 + C. In general 
ompli
ated fun
tions.� The dynami
 variables are s
aled to be small. So perhaps Taylor expansions will do.Perturbative methods and linearisation.� The map M is a 
anoni
al transformation! (CT) i.e. the (qf ; pf ) preserve the fundamentalPoisson bra
kets where we di�erentiate wrt either the original or the �nal (q; p). TheHamilton equations look the same, too.� If known exa
tly, the OTM would tell us almost everything we need to know | but it'susually impossible to get a 
losed analyti
al expression!� The Poin
ar�e se
tion | a strobos
opi
 view of (q; p) using the OTM | shows us thetopology of phase spa
e. It tells us about stability . . . .
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A Poin
ar�e se
tion

Figure 1: E. Forest, J. Irwin, LBL 28931, 1990. A Poin
ar�e se
tion for 1-dim motion of s
aled (x; px)
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Symmetries, symple
ti
 geometry, 
onservation laws� The Ja
obian of a CT ui ! uf is symple
ti
 (Hermann Weyl: \The Classi
al Groups") i.e.(Ja
M)T J (Ja
M) = JJ = 0BB� J2 02 0202 J2 0202 02 J2
1CCA ; J2 = 0� 0 +1�1 0 1A ; 02 = 0� 0 00 0 1A :Compositions of M s are symple
ti
 ! CTs are representations of the symple
ti
 group!Compare with SO(3): (Ja
M)T (Ja
M) = I .� If the EOM are linearized: du=ds = Au where A is a 6x6 matrix. If A is independent of s,then uf = exp[(sf � si)A℄ui ! uf =M(sf ; si)ui and Ja
(M) =M(sf ; si)is symple
ti
. Note that M(sn; s1) =M(sn; sn�1) � � �M(s2; s1)� In�nitesimal 
anoni
al trans: M(s+ �) = I + � 21Pi=1 aiGi where the Gi are in�nitesimalgenerators of the 21-dimensional Lie algebra sp(6) of the 6x6 symple
ti
 matrix group.fGi; Gjg = 
ijkGj with stru
ture 
onstants 
ijk
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/Continued...� We 
an write M = exp(JSa) exp(JS
) where S
; Sa 
ommute/anti-
ommute with J .Compare with SO(3) later.� Poin
ar�e invariants: e.g. CTs preserve the volume of phase spa
e. Liouville-like.� Ja
obi identity: for any fun
tions a; b; 
, fa; fb; 
gg+ fb; f
; agg+ f
; fa; bgg = 0=) Poisson bra
kets form an in�nite-dimensional Lie algebra on fun
tions.� Phase-spa
e ve
tors have zero length: uTJu = 0 : symple
ti
 geometry.� Symple
ti
 geometry + topology: a newish �eld. Implies strong 
onstraints on out
omes ofCTs: Mikhail Gromov's \no squeezing theorem" (Abel prize, 2009), the 
ase of the symple
ti

amel! Conne
tion to the Heisenberg Un
ertainty Prin
iple (M.A. de Gosson)?� Modern di�erential-geometri
al formulations: not here.
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A symple
ti
 
amel

Figure 2: Ian Stewart, New S
ientist 1989

For symple
ti
 eggs see M.A. de Gosson: arXiv:1208.5969
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Part 2:Cal
ulating traje
tories qui
kly over very many turns
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The basi
 problem: du=ds = F (u; s) = fu;Hg.Best to use 
anoni
al variables asso
iated with the Hamiltonian and symple
ti
 integrators toensure that the transport is 
anoni
al (symple
ti
): the volume of phase spa
e is automati
ally
onserved, so 
an distinguish between real and arti�
ial parti
le loss! Control!If we arrange for the 
anoni
al variables to be \small", then trun
ating a Taylor expansion is nottoo dangerous: perturbation theory.Usually use step-by-step integration through magneti
 elements.
s

hMaintaining symple
ti
ity, i.e. keeping the solutions on the right manifold, is an example ofgeometri
 integration. Large literature.
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Possibilities:� Runge-Kutta integrators 
an handle s-dependent F , but they're not ne
essarily symple
ti
.Small step size h and high order provide only approximate symple
ti
ity.Symple
ti
 Runge-Kutta integrators require solving impli
it equations at ea
h step.Potentially very slow!� For autonomous 
ases, F (u; s)! F (u) (e.g. wrt the axis in a quadrupole):Taylor expansions using Lie derivatives LF :duds = LF u = F (u) � ruuFor Hamiltonian systems, this be
omesduds = fu;Hg = � :H : uwhere we de�ne the Lie operator :H : � fH; g | a \Poisson bra
ket waiting to happen".Then uf = exp[(sf � si)LF ℄ui = 1Xj=0 (sf � si)jj! (LF )j uiand uf = exp��(sf � si) :H(ui): �ui
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Poisson bra
kets form a Lie algebra. Then with the Baker-Campbell-Hausdorf (BCH) theoremand operators :A: and :B: , eh :A:eh :B: = e:C:where :C: 
ontains only :A:, :B:, and their multiple 
ommutators.C = h :A: +h :B: +h22 f:A:; :B:g+O(h3) : : : :The full expansions are expli
itly symple
ti
 and provide extensive tools for 
on
atenating mapsof magnets: Dragt et al. Analysis!
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But! we 
an handle only a �nite number of terms in expansions.Then symple
ti
ity is lost and restoration, symple
ti�
ation (= fabri
ation?) are needed to builda symple
ti
 map whi
h is 
lose to the original one: moving the solutions ba
k onto the requiredmanifold.E.g., from a slightly non-symple
ti
 map, we 
an 
onstru
t a mixed-variable generating fun
tionwhi
h gives a symple
ti
 approximation to the original map.E.g., 
onstru
t produ
ts of simple (easy-to-
ompute) symple
ti
 maps whi
h reprodu
e the termsof a Taylor map 
orre
t through a given order. (But higher-order hopefully small.)Restoration is usually equivalent to a small modi�
ation of the Hamiltonian.CARE NEEDED to avoid self de
eption.Or make approximate symple
ti
 models from the start! instead ofsymple
tifying an approximate map from the exa
t EOM: splitting.
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Splitting:Work with approximate maps whi
h are exa
tly symple
ti
 from the start.Consider for example H(q; p) = H1(q) +H2(p), e.g. H(q; p) = V (q) + T (p)Make the subdivision into H1 and H2 and 
ompute an approximate map in the symmetri
 formeh2 :H1:eh :H2:eh2 :H1:whi
h 
an be evaluated exa
tly: the expansion 
uts o� or 
an be written using simple knownfun
tions.Can show that eh2 :H1:eh :H2:eh2 :H1: = e:hH1+hH2+O(h3):The e�e
tive Hamiltonian di�ers from the real one by O(h3): a 2nd order symple
ti
 integrator.Using Zassenhaus formul�: the reverse of BCH formul�.
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For a quadrupole: H = �qp2�=
2 �m2
2 � p2x � p2y � eg 12(x2 � y2)With H1(p) = T (p) and H2(q) = V (q), this is equivalent to DRIFT-KICK-DRIFT: a sharp
hange in px, py at the 
entre.Or rearrange the terms in H : H = HM +HK with HM � pure linear quadrupole and HK � aspe
ial drift whi
h e�e
tively shifts x and y at the 
entre: MATRIX-KICK-MATRIX whi
h isgood for spin.� More 
ompli
ated symmetri
 arrangements give 4th, 6th, 8th order symple
ti
 integrators:Forest, Ruth, Neri, Yoshida, . . . .� Can get negative lengths: some are un
omfortable with that.� Care with phase advan
es. E.g. �t the parameters to the exa
t map before long termtra
king.� Fast! often 
alled Ki
k 
odes.� Energy ripples.: no guarentee of exa
t total energy 
onservation.� CARE NEEDED to avoid self de
eption.
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Can 
alibrate by 
omparing out
omes of the various approa
hes with the Poin
ar�e se
tion of avery high order Taylor map { but one should not do long-term tra
king with Taylor maps!

Figure 3: E. Forest, J. Irwin, LBL 28931, 1990. A Poin
ar�e se
tion for 1-dim motion of s
aled x; px



Workshop on EDM Sear
hes at Storage Rings, Trento, Italy, O
tober 2012. 21'
&

$
%

TPSA and DA� Evaluating suÆ
ient terms and 
on
atenating multidimensional Taylor maps of singleelements needs a fast automati
 system of handling power series.� Re
all ve
tor multipli
ation, matrix multipli
ation et
: algebrai
 systems designed to deliverthe required results when the algabrai
 rules are followed.� Trun
ated power series algebra (TPSA): an algebrai
 stru
ture to handle the 
on
atenationof Taylor series and up to 
hosen orders.� Di�erential algebra (DA), Berz et al.: extends TPSA to in
lude operations of the 
al
ulus.� Together: very powerful tools to evaluate (say) the exp[(sf � si)LF ℄ui, to get Taylor seriesout of fun
tions, to get Taylor series out of a splitting algorithm or a Runge-Kutta algorithm,to invert maps, to solve equations, . . . .The essential 
omponent for modern tra
king and analysis!.The basis of 
ode COSY-In�nity (M. Berz); used also in PTC/FPP (�E. Forest),BMAD (D. Sagan), MaryLie (A.J. Dragt)
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Part 3: bringing spin on board
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Spins are passengers with no demo
rati
 rights (we are ignoring Stern-Gerla
h).d~Sds = ~
(u; s) � ~Sdds 0BB� SxSySs
1CCA = 0BB� 0 �
s 
y
s 0 �
x�
y 
x 0
1CCA0BB� SxSySs
1CCA = A3�30BB� SxSySs
1CCA = A3�3S ;A = � ^bbb � ~LLL � ~


 � ~LLL where the Li are in�nitesimal generators in the LA so(3).Lx = 0BB� 0 0 00 0 �10 1 0

1CCA ; Ly = 0BB� 0 0 10 0 0�1 0 0
1CCA ; Ls = 0BB� 0 �1 01 0 00 0 0
1CCA :For s-independent ~
, Sf = R3�3(sf ; si)Si � e(sf�si)A SiR(sf ; si) = I +^b � ~L sin�(sf � si) ��+ (^b � ~L)2 �1� 
os�(sf � si) ���The exponential of an anti-symmetri
 matrix is orthogonal (RTR = I): preserves lengths of spins.C.f., SU(2) : exponentiated anti-Hermitian matri
es are unitary.But even for autonomous orbital motion, the EOSM are not autonomous:



Workshop on EDM Sear
hes at Storage Rings, Trento, Italy, O
tober 2012. 24'
&

$
%

First thoughts:� R3�3(sf ; si; ui) = exp Z A(u(s); s)dswith s - ordering, i.e., a Dyson expansion� R3�3(sf ; si; ui) = exp(Z A(u(s); s)ds + Z fA(u(s1); s1); A(u(s2); s2)g ds1 ds2 + � � � )i.e., a Magnus expansion. Again have s - ordering but the 
ommutators belong to so(3) andthe exponent is always anti-symmetri
, even if the series is 
ut o�!These are sensible only if A is small.So write ~
(u; s) = ~
0(s) + ~!(u; s) and transform to a rotating referen
e frame where ~
0 istransformed away and only the small (?) ~! remains: a kind of intera
tion pi
ture.A is repla
ed be ~A, depending just on ~!.Orthogonality is essential! so it would be good to work with anti-symmetri
 exponents as in theMagnus expansion, but its just too messy beyond the 2nd 
ommutator and double integral.Analogy with splitting for the orbital motion: manipulate exponents to ensure symple
ti
ity.



Workshop on EDM Sear
hes at Storage Rings, Trento, Italy, O
tober 2012. 25'
&

$
%

/Continued...
Use the �rst integral in my SLICKTRACK and EpsSLICK but then with unit quaternions,(r0; ~r), to save time and with an intelligent 
hoi
e of 
oordinate system for spin!!!!exp �2^b � ~� = I2�2 
os(�=2) � i~� � ^b sin(�=2) � I2�2 r0 � i~� � ~r with 3Xi=0 r2i = 1Quaternion 
on
atenation:(a0; ~a) (b0; ~b) = (a0b0 � ~a �~b; a0~b+ ~ab0 + ~a�~b) = (
0; ~
)Rij = (2r20 � 1)Æij + 2rirj + 2r0�ijkrkR is automati
ally orthogonal.
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Capitulation!� Brute for
e Runge-Kutta and, if ne
essary, renormalize the lengths of the spins on ea
h turn.� Develop Taylor series at high order for R and massage it to make it exa
tly orthogonal.Experien
e at DESY showed the Taylor expansions 
an be tri
ky for protons at very high�0 � g�22 
� Slot orthogonal spin matri
es in at the 
entres of sli
es or between sli
es used for orbitaltra
king. For example use R = exp(hA) with A de�ned by the (u; s) at the 
entre or ends ofa sli
e.� For protons at high energy (�0 � 103), na��ve approa
hes employ very many sli
es (smallstepsize h) to get pre
ision: ) ineÆ
ient. For very low energy �0 is O(1). Then Taylorexpansions should be �ne.� Re
ent very 
areful work at the Te
h-X 
orporation (D. Abell + D. Meiser) forBNL with SPINK ! TEASPINK, and porting to GPUs.Using quaternions to get R. MATRIX-KICK-MATRIX model in the quadrupoles, and exa
tintegration in bends.Over
ome the problem of many sli
es for spin integration by Ri
hardson extrapolation(Romberg algorithm | spe
ial sampling and averaging) to redu
e the number of sli
es byorders of magnitude. Huge in
rease in speed.� PTC/FPP (�E. Forest) now in
ludes spin dynami
s. It tra
ks both orbit and spin usinggeometri
 integration. PTC obtains spin maps about realisti
 
losed orbits usingpolymorphism: ) analysis!
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Further Remarks� Balan
e speed and pre
ision; and provide analysis 
apabilities (e.g. normal forms).� Exploit GPUs.� But for EDM simulations, we might need quadruple pre
ision.� EDGE �elds!!! : C.f. the e�e
t of dipole edge �elds for deuteron spin 
ipping with RFdipoles.� We need at least two 
odes for 
omparisons, and 
areful evaluation of results.� Stati
 ele
tri
 �elds are novel in the 
ontext of spin. S.R. Mane, NIMA (Sept. 2012).� Stati
 ele
tri
 �elds: 
onservation of total energy.� We require mu
h longer-term tra
king than at (say) the LHC.Symple
ti
 and orthogonal tra
king is essential.� Understand the single-parti
le orbital and spin motion before adding spa
e 
harge, et
.� The magneti
 dipole e�e
ts must be very well simulated. Otherwise we 
annot see thein
uen
e of an EDM.
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/Continued...
� Also spin normal forms: the invariant spin �eld (ISF), the amplitude dependent spin tune(ADST).The spread, over orbital amplitudes, of the ADST will determine the rate of de
oheren
e ofspins in the ma
hine plane. Use standard modern tools to minimise the spread, therebyde
reasing the rate of de
oheren
e.� A job for experien
ed people.

Thanks to Dan Abell, Jim Ellison, �Etienne Forest, Klaus Heinemann, Georg Ho�staetter,Mathias Vogt.


