Exercises

Topic 2

(1) Prove that $\omega_{0}=\hat{t} \times \dot{\hat{t}}$.

Topic 3

(1a) Consider a flat ring consisting of a continuous dipole. Use the phase function $2 \pi \nu_{0} s / C$. Sketch the orientation and motion of the vectors $\hat{l}_{0}, \hat{n}_{0}, \hat{m}_{0}$ and the vectors $\hat{l}, \hat{n}_{0}, \hat{m}$.
(1b) Consider a flat ring consisting of alternating dipoles and drifts of the same length. Sketch the orientation and motion of the vectors $\hat{l}_{0}, \hat{n}_{0}, \hat{m}_{0}$ and the vectors $\hat{l}, \hat{n}_{0}, \hat{m}$.
(2) Explain, without lots of explicit mathematics, why it's obvious that rotation matrices are orthogonal: $R^{T} R=I$ or $R R^{T}=I$.
(3) Consider a flat ring for which the magnetic field on the design orbit is vertical. The design-orbit spin tune is ν_{0}. Add a very short section of radial field at one point on the ring and imagine that it doesn't change the orbit. Discuss the qualitative behaviour of \hat{n}_{0} as this ν_{0} approaches an integer.
Relate your observation to a familiar concept in spin-orbit dynamics.
(4) Prove that when the 3×3 matrix A is antisymmetric, $\exp (A)$ is an orthogonal 3×3 matrix.
(5) Prove that at least one eigenvalue of an orthogonal 3×3 matrix is 1 .
(6) Consider spin motion on the design orbit of a flat ring. Write down the 3×3 spin transport matrix for one turn around the ring in terms of $\nu_{0}=2 \pi a \gamma$. Then calculate the complex eigenvalues of the matrix in the form of complex exponentials and comment on the values of the exponents.

Topic 4

(1) Why is it difficult to run with polarisation in the VEPP4M ring when it is set up for producing $\tau^{ \pm}$pairs?
(2) Use an integrating factor and semi-quantitative arguments to establish that $\sqrt{\left(P_{l}^{2}+P_{m}^{2}\right)}$ settles down to $O\left(\left(c \tau_{0}\right)^{-1} / 2 \pi \nu_{0}\right)$.

Topic 5

(1) The spin components γ, α, β transform according to the group $S O(3)$.

Under which matrix group do $\gamma, \alpha+i \beta, \alpha-i \beta$ transform?
$S O(3)$ is a N parameter subgroup of which group? What is N ?
(2) Prove that the exponential of an antihermitian matrix is unitary.
(3) What is $\exp \left(\lambda J_{2 \times 2}\right)$ for some parameter λ and what has this to do with calculating the matrix G.

Topic 6

(1) Compare the difficulties of maintaining the polarisation of protons and muons during acceleration to high energy.
(2) Why would it be a bad idea to adopt the 2-snake layout of RHIC for an electron storage ring?

