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An introdution to spin-orbit traking.Desmond Barber.Deutshes Elektronen{Synhrotron, DESY, Hamburg, GermanyUniversity of Liverpool, UKCokroft Institute, Daresbury, UK.1 Otober 2012
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� The problem:realisti simulation of spin-orbit motion for very large numbers of turns in a storage ring:bending magnets, quadrupoles, sextupoles, . . .� Why simulation?to assist design, to optimize performane, to lower osts (of mahine time), diagnostis,analysis, avoid disasters, . . .� Tools:numerial solution of the EOMs for orbit and spin� Challenges:speed (omputing power), maintaining preision and symmetries (sympletiity,orthogonality).� Various ases:for the orbit: large/small beam sizes, high/low urvaturefor spin: large/small beam sizes, high/low energies� Inluding party-spoiling \extras":spae harge, wake �elds, . . .
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Literature� M. Berz: \Modern Map Methods in Partile Beam Physis"� A. Dragt: \Lie Methods for Nonlinear Dynamis with Appliations to Aelerator Physis"� �E. Forest (for adventurers): \Beam Dynamis: a New Attitude and Framework"� H. Goldstein (for nostalgis): \Classial Mehanis"� G.H. Ho�staetter: \High-Energy Polarized Proton Beams: a Modern View"� G.V. Jos�e and E.J. Saletan: \Classial Dynamis: a Contemorary Approah"� R. Talman: \Geometri Mehanis"� M.Vogt, PhD thesis (2000): \Bounds on the Maximum Attainable Equilibrium SpinPolarisation of Protons at High Energy in HERA"
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The starting points:� The Lorentz fore equation (LFE) desribes the orbital motion of partiles in magneti andeletri �elds: d~pdt = e( ~E + ~v � ~B)� The Thomas-BMT equation for spin preession, inluding the e�et of EDM, for the restframe single-partile spin expetation value:d~Sdt = ~
� ~S ; ~
 = ~
M + ~
DMagneti dipole plus Thomas preession (a = (g � 2)=2) :~
M = � em �(a + 1) ~B � a( � 1)( ^� � ~B) ^� � � �a+ 11 + � ( ^� � ~E)� ;Eletri dipole: ~
D = � e�2m � ~E �  + 1 ~�(~� � ~E) + ~� � ~B� :
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Part 1:a short survey of relevant lassial mehanis
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Equations of partile motion (EOM)Signi�ant gains arue by replaing the LFE by the equivalent Hamiltonian:H =qm24 + (~p � e ~A)22 + e Time is not the natural independent variable in aelerators: magnets are �xed, but ight timesvary. So transform to a Hamiltonian wrt the urvilinear (natural) oords of the ring and distanes around the ring as the independent variable. In a frame with urvature � in the horizontalplane, H = �(1 + �x)q(p� � e )2=2 �m22 � (~p? � e ~A?)2 � e(1 + �x)AsThe dynamial variables u � (q; p) � (x; px; y; py ; � = �t; p� = m2)EOM dxds = �H�px ; dpxds = ��H�x ; et:Poisson brakets: ff; gg = Xi=1 :: 3� �f�qi �g�pi � �f�pi �g�qi�
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Fundamental Poisson brakets: fx; pxg = 1 et:EOM duads = fua; Hg = �fH;uag � � :H :uaIn general, for a dynamial funtion g,dgds = fg;Hg+ �g�s = � :H : g + �g�s
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Solutions of the EOM: maps� The solutions of the EOM an be represented as maps:(qf ; pf ) =M(sf ; si; qi; pi)� Composition of maps, e.g. from magnet to magnetM =Mn Æ � � �M2 ÆM1One-turn map (OTM): transport from s0 to s0 + C. In general ompliated funtions.� The dynami variables are saled to be small. So perhaps Taylor expansions will do.Perturbative methods and linearisation.� The map M is a anonial transformation! (CT) i.e. the (qf ; pf ) preserve the fundamentalPoisson brakets where we di�erentiate wrt either the original or the �nal (q; p). TheHamilton equations look the same, too.� If known exatly, the OTM would tell us almost everything we need to know | but it'susually impossible to get a losed analytial expression!� The Poinar�e setion | a strobosopi view of (q; p) using the OTM | shows us thetopology of phase spae. It tells us about stability . . . .
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A Poinar�e setion

Figure 1: E. Forest, J. Irwin, LBL 28931, 1990. A Poinar�e setion for 1-dim motion of saled (x; px)
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Symmetries, sympleti geometry, onservation laws� The Jaobian of a CT ui ! uf is sympleti (Hermann Weyl: \The Classial Groups") i.e.(JaM)T J (JaM) = JJ = 0BB� J2 02 0202 J2 0202 02 J2
1CCA ; J2 = 0� 0 +1�1 0 1A ; 02 = 0� 0 00 0 1A :Compositions of M s are sympleti ! CTs are representations of the sympleti group!Compare with SO(3): (JaM)T (JaM) = I .� If the EOM are linearized: du=ds = Au where A is a 6x6 matrix. If A is independent of s,then uf = exp[(sf � si)A℄ui ! uf =M(sf ; si)ui and Ja(M) =M(sf ; si)is sympleti. Note that M(sn; s1) =M(sn; sn�1) � � �M(s2; s1)� In�nitesimal anonial trans: M(s+ �) = I + � 21Pi=1 aiGi where the Gi are in�nitesimalgenerators of the 21-dimensional Lie algebra sp(6) of the 6x6 sympleti matrix group.fGi; Gjg = ijkGj with struture onstants ijk
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/Continued...� We an write M = exp(JSa) exp(JS) where S; Sa ommute/anti-ommute with J .Compare with SO(3) later.� Poinar�e invariants: e.g. CTs preserve the volume of phase spae. Liouville-like.� Jaobi identity: for any funtions a; b; , fa; fb; gg+ fb; f; agg+ f; fa; bgg = 0=) Poisson brakets form an in�nite-dimensional Lie algebra on funtions.� Phase-spae vetors have zero length: uTJu = 0 : sympleti geometry.� Sympleti geometry + topology: a newish �eld. Implies strong onstraints on outomes ofCTs: Mikhail Gromov's \no squeezing theorem" (Abel prize, 2009), the ase of the sympletiamel! Connetion to the Heisenberg Unertainty Priniple (M.A. de Gosson)?� Modern di�erential-geometrial formulations: not here.



Workshop on EDM Searhes at Storage Rings, Trento, Italy, Otober 2012. 12'
&

$
%

A sympleti amel

Figure 2: Ian Stewart, New Sientist 1989

For sympleti eggs see M.A. de Gosson: arXiv:1208.5969
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Part 2:Calulating trajetories quikly over very many turns
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The basi problem: du=ds = F (u; s) = fu;Hg.Best to use anonial variables assoiated with the Hamiltonian and sympleti integrators toensure that the transport is anonial (sympleti): the volume of phase spae is automatiallyonserved, so an distinguish between real and arti�ial partile loss! Control!If we arrange for the anonial variables to be \small", then trunating a Taylor expansion is nottoo dangerous: perturbation theory.Usually use step-by-step integration through magneti elements.
s

hMaintaining sympletiity, i.e. keeping the solutions on the right manifold, is an example ofgeometri integration. Large literature.
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Possibilities:� Runge-Kutta integrators an handle s-dependent F , but they're not neessarily sympleti.Small step size h and high order provide only approximate sympletiity.Sympleti Runge-Kutta integrators require solving impliit equations at eah step.Potentially very slow!� For autonomous ases, F (u; s)! F (u) (e.g. wrt the axis in a quadrupole):Taylor expansions using Lie derivatives LF :duds = LF u = F (u) � ruuFor Hamiltonian systems, this beomesduds = fu;Hg = � :H : uwhere we de�ne the Lie operator :H : � fH; g | a \Poisson braket waiting to happen".Then uf = exp[(sf � si)LF ℄ui = 1Xj=0 (sf � si)jj! (LF )j uiand uf = exp��(sf � si) :H(ui): �ui
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Poisson brakets form a Lie algebra. Then with the Baker-Campbell-Hausdorf (BCH) theoremand operators :A: and :B: , eh :A:eh :B: = e:C:where :C: ontains only :A:, :B:, and their multiple ommutators.C = h :A: +h :B: +h22 f:A:; :B:g+O(h3) : : : :The full expansions are expliitly sympleti and provide extensive tools for onatenating mapsof magnets: Dragt et al. Analysis!
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But! we an handle only a �nite number of terms in expansions.Then sympletiity is lost and restoration, sympleti�ation (= fabriation?) are needed to builda sympleti map whih is lose to the original one: moving the solutions bak onto the requiredmanifold.E.g., from a slightly non-sympleti map, we an onstrut a mixed-variable generating funtionwhih gives a sympleti approximation to the original map.E.g., onstrut produts of simple (easy-to-ompute) sympleti maps whih reprodue the termsof a Taylor map orret through a given order. (But higher-order hopefully small.)Restoration is usually equivalent to a small modi�ation of the Hamiltonian.CARE NEEDED to avoid self deeption.Or make approximate sympleti models from the start! instead ofsympletifying an approximate map from the exat EOM: splitting.
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Splitting:Work with approximate maps whih are exatly sympleti from the start.Consider for example H(q; p) = H1(q) +H2(p), e.g. H(q; p) = V (q) + T (p)Make the subdivision into H1 and H2 and ompute an approximate map in the symmetri formeh2 :H1:eh :H2:eh2 :H1:whih an be evaluated exatly: the expansion uts o� or an be written using simple knownfuntions.Can show that eh2 :H1:eh :H2:eh2 :H1: = e:hH1+hH2+O(h3):The e�etive Hamiltonian di�ers from the real one by O(h3): a 2nd order sympleti integrator.Using Zassenhaus formul�: the reverse of BCH formul�.
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For a quadrupole: H = �qp2�=2 �m22 � p2x � p2y � eg 12(x2 � y2)With H1(p) = T (p) and H2(q) = V (q), this is equivalent to DRIFT-KICK-DRIFT: a sharphange in px, py at the entre.Or rearrange the terms in H : H = HM +HK with HM � pure linear quadrupole and HK � aspeial drift whih e�etively shifts x and y at the entre: MATRIX-KICK-MATRIX whih isgood for spin.� More ompliated symmetri arrangements give 4th, 6th, 8th order sympleti integrators:Forest, Ruth, Neri, Yoshida, . . . .� Can get negative lengths: some are unomfortable with that.� Care with phase advanes. E.g. �t the parameters to the exat map before long termtraking.� Fast! often alled Kik odes.� Energy ripples.: no guarentee of exat total energy onservation.� CARE NEEDED to avoid self deeption.



Workshop on EDM Searhes at Storage Rings, Trento, Italy, Otober 2012. 20'
&

$
%

Can alibrate by omparing outomes of the various approahes with the Poinar�e setion of avery high order Taylor map { but one should not do long-term traking with Taylor maps!

Figure 3: E. Forest, J. Irwin, LBL 28931, 1990. A Poinar�e setion for 1-dim motion of saled x; px
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TPSA and DA� Evaluating suÆient terms and onatenating multidimensional Taylor maps of singleelements needs a fast automati system of handling power series.� Reall vetor multipliation, matrix multipliation et: algebrai systems designed to deliverthe required results when the algabrai rules are followed.� Trunated power series algebra (TPSA): an algebrai struture to handle the onatenationof Taylor series and up to hosen orders.� Di�erential algebra (DA), Berz et al.: extends TPSA to inlude operations of the alulus.� Together: very powerful tools to evaluate (say) the exp[(sf � si)LF ℄ui, to get Taylor seriesout of funtions, to get Taylor series out of a splitting algorithm or a Runge-Kutta algorithm,to invert maps, to solve equations, . . . .The essential omponent for modern traking and analysis!.The basis of ode COSY-In�nity (M. Berz); used also in PTC/FPP (�E. Forest),BMAD (D. Sagan), MaryLie (A.J. Dragt)
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Part 3: bringing spin on board
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Spins are passengers with no demorati rights (we are ignoring Stern-Gerlah).d~Sds = ~
(u; s) � ~Sdds 0BB� SxSySs
1CCA = 0BB� 0 �
s 
y
s 0 �
x�
y 
x 0
1CCA0BB� SxSySs
1CCA = A3�30BB� SxSySs
1CCA = A3�3S ;A = � ^bbb � ~LLL � ~


 � ~LLL where the Li are in�nitesimal generators in the LA so(3).Lx = 0BB� 0 0 00 0 �10 1 0

1CCA ; Ly = 0BB� 0 0 10 0 0�1 0 0
1CCA ; Ls = 0BB� 0 �1 01 0 00 0 0
1CCA :For s-independent ~
, Sf = R3�3(sf ; si)Si � e(sf�si)A SiR(sf ; si) = I +^b � ~L sin�(sf � si) ��+ (^b � ~L)2 �1� os�(sf � si) ���The exponential of an anti-symmetri matrix is orthogonal (RTR = I): preserves lengths of spins.C.f., SU(2) : exponentiated anti-Hermitian matries are unitary.But even for autonomous orbital motion, the EOSM are not autonomous:
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First thoughts:� R3�3(sf ; si; ui) = exp Z A(u(s); s)dswith s - ordering, i.e., a Dyson expansion� R3�3(sf ; si; ui) = exp(Z A(u(s); s)ds + Z fA(u(s1); s1); A(u(s2); s2)g ds1 ds2 + � � � )i.e., a Magnus expansion. Again have s - ordering but the ommutators belong to so(3) andthe exponent is always anti-symmetri, even if the series is ut o�!These are sensible only if A is small.So write ~
(u; s) = ~
0(s) + ~!(u; s) and transform to a rotating referene frame where ~
0 istransformed away and only the small (?) ~! remains: a kind of interation piture.A is replaed be ~A, depending just on ~!.Orthogonality is essential! so it would be good to work with anti-symmetri exponents as in theMagnus expansion, but its just too messy beyond the 2nd ommutator and double integral.Analogy with splitting for the orbital motion: manipulate exponents to ensure sympletiity.
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/Continued...
Use the �rst integral in my SLICKTRACK and EpsSLICK but then with unit quaternions,(r0; ~r), to save time and with an intelligent hoie of oordinate system for spin!!!!exp �2^b � ~� = I2�2 os(�=2) � i~� � ^b sin(�=2) � I2�2 r0 � i~� � ~r with 3Xi=0 r2i = 1Quaternion onatenation:(a0; ~a) (b0; ~b) = (a0b0 � ~a �~b; a0~b+ ~ab0 + ~a�~b) = (0; ~)Rij = (2r20 � 1)Æij + 2rirj + 2r0�ijkrkR is automatially orthogonal.
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Capitulation!� Brute fore Runge-Kutta and, if neessary, renormalize the lengths of the spins on eah turn.� Develop Taylor series at high order for R and massage it to make it exatly orthogonal.Experiene at DESY showed the Taylor expansions an be triky for protons at very high�0 � g�22 � Slot orthogonal spin matries in at the entres of slies or between slies used for orbitaltraking. For example use R = exp(hA) with A de�ned by the (u; s) at the entre or ends ofa slie.� For protons at high energy (�0 � 103), na��ve approahes employ very many slies (smallstepsize h) to get preision: ) ineÆient. For very low energy �0 is O(1). Then Taylorexpansions should be �ne.� Reent very areful work at the Teh-X orporation (D. Abell + D. Meiser) forBNL with SPINK ! TEASPINK, and porting to GPUs.Using quaternions to get R. MATRIX-KICK-MATRIX model in the quadrupoles, and exatintegration in bends.Overome the problem of many slies for spin integration by Rihardson extrapolation(Romberg algorithm | speial sampling and averaging) to redue the number of slies byorders of magnitude. Huge inrease in speed.� PTC/FPP (�E. Forest) now inludes spin dynamis. It traks both orbit and spin usinggeometri integration. PTC obtains spin maps about realisti losed orbits usingpolymorphism: ) analysis!
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Further Remarks� Balane speed and preision; and provide analysis apabilities (e.g. normal forms).� Exploit GPUs.� But for EDM simulations, we might need quadruple preision.� EDGE �elds!!! : C.f. the e�et of dipole edge �elds for deuteron spin ipping with RFdipoles.� We need at least two odes for omparisons, and areful evaluation of results.� Stati eletri �elds are novel in the ontext of spin. S.R. Mane, NIMA (Sept. 2012).� Stati eletri �elds: onservation of total energy.� We require muh longer-term traking than at (say) the LHC.Sympleti and orthogonal traking is essential.� Understand the single-partile orbital and spin motion before adding spae harge, et.� The magneti dipole e�ets must be very well simulated. Otherwise we annot see theinuene of an EDM.
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/Continued...
� Also spin normal forms: the invariant spin �eld (ISF), the amplitude dependent spin tune(ADST).The spread, over orbital amplitudes, of the ADST will determine the rate of deoherene ofspins in the mahine plane. Use standard modern tools to minimise the spread, therebydereasing the rate of deoherene.� A job for experiened people.

Thanks to Dan Abell, Jim Ellison, �Etienne Forest, Klaus Heinemann, Georg Ho�staetter,Mathias Vogt.


