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Spin-polarized lepton beams are an important aspect in the design of the future 100-km scale Circular
Electron Positron Collider (CEPC). Precision beam energy calibration using resonant depolarization, as
well as longitudinally polarized colliding beams, is being actively investigated. The attainable beam
polarization level for various beam energies and application scenarios depends on the radiative
depolarization in the collider rings. In this paper, the radiative depolarization effects are evaluated for
a CEPC collider ring lattice with detailed machine imperfections and corrections. Simulations with the SLIM

and Monte Carlo approaches using the Bmad/PTC codes are compared with the theory of the effects of spin
diffusion for ultrahigh beam energies and the validity of the theories, with special attention to that of
so-called uncorrelated resonance crossing, is thereby addressed.
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I. INTRODUCTION

After the discovery of the Higgs particle at the Large
Hadron Collider (LHC), a study of the Circular Electron
Positron Collider (CEPC) was launched as one of the global
design efforts of future electron-positron circular colliders
[1,2], for precision measurements of Higgs boson properties
and electroweak interactions, as well as direct searches for
new physics with unprecedented accuracy. In the conceptual
design report (CDR) [3] released in November 2018, the
CEPCwas designed as a double-ring collider with a circum-
ference of about 100 km and to be operated at beam energies
of around 45 GeVas a Z factory, 80 GeVas a W factory, and
120 GeVas a Higgs factory (eþe− → ZH). After the CDR,
the CEPC accelerator entered the phase of the technical
design report (TDR) endorsed by the CEPC International
Advisory Committee (IAC). Recent updates of the CEPC
accelerator R&D are summarized in [4].
Beam polarization is an important design aspect of the

CEPC. On one hand, the resonant depolarization (RD)

technology [5] is essential for precision beam energy
calibration at the Z-pole and the WW threshold. RD utilizes
a horizontal oscillating magnetic field to excite a vertically
polarized beam. As the excitation frequency is scanned, the
beam gets depolarized when the perturbation is resonant
with the spin precession frequency, which is closely related
to the beam energy. RD requires a vertical beam polarization
level of 5%–10% at the CEPC, according to experience at
LEP [6]. On the other hand, colliding beam experimentswith
longitudinal beam polarization, which would greatly
broaden the potential of the physics program, are also being
explored at the CEPC [7]. For this purpose, a longitudinal
beam polarization of at least 50% for one or both eþ and e−

beams at the interaction points is desired. These require
preparation and maintenance and then manipulation of the
polarized eþ=e− beams with spin rotators.
Spin rotators have been successfully included in the CEPC

CDR lattice for theZ-pole energy in a separate study [8].Note
that since the eþ and e− beams in the CEPC are in separate
rings, their spin helicities can be controlled independently. In
addition, a separate study [9] has investigated the depolari-
zation during the acceleration process in the booster syn-
chrotron showing that the highly periodic lattice features
generally weak spin resonances and that the beam polariza-
tion is well maintained in the acceleration up to 80 GeV.
The precession of the spin expectation value S⃗, and of

Ŝ ¼ S⃗=jS⃗j, of a relativistic charged particle, in electric and
magnetic fields follows the Thomas-BMTequation [10,11],
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which, for a circular accelerator or storage ring, can be
expressed in the following form:

dŜ
dθ

¼ ½Ω⃗0ðθÞ þ ω⃗ðu⃗; θÞ� × Ŝ: ð1Þ

with

Ω⃗0ðθÞ ¼ Ω⃗00ðθÞ þ ΔΩ⃗ðθÞ; ð2Þ

where Ω⃗0ðθÞ is the spin-precession vector on the closed orbit
at the azimuthal angle θ. Ω⃗00ðθÞ and ΔΩ⃗ðθÞ denote the
contribution of the fields on the design orbit and the magnet
errors/correction fields to the spin precession vector, respec-
tively. ω⃗ðu⃗; θÞ is due to the orbital oscillations u⃗ relative to the
closed orbit. We use a Frenet-Serret coordinate system,
where e⃗x; e⃗y; e⃗z are the unit vectors pointing radially out-
wards, vertically upwards, and longitudinally (clockwise),
respectively, so that they form a right-handed unit-vector
basis. In this coordinate system, the particle’s phase-space
coordinates can be expressed as u⃗ ¼ ðx; px; y; py; z; δÞ. x
and y are the transverse coordinates of the particle. The
transverse phase-space momenta Px and Py are normalized
by the reference momentum P0, namely, px ¼ Px=P0 and
py ¼ Py=P0, respectively. z ¼ −βcΔt where Δt is the time
difference between the particle and the reference particle
arriving at the azimuthal angle θ:β ¼ v=c, where v and c are
the velocities of the particle and light, respectively. δ ¼
ΔP=P0 is the relative momentum deviation. The spin
polarization of an electron bunch is the ensemble average
of the Ŝ.
In a circular accelerator running at a fixed energy, Ω⃗0 is a

periodic function of θ, for which there is a unit-length
periodic solution of Eq. (1), n̂0ðθÞ, satisfying n̂0ðθ þ 2πÞ ¼
n̂0ðθÞ. Then a spin vector Ŝ perpendicular to n̂0 precesses
by a rotation angle 2πν0 in one revolution around n̂0, where
ν0 is called the closed-orbit spin tune. In a storage ring
designed with a planar geometry and no solenoids (here-
after referred to as the “planar ring”), n̂0ðθÞ is close to the
vertical direction, and ν0 ≈ aγ0, where a ¼ 0.00115965219
for electrons (positrons), and γ0 is the relativistic factor for
the design energy.
These key concepts of the spin motion on the closed orbit

can be extended to themoregeneral phase-space coordinates.
One special unit-length solution of Eq. (1) is the invariant
spin field (ISF) [12], n̂ðu⃗; θÞ, satisfying the periodicity
condition n̂ðu⃗; θ þ 2πÞ ¼ n̂ðu⃗; θÞ and satisfying Eq. (1)
along particle trajectories, u⃗ðθÞ, obeying Hamilton’s equa-
tions. Assuming that the orbital motion is integrable so that
the orbital motion can be expressed in terms of action-angle
variables, the analog of ν0 for the combined betatron and
synchrotronmotionwithorbital actions I⃗ ≡ ðIx; Iy; IzÞ, is the
amplitude-dependent spin tune νsðI⃗Þ describing the rate of
spin precession around n̂ [12]. The projection of the spin

vector of a particle on the invariant spin field JS ¼ Ŝ · n̂ is an
adiabatic invariant of its spin motion [13]. On the closed
orbit, n̂ðu⃗; θÞ and νsðJ⃗Þ reduce to n̂0ðθÞ and ν0, respectively,
but for typical orbital amplitudes with electrons νsðI⃗Þ ≈ ν0 in
any case.
Machine imperfections and orbital oscillations contrib-

ute toΔΩ⃗ðθÞ and ω⃗ðu⃗; θÞ, respectively, and may perturb the
spin motion in a resonant manner when the following
condition of spin-orbit coupling resonances (spin resonan-
ces in short) is nearly satisfied:

νsðI⃗Þ ¼ kþ kxνx þ kyνy þ kzνz; k; kx; ky; ky ∈ Z; ð3Þ

where νx, νy, and νz are the horizontal and vertical betatron
tunes, and the synchrotron tune, respectively. n̂ðu⃗; θÞ
deviates from n̂0ðθÞ significantly near these spin resonan-
ces. As will be seen below, in perturbative estimates of spin
motion, νsðI⃗Þ is replaced by ν0 in the above resonance
condition. Note that the orbital tunes νx, νy, and νz, in the
above definition of the spin resonances, are conventionally
used in the case of weak couplings, reduced from the more
general orbital tunes νI , νII, and νIII obtained from the
orbital eigenanalysis [14]. Spin resonances with ν0 ¼
k; k ∈ Z are called integer spin resonances. In a perfectly
aligned planar ring with no solenoids n̂0ðθÞ is vertical. In a
misaligned ring, n̂0ðθÞ can deviate strongly from the design
direction when ν0 is near an integer. Spin resonances with
jkxj þ jkyj þ jkzj ¼ 1 and jkxj þ jkyj þ jkzj > 1 are called
first-order spin resonances and higher-order spin resonan-
ces, respectively.
Unlike polarized proton beams, which must be polarized

at the source, eþ=e− beams can also become spontaneously
polarized in a storage ring by the emission of synchrotron
radiation (the Sokolov-Ternov effect). In a perfectly aligned
ring with no solenoids with vertical n̂0, the polarization is
vertical, but in general, the polarization of the beam is along
n̂0. The evolution of the beam polarization PðtÞ in an
electron storage ring for an initially unpolarized beam is

PðtÞ ¼ P∞½1 − exp ð−t=τpÞ�; ð4Þ

where

P∞ ¼ −8
5

ffiffiffi
3

p
H
dθ n̂0·b̂

jρj3H
dθ 1−2

9
ðn̂0·ŝÞ2
jρj3

; ð5Þ

where ŝ is a unit vector along the particle’s direction of
motion, and b̂ ¼ ŝ × _̂s=j _̂sj, is the direction of the guiding
magnetic field, which is normally vertical. P∞ is the
equilibrium beam polarization taking into account the
orbital imperfections, but disregarding the radiative depo-
larization effect and the nonzero beam size [15]. The time
constant of the Sokolov-Ternov effect, τp, is
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τ−1p ≈
5

ffiffiffi
3

p

8

reγ50ℏ
me

1

2π

I
dθ

1 − 2
9
ðn̂0 · ŝÞ2
jρj3 : ð6Þ

In an ideal planar ring, P∞ is 92.4%. In contrast, as
mentioned, for an imperfect storage ring near integer values
of ν0, n̂0 may deviate from the vertical direction and lead to
a reduced level of P∞.
In addition to the Sokolov-Ternov effect, synchrotron

radiation also causes radiative depolarization in electron
storage rings, namely, the spin diffusion effect. It is implicit in
standard literature [16,17] that the polarization at each point
in phase space u⃗ is parallel to n̂ðu⃗; θÞ. This is the so-called ISF
approximation which we discuss again in Sec. VI. A photon
emission perturbs the orbital motion and leads to a change in
n̂ and thus a slightly different Ŝ · n̂. The stochastic nature of
synchrotron radiation then leads to diffusion in Ŝ · n̂ and thus
a reduction of beam polarization [18], which has also been
called “nonresonant spin diffusion” [19]. However, in the
proximity of spin resonances,where n̂varies quicklywith the
particle’s energy, Ŝ · n̂ is no longer an invariant of motion,
and it has been suggested that the above physics picture is no
longer complete. Then a second mechanism, which could be
important at very high energy, namely, the repetitive fast but
“uncorrelated” crossing of the spin resonances, due to
stochastic photon emissions, would be another source of
radiative depolarization [20,21], which has also been called
“resonant spin diffusion” [19]. In any case, the evolution of
beampolarization in an electron storage ring is a compromise
between the spontaneous polarization build-up and the
radiative depolarization effects.
Analytical estimates of the equilibrium beam polariza-

tion in the presence of just nonresonant spin diffusion are
generally made with the Derbenev-Kondratenko (DK)
formula [16,17]:

Peq ¼
− 8

5
ffiffi
3

p ×
H
dθh 1

jρj3 b̂ · ðn̂ − ∂n̂
∂δÞiH

dθh 1
jρj3 ½1 − 2

9
ðn̂ · ŝÞ2 þ 11

18
ð∂n̂
∂δÞ2�i

; ð7Þ

where the hi brackets denote an average over the orbital
phase space at azimuth θ. The spin-orbit coupling function
∂n̂=∂δ quantifies the depolarization. This can be rather
large near spin resonances, leading to a reduced level of
equilibrium polarization, as well as a smaller self-
polarization build-up time τtot relative to τp

τ−1tot ¼ τ−1p þ τ−1d ; ð8Þ

where τd is the time constant of the spin diffusion effect,

τ−1d ¼ 5
ffiffiffi
3

p

8

reγ50ℏ
me

1

2π

I
dθ

�11
18
ð∂n̂
∂δÞ2

jρj3
�
: ð9Þ

The key to the evaluation of the DK formula lies in the
evaluation of ∂n̂=∂δ. As already indicated, in the derivation

of the DK formula, only the first mechanism (nonresonant
spin diffusion) of radiative depolarization was included.
Then as suggested in [19,21], the DK formula should be
augmented to take into account the effects of resonant spin
diffusion too.
In a mainly planar storage ring, the equilibrium polari-

zation can also be approximated by

Peq ≈
P∞

1þ τp
τd

: ð10Þ

This equation disregards the tiny effect of kinetic polari-
zation associated with the term b̂ · ∂n̂

∂δ in Eq. (7) but captures
the essentials of the trade-off between the Sokolov-Ternov
effect and the radiative depolarization effect, regardless of
the underlying mechanism of radiative depolarization. The
strength of the depolarization effects is quantified by the
ratio τp=τd.
So far, the evaluation of the equilibrium polarization in

real storage rings has involved two classes of computer
algorithms, as reviewed in detail in Refs. [22,23]. One class
of algorithms numerically evaluates n̂ and ∂n̂

∂δ and then
applies Eq. (7) to calculate the equilibrium polarization. For
example, SLIM [24] treats linearized orbital and spin motion
and thus reflects the influence of first-order spin resonances
while taking into account the effects of tilted n̂0 near integer
values of ν0. It can be classed as a first-order perturbative
algorithm. Several other algorithms employ full three-
dimensional spin motion [25–28] and thus expose the
higher-order spin resonances resulting from that. Among
these are the higher-order perturbative algorithm of
Ref. [25] and the nonperturbative approaches of the
SODOM algorithms [26,27].
The other class of algorithms evaluates the depolariza-

tion time τd through Monte Carlo simulations, like SITROS

[29], SLICKTRACK [30], and Bmad [31,32], and then
calculate the equilibrium polarization with Eqs. (5), (6),
and (10). Unlike the previous class of algorithms, the
Monte Carlo method, with its use of full three-dimensional
spin motion, exposes both first-order and higher-order spin
resonances automatically, while not relying on the calcu-
lation of n̂ and ∂n̂

∂δ and Eq. (7). Nor is it dependent on other
theories of spin diffusion. Therefore, the Monte Carlo
method can be used to check theoretical models of radiative
depolarization. The Monte Carlo method has the additional
advantage that it can handle nonlinear orbital motion such
as that caused by beam-beam forces.
Resonant and nonresonant spin diffusion for ultrahigh

energy electron storage rings have been discussed in detail
by Derbenev, Kondratenko, and Skrinsky [19]. These
theories were later compared with the experiments with
vertically polarized beams in the Large Electron-Positron
(LEP) collider [33]. In the past decade, global interest has
arisen in building future eþe− circular colliders. Mane
worked out a scaling of equilibrium beam polarization at
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ultrahigh beam energies and studied possibilities for using
Siberian snakes to mitigate the depolarization while retain-
ing self-polarization at the same time [34]. Nikitin evalu-
ated the radiative depolarization and the equilibrium
transverse polarization in these super electron-positron
circular colliders theoretically and discussed options for
achieving longitudinally polarized colliding beams [35,36].
There are also attempts to reevaluate the radiative depo-
larization and equilibrium beam polarization using an
approach based on the Bloch equation [37–39].
There have already been some simulations for the

equilibrium polarization for the future circular eþe−

colliders at ultrahigh energies. For example, Gianfelice-
Wendt launched Monte Carlo simulations with the SITROS

package [29] of the attainable self-polarization at CERN’s
Future Circular eþe− collider (FCC-ee) [40] at 45- and
80-GeV beam energies, aiming at energy calibration using
RD. Quadrupole misalignments and beam-position-
monitor errors were introduced in a simplified ring lattice
without the interaction regions. It was shown that a
reasonable polarization level can be achieved in the collider
ring at both energies with a well-planned orbit correction
scheme, while asymmetric wigglers are necessary to boost
the self-polarization buildup at 45 GeV. Koop developed a
Monte Carlo simulation code with a simplified model
including one-turn energy-dependent spin precession and
a lumped element to model spin perturbations, in addition to
synchrotron oscillations and synchrotron radiation. This
simulation code was also used to study the RD process [41].
On our side, a Monte Carlo simulation of radiative

depolarization based on the Polymorphic Tracking Code
(PTC) [42,43] was developed in Ref. [44]. The equilibrium
beampolarizationwas simulated for amodel ring latticewith
a circumference of 50 km and artificial skew quadrupoles to
excite betatron spin resonances. That study supported the
suggestion in Ref. [19] that the spin dynamics enter an
“uncorrelated regime”of spin resonance crossing at ultrahigh
beam energies. However, it was not clear if this paradigm
shift would exist in a realistic imperfect ring.
For this paper, we extend our studies to the radiative

depolarization effects for the CEPC at the Z pole, as well as
higher beam energies, and for various operation scenarios.
We use a CEPC CDR lattice that contains two interaction
regions and includes detailed error modeling and correc-
tions. This lattice does not contain solenoids and has
relatively weak orbital correctors with horizontal magnetic
fields and belongs to the category of the “planar ring.” We
present the theories of radiative depolarization applicable to
this case. Monte Carlo simulations based on the PTC code
[42–44] were then applied to estimate the radiative depo-
larization effects, which are compared to those from the
theories of radiative depolarization at ultrahigh beam
energies.
This paper is arranged as follows: More details of

theories of radiative depolarization in ultrahigh energy

electron storage rings are reviewed in Sec. II. The setup
of the CEPC lattice is introduced in Sec. III. In Sec. IV, the
theories are applied to the CEPC lattice to evaluate the
depolarization effects. Section V presents the results of
Monte Carlo simulations for the equilibrium polarization
for the standard CEPC lattice as well as for a lattice with
asymmetric wigglers and a double rf system and these are
compared with the results from theoretical models. The last
section provides a summary of matters covered, conclu-
sions, a commentary regarding the state of theory, and plans
for future numerical work.

II. THEORIES OF RADIATIVE DEPOLARIZATION

In the following, we focus our analysis on realistic planar
electron storage rings. Severe depolarization may occur
when the closed-orbit spin tune ν0 is near an integer k; so
that n̂0 is tilted from the design direction, and then as shown
below, the two first-order “parent” synchrotron spin
resonances ν0 � νz ¼ k can therefore be strong, even over-
lappingwith each other.Depolarization also occurs near first-
order parent betatron spin resonances ν0 � νr ¼ k; r ¼ x, y.
Moreover, even if ν0 is not near an integer, its distance to
adjacent integer spin resonances and first-order spin reso-
nances is less than 220 MeV. As the spread of the spin
precession frequency increases with the beam energy, it
becomes more difficult to attain high polarization. In
particular, as we show in the perturbation theory sketched
below, higher-order synchrotron “sideband” spin resonances
ν0 � νr þmνz ¼ k, where m is an integer and r ¼ x, y, z,
become much more prominent, compared to those in lower-
energy electron storage rings. The strongest of these reso-
nances is centered on first-order parent spin resonances. Note
that in this context, an integer spin resonance ν0 ¼ kwill be a
“sideband” spin resonance of the parent first-order synchro-
tron spin resonances ν0 � νz ¼ k. Note also that this kind of
resonance can even occur when the ring is perfectly aligned
and n̂0 is not tilted from the design direction, as, for example,
when spin rotators make n̂0 horizontal in a region with
quadrupoles and dispersion. The higher-order parent reso-
nances also carry synchrotron sideband resonances.
Observations of beam polarization in electron storage

rings have so far been in broad agreement with the
expectations of Eq. (7), taking into account of the depo-
larization associated with these first-order and higher-order
spin resonances. However, as already mentioned and as
proposed in Refs. [19–21], the above picture with its
consequences explored using perturbation theory belongs
to the “nonresonant spin diffusion,” while a somehow
different picture of “resonant spin diffusion” is required for
ultrahigh beam energies. This argument is better appreci-
ated from a “dynamical” perspective as described in more
detail below. Under certain circumstances, the combined
influence of synchrotron oscillation and synchrotron
radiation could lead to “repetitive fast but uncorrelated
crossings” of the underlying spin resonances. Note that in
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this case, the influence of the resonant spin diffusion is not
limited to the close proximity of the underlying spin
resonances.
Now, to set the scene, we will first present the depo-

larization theory of the parent first-order spin resonances,
or “first-order theory” in short. We explicitly derive the
dominating contribution of first-order parent synchrotron
spin resonances to radiative depolarization characterized by
τp=τd and establish its connection with the strengths of tilts
of n̂0 near integer values of ν0. Then, we briefly review the
theory of (high-order) synchrotron sideband spin resonan-
ces, referred to as the theory of the “correlated regime” in
the following context. In these analyses, it will be shown
that at ultrahigh beam energies, the synchrotron sideband
spin resonances centered on integers are the most important
contributors to depolarization. Following that, we will also
refer to other, more detailed, perturbative calculations
surrounding higher-order parent resonances and their side-
bands. Then the theory of “uncorrelated regime” will also
be reviewed. These theories will be compared to simu-
lations in later sections.
To exhibit the depolarization effects of the first-order

parent resonances and their sidebands in a storage ring with
practical machine imperfections, we will now follow
Yokoya’s perturbative approach [45,46]. We denote the
right-handed orthonormal set of unit-length solutions to
Eq. (1) on the design orbit by n̂00, m̂00, and l̂00, where
jΔΩ⃗j ¼ jω⃗j ¼ 0, and define k̂00¼ m̂00þ il̂00. Then k̂00ðθÞ ¼
eiðϒðθÞ−ϒðθ0Þk̂00ðθ0Þ, where ϒðθÞ is the spin precession
phase. In a planar ring, ϒðθÞ ≈ ν0ΦðθÞ, where ΦðθÞ ¼
R
R
θ
0

1
ρx
dθ is the integral of the bending angle between the

azimuthal angles 0 and θ, R is the average radius of the
storage ring, ρx is the radius of curvature for the local orbit.
In a perfect planar ring, n̂00 is in the vertical direction while
k̂00 is in the horizontal plane, respectively. Considering the
perturbed fields on the closed orbit, jΔΩ⃗j ≠ 0; jω⃗j ¼ 0, we
denote the right-handed orthonormal set of unit-length
solutions of Eq. (1) as ½n̂0ðθÞ; m̂0ðθÞ; l̂0ðθÞ�, and define
k̂0ðθÞ ¼ m̂0ðθÞ þ il̂0ðθÞ. Then n̂0 and k̂0 can be expanded
as n̂0 ¼ n̂00 þ Δn̂00 and k̂0 ¼ k̂00 þ Δk̂00. The vector k̂0 is
quasiperiodic,

k̂0ðθ þ 2πÞ ¼ ei2πν0 k̂0ðθÞ. ð11Þ

When jΔΩ⃗j ≠ 0, jω⃗j ≠ 0, n̂ can be expressed by

n̂ðu⃗; θÞ ¼ n̂0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jζðu⃗; θÞj2

q
þR½k̂⋆0 ζðu⃗; θÞ�; ð12Þ

where k̂⋆0 is the complex conjugate of k̂0, and ζðu⃗ðθÞ; θÞ
satisfies

dζ
dθ

¼ −iω⃗ · k̂0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jζj2

q
þ iω⃗ · n̂0ζ. ð13Þ

To arrive at our chosen set of resonances, we choose
jζj ≪ 1. Then the solution for ζðu⃗; θÞ to Eq. (13) at ðu⃗; θÞ
with ζðu⃗; θÞ ¼ ζðu⃗; θ þ 2πÞ is

ζðu⃗; θÞ ¼ −ie−iχðu⃗;θÞLim
ϵ→þ0

�Z
θ

−∞
eϵθ

0
eiχðu⃗ðθ0Þ;θ0Þ

× ω⃗ðu⃗ðθ0Þ; θ0Þ · k̂0ðθ0Þdθ0
�
; ð14Þ

where

χðu⃗; θÞ ¼ Lim
ϵ→þ0

�
−
Z

θ

−∞
eϵθ

0
ω⃗ðu⃗ðθ0Þ; θ0Þ · n̂0ðθ0Þdθ0

�
. ð15Þ

The integral from −∞ in these expressions can be appre-
ciated as follows as an instance of the “antidamping”
procedure using the adiabatic invariance of JS ¼ Ŝ · n̂
[25,47–49]. A particle is placed infinitesimally close to
the closed orbit in the infinite “past” with Ŝ · n̂0 ¼ 1. The
particle and its spin are then tracked forward up to θ while
the orbital amplitudes and the perturbation to the spin
increase very slowly and exponentially. Then at θ, n̂ is
given by the final Ŝ [25].
As will be shown below, the first-order parent spin

resonances are driven by the perturbation term ω⃗ · k̂0, while
the higher-order synchrotron “sideband” spin resonances
are due to the modulation of the rate of spin precession
around n̂0 driven by ω⃗ · n̂0. The spin-orbit coupling
function can be obtained as

∂n̂
∂δ

≈ R
�
k̂⋆0

∂ζ

∂δ

�
. ð16Þ

A. First-order parent spin resonances

Considering the spin resonances up to the first order, the
solution for ζ is

ζðu⃗; θÞ ≈ Lim
ϵ→þ0

�
−i

Z
θ

−∞
eϵθ

0
ω⃗ · k̂0dθ0

�
; ð17Þ

where for this, ω⃗ is linearized with respect to the betatron
coordinates rβ; r ¼ x, y, as well as the synchrotron coor-
dinate δ, and decomposed into three oscillation modes [46]:

ω⃗ ¼ ω⃗zδþ ω⃗xxβ þ ω⃗yyβ ð18Þ

with
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ω⃗z ¼ −R
�
ð1þ aγ0ÞðGxηx þQyηyÞ −

1

ρx

�
e⃗y

þ R

�
ð1þ aγ0ÞðGyηy þQxηxÞ −

1

ρy

�
e⃗x

ω⃗x ¼ −Rð1þ aγ0ÞðGx þQyÞe⃗y
ω⃗y ¼ Rð1þ aγ0ÞðGy þQxÞe⃗x: ð19Þ

The ρy is the vertical radius of curvature for the local
orbit, which could be due to vertical quadrupole misalign-
ment errors, dipole roll errors, or orbital correctors. Finally,
ηx, ηy are the dispersion functions and the focusing
gradients of quadrupoles or dipoles are expressed as

Gx ¼ e
P0

∂By

∂x þ 1
ρ2x
, Gy ¼ e

P0

∂Bx
∂y þ 1

ρ2y
, while the gradients of

skew quadrupoles and inclined dipoles are expressed as

Qx ¼ e
P0

∂Bx
∂x − 1

ρxρy
, Qy ¼ e

P0

∂By

∂y þ 1
ρxρy

.

Then Eq. (17) can be analyzed separately for each
oscillation mode with the integral of each mode amounting
to a resonant term times a one-turn integral. The contri-
butions of betatron oscillation modes ω⃗r · rβ; r ¼ x, y to ζ
are

ζrðIr;ψ r; θÞ ¼ Lim
ϵ→þ0

�
−i

Z
θ

−∞
eϵθ

0
ω⃗rrβ · k̂0dθ0

�

¼
X
�

i
ffiffiffiffiffiffiffiffiffi
Ir=2

p
e−2πiðν0�νrÞ − 1

F�rðψ r; θÞ ð20Þ

with

F�rðψ r; θÞ ¼
Z

θ

θ−2π
ω⃗r · k̂0

ffiffiffiffiffi
βr

p
e�iðψ rþΨ̃rÞdθ0 ð21Þ

after using the quasiperiodicity of k̂0ðθÞ, and where the
angle ψ r is evaluated at θ while rβ is expressed in terms of
action-angle variables Ir and ψ r as

rβ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Irβr

p
cosðψ r þ Ψ̃rÞ ð22Þ

and where βr is the betatron function and Ψ̃r is

Ψ̃r ¼ R
Z

θ

0

dθ0

βr
− νrθ ð23Þ

at the azimuth θ. Similarly, and in a usually good
approximation that synchrotron motion is simply harmonic
with a θ-independent βz, the contribution from the syn-
chrotron mode to ζ is

ζzðIz;ψ z; θÞ ¼ Lim
ϵ→þ0

�
−i

Z
θ

−∞
eϵθ

0
ω⃗zδ · k̂0dθ0

�

¼
X
�

i
ffiffiffiffiffiffiffiffiffi
Iz=2

p
e−2πiðν0�νzÞ − 1

F�δðψ z; θÞ ð24Þ

with

F�δðψ z; θÞ ¼
Z

θ

θ−2π
ω⃗z · k̂0

ffiffiffiffiffi
βz

p
e�iψzdθ0; ð25Þ

where Iz and ψ z are the action-angle variables of the
synchrotron oscillation, ψ z ¼ ψ z0 þ νzθ and

δ ¼ ffiffiffiffiffiffiffiffiffiffiffi
2Izβz

p
cosðψ zÞ. ð26Þ

Equations (20) and (24) reveal first-order parent betatron
spin resonances and first-order parent synchrotron spin
resonances, respectively. The one-turn integrals F�r and
F�δ reflect the strengths of these spin resonances.
Comparison of the above formulas for first-order resonan-
ces with those under the topic “Reformulation in terms of
beta functions and dispersion” in Ref. [22] shows that we
are, in effect, using the “betatron-dispersion” version of the
SLIM formalism.
In ultrahigh energy electron storage rings, the betatron

oscillations complete many periods in one revolution,
namely, νx; νy ≫ 1. Hence the one-turn integrals F�r tend
to be small. In contrast, νz ≪ 1. Then the synchrotron
phase changes relatively little over one turn so that the
integrals F�δ need not be so small. Therefore, first-order
parent betatron spin resonances can be much weaker than
the first-order parent synchrotron spin resonances.
So we next focus on the pair of first-order parent

synchrotron spin resonances centered on an integer value,
k, of ν0. The spin-orbit coupling function can be approxi-
mated by

∂n̂
∂δ

≈
1

2
R½k̂⋆0 · ðDþz þD−zÞ� ð27Þ

with

D�zðθÞ ¼
ie∓iνzθ

e−2πiðν0�νzÞ − 1

Z
θ

θ−2π
ω⃗z · k̂0e�iνzθ0dθ0: ð28Þ

There are two different driving terms in the presence of
machine imperfections. The first is from the projection of
the vertical component of ω⃗z onto k̂0. Near an integer value
of ν0, k̂0 deviates from the horizontal plane, and e⃗y · k̂0 is
actually related to the strength, ω̃k, of the integer resonance
in the tilt of n̂0. In fact, as shown in detail in the Appendix
(Sec. A 1),
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e⃗y · k̂0 ¼ i
X∞
k¼−∞

ω̃keiðν0−kÞθ
0

ν0 − k

ω̃k ¼
1

2π

Z
2π

0

ΔΩxeiν0ðΦðθ0Þ−θ0Þþikθ0dθ0

ΔΩx ¼ −Rð1þ aγ0Þ
�
yCOD ·Gy þ xCOD ·Qx þ

1

ρy

�
;

ð29Þ

where xCOD and yCOD are the horizontal and vertical closed-
orbit distortions, respectively, and the feed-down effect of
normal quadrupoles generally dominates ΔΩx, and where
the denominator ν0 − k accounts for the resonant behavior.
In proton and electron rings, in the context of acceleration,
the ω̃k are also the strengths of the so-called “imperfection
resonances.” With the neglect of the terms 1=ρx and Qyηy,
the vertical component of ω⃗z can be expanded into a
Fourier series

−ð1þ aγ0ÞRGxηx ¼
X∞
j¼−∞

ξje−ijθ. ð30Þ

Then by inserting Eqs. (30), (29), and (28) into Eq. (27), we
obtain

∂n̂
∂δ

ðθÞ ≈R
�
k̂⋆0 ·

Xþ∞

k¼−∞
j¼−∞

−iω̃kξjðν0 − k − jÞeiðν0−k−jÞθ
ðν0 − kÞ½ðν0 − k − jÞ2 − ν2z �

�
ð31Þ

and

				 ∂n̂
∂δ

ðθÞ
				
2

≈
				
Xþ∞

k¼−∞
j¼−∞

ω̃kξjðν0 − k − jÞeiðν0−k−jÞθ
ðν0 − kÞððν0 − k − jÞ2 − ν2zÞ

				
2

. ð32Þ

Note that

τp
τd

≈
11

18

I
dθ

ð∂n̂
∂δÞ2
jρj3


I
dθ

1

jρj3 . ð33Þ

When averaged around the ring, the cross terms vanish in
Eq. (32) so that the depolarization effect is described as

τp
τd

≈
11

18

Xþ∞

k¼−∞
j¼−∞

jω̃k−jj2jξjj2ðν0 − kÞ2
ðν0 − kþ jÞ2½ðν0 − kÞ2 − ν2z �2

. ð34Þ

Generally, the evaluation of Eq. (34) requires retaining a
sufficient number of k and j terms, after a check of
convergence. However, in ultrahigh energy electron storage
rings with typical layouts such as that of the CEPC, and as
shown in the Appendix (Sec. A 2), where we study the
structure of ξj in a simplified model lattice following the
approach in Ref. [50], in Eq. (34), the Fourier harmonic

ξ0 ≈ −ð1þ aγ0Þ, is the major contributor to the Fourier
expansion for the contribution of horizontal dispersion to
depolarization. Let us denote the integer part of ν0 by n so
that only a few Fourier harmonics of ω̃k with jk − nj ≤ l
have a strong influence, where l is a small positive integer
to be determined as a result of a check of convergence.
Then the depolarization effect can be approximated by

τp
τd

≈
11

18

Xnþl

k¼n−l

ν20jω̃kj2
½ðν0 − kÞ2 − ν2z �2

: ð35Þ

Normally, νz ≪ 1 in high-energy electron storage rings.
Then when ν0 is chosen to be far from the first-order
parent synchrotron spin resonances, Eq. (35) can be approxi-
mated by

τp
τd

≈
11

18

Xnþl

k¼n−l

ν20jω̃kj2
ðν0 − kÞ4 . ð36Þ

Equation (36) agrees with the result [51] in Refs. [19,52].
Equation (36) does not apply when ν0 is near first-order
parent synchrotron spin resonances while Eq. (35) is still
applicable.
The second driving term arises from nonzero vertical

dispersion, mainly due to vertical closed-orbit distortions in
quadrupoles, and also due to roll errors of dipoles, as well
as vertical orbital correctors, which all contribute to the
projection of the horizontal component of ω⃗z onto k̂0 [53].
With the neglect of the terms 1=ρy and Qxηx, the projection
of the horizontal component of ω⃗z on k̂0 can be expanded
into a Fourier series

ð1þ aγ0ÞRGyηye⃗x · k̂0 ¼
X∞
k¼−∞

λ̃keiðν0−kÞθ; ð37Þ

where

λ̃k ¼
1

2π

Z
2π

0

ð1þ aγ0ÞRGyηyeiν0ðΦðθ0Þ−θ0Þþikθ0dθ0. ð38Þ

Then the depolarization effect is described by [53]

τp
τd

≈
11

18

Xnþl

k¼n−l

ðν0 − kÞ2jλ̃kj2
½ðν0 − kÞ2 − ν2z �2

. ð39Þ

Now in this regime of weak coupling, we combine these
two different contributions to τp=τd to evaluate the depo-
larization effect due to the parent first-order synchrotron
resonances as
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τp
τd

≈
11

18

Xnþl

k¼n−l

ν20jω̃kj2 þ ðν0 − kÞ2jλ̃kj2
½ðν0 − kÞ2 − ν2z �2

: ð40Þ

In practice, only a few harmonics in the above formulas
dominate and they could be partially compensated, and
then the tilt of n̂0 reduced, with specially arranged
correction coils forming closed-orbit vertical bumps [54]
chosen to generate “anti-harmonics.” These so-called
harmonic closed-orbit spin matching techniques [55,56]
have been shown to be essential for improving the
equilibrium beam polarization level.
In this paper, we focus on comparing the polarization

theory and simulations, applied to the imperfect CEPC
lattices without taking account of the harmonic closed-orbit
spin matching. Considering only the first-order parent spin
resonances, the equilibrium beam polarization can be
analytically evaluated using Eqs. (5), (10), and (40).

B. Higher-order synchrotron sideband spin resonances

As shown previously, the first-order parent spin reso-
nances arise from the perturbation term ω⃗ · k̂0. In addition,
the spin precession rate is dependent on the coordinates of
orbital motion, and orbital oscillations induce modulations
of the spin precession rate, which lead to the higher-order
“sideband” resonances of these first-order parent spin
resonances. This can be seen from Eq. (14), where χðθÞ,
as an integral of ω⃗ · n̂0, can also be expressed as a resonant
term times a one-turn integral, representing the average
modulation over one turn [45,46]. Then betatron tunes are
so large that their one-turn integrals are small and the
corresponding sideband spin resonances are insignificant.
In contrast, the synchrotron tune is tiny and the average
modulation cannot be ignored.
In particular, around each integer k, there can be an

infinite number of higher-order synchrotron sideband spin
resonances in the form of ν0 �mνz ¼ k. The overall
depolarization effects of this family of spin resonances
can be incorporated by multiplying the τp=τd contribution
of the first-order parent synchrotron spin resonances around
integer k by a depolarization enhancement factor F k [45]

F k ¼ ððν0 − kÞ2 − ν2zÞ2
X
m

e−σ
2

Imðσ2Þ
½ðν0 − k −mνzÞ2 − ν2z �2

; ð41Þ

where Im is the modified Bessel function with the modu-
lation index σ defined as

σ ¼ σ0
νz

¼ ν0σδ
νz

ð42Þ

and where σ0 ¼ ν0σδ measures the spread of the instanta-
neous spin precession frequencies in a planar ring for the
rms relative energy spread, σδ, resulting from synchrotron
radiation. Note that in the derivation of Eq. (41), it was also

assumed that synchrotron motion is approximately har-
monic so that Eq. (26) holds.
The modulation index σ reflects the spread of spin

precession frequencies in a beam, relative to the spacing
of adjacent synchrotron sideband spin resonances. For a
fixed νz, σ scales with γ0

2, and higher-order synchrotron
sideband spin resonances become more prominent at higher
beam energies. To achieve a higher equilibrium beam
polarization level, it is essential to mitigate the influence
of these important synchrotron sideband spin resonances. It
is customary to choose ½aγ0� ≈ 0.5 where here and later [x]
denotes the fractional part of x ∈ R.
Considering both the first-order and higher-order syn-

chrotron spin resonances, the depolarization effect can be
evaluated as

τp
τd

≈
11

18

Xnþl

k¼n−l

X∞
m¼−∞

�
ν20jω̃kj2e−σ2Imðσ2Þ

½ðν0 − k −mνzÞ2 − ν2z �2

þ ðν0 − kÞ2jλ̃kj2e−σ2Imðσ2Þ
½ðν0 − k −mνzÞ2 − ν2z �2

�
. ð43Þ

For further treatments of higher-order resonances using
perturbation theory, see Refs. [25,57–59].

C. The correlated and uncorrelated regimes of
resonance crossing

Reference [19] distinguishes between two regimes,
namely, the so-called nonresonant and resonant spin
diffusion. In a modern treatment, we would focus on the
invariant spin field n̂ðu⃗; θÞ and the amplitude-dependent
spin tune νsðJ⃗Þ for the combined betatron and synchrotron
motion. The amplitude-dependent spin tune is constant
during such motion for fixed orbital amplitudes but changes
if, for example, the amplitude of the synchrotron motion
changes due to photon emission. However, in Ref. [19], a
hybrid approach is adopted whereby the invariant spin field
n̂ is explicitly time-independent and the synchrotron
motion is added by hand so that the instantaneous spin-
precession rate ν is dependent on the instantaneous energy
deviation of a particle, i.e., ν ≈ ν0ð1þ δÞ. Since νz ≪ 1 in
most electron storage rings, ν looks like a slowly varying
ν0. In this “dynamical” picture, some underlying spin
resonances could be crossed as a result of synchrotron
oscillations, or synchrotron radiation, or the combined
effect. As far as we know Ref. [19] is the most recent
work on these topics. So to facilitate comparison, we adopt
that approach and argumentation too.
As already mentioned in Sec. II B, stochastic photon

emissions cause a random walk in particle energies and
thus lead to a spread in particle energies and a spread in
spin precession frequencies characterized by σ0 ¼ ν0σδ.
The parameter σ0 also characterizes the amplitude of
variation of the spin precession rate of an arbitrary particle
in the beam, as a result of synchrotron radiation and
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synchrotron oscillation. At low energy, typically σ0 ≪ 1, in
particular, when σ0 ≪ νz, the design energy can be set so
that the νsðJ⃗Þ of beam particles sit between important spin-
orbit resonances. Then the perturbation theory of Sec. II B
above can be used to get the first estimates of τp=τd and the
sidebands will be narrow according to Sec. II B. This is the
regime called nonresonant spin diffusion in Ref. [19].
At higher beam energies, σ0 becomes larger so that some

beam particles inevitably cross some important spin-orbit
resonances in the process of synchrotron radiation and
synchrotron oscillation. Then there can be so-called reso-
nant spin diffusion. In particular, it was argued in Ref. [19]
that when the diffusion of the spin-precession phase
advance introduced by stochastic photon emissions is
negligible in one synchrotron period, the crossings of an
underlying spin resonance during precession-rate oscilla-
tions, driven by synchrotron oscillations, are correlated.
Then, according to Ref. [19], the perturbation theory of
Sec. II B can still be used. This poses a constraint on the
“correlation index” κ, which characterizes the spread in the
spin-precession phase advance in a synchrotron period,

κ ¼ ν20λp
ν3z

≪ 1; ð44Þ

where λp is the normalized polarizing rate,

λp ¼ τ−1p
R
c
. ð45Þ

Note that following Ref. [19], we have

σ2 ¼ σ20
ν2z

¼ ν20σ
2
δ

ν2z
¼ 11

36

ν20λp
ν2zΛz

;

where Λz is the damping decrement for longitudinal
motion,

Λz ¼ τ−1z
R
c
; ð46Þ

where τz is the longitudinal damping time. Then since
Λz ≪ νz, the above constraint on κ is more relaxed than the
earlier constraint on σ0=νz.
The perturbative depolarization theory of higher-order

synchrotron sideband spin resonances will be hereafter
referred to as the theory of the “correlated regime” of spin
resonance crossing (or in short the “correlated regime”).
In contrast, if the radiation is extremely violent, or the

synchrotron tune is very small, the condition in Eq. (44)
could be violated. Then if σ0 ≫ νz also holds, successive
crossings of the underlying spin resonance in synchrotron
oscillations become completely uncorrelated. In this case, it
was suggested in Ref. [19] that the normalized depolari-
zation rate λd due to the photon emissions can be evaluated
by [20]

λd ¼ π
X
k

hjϵ̃kj2δðν − kÞi; ð47Þ

where δðν − kÞ is the delta function, ν is the instantaneous
spin-precession rate, ϵ̃k denotes the strength of spin
resonances on general synchrobetatron trajectories, and
hi is the average over the beam particles. In ultrahigh
energy planar electron storage rings, the ω̃k, of the integer
resonances in the tilt of n̂0, was regarded [19] as the major
contribution to ϵ̃k. Then assuming ν ≈ ν0ð1þ δÞ and
considering a Gaussian distribution for δ, the depolarization
effect can be evaluated as [19]

τp
τd

≈
ffiffiffiffiffiffiffiffi
π=2

p
λp

Xnþl

k¼n−l

jω̃kj2
σ0

exp

�
−
ðν0 − kÞ2

2σ20

�
. ð48Þ

This spin diffusion theory will be hereafter referred to as the
“uncorrelated regime.”
It was also suggested in Ref. [19] that, when σ0 ≪ 1, the

spin diffusion due to the uncorrelated resonance crossing is
comparable to that due to the “trembling” of the n̂
associated with photon emissions and that the total depo-
larization effect can then be evaluated by adding Eqs. (48)
to (36). Note that Eq. (36) does not include the depolari-
zation effect from the synchrotron sideband spin resonan-
ces. In addition, when σ0 ≫ 1, it was also predicted in
Ref. [19] that there would be no resonant dependence of
spin diffusion on energy, and beam polarization would
grow with energy.
The theories of the “correlated regime” and “uncorre-

lated regime” lead to quite distinct depolarization effects,
while the condition of their application is quite vaguely
defined. In particular, there is no definite boundary of κ at
which the depolarization effect enters the uncorrelated
regime. Moreover, it is not clear either what theory of
radiative depolarization is applicable between the corre-
lated regime and the uncorrelated regime. Note that the
theory of the correlated regime has been verified in LEP
experiments [56], but the theory of the uncorrelated regime
seems to be beyond the parameter space of LEP [56].

III. CEPC LATTICE SETUP

We now continue by describing simulations of the
equilibrium beam polarization for the CEPC CDR lattice
[3]. For these, the major contributions of misalignment
errors and relative field errors of magnets, listed in Table I,
were introduced into the lattice. These errors follow a
Gaussian distribution truncated at �3σ. Then, a detailed
closed orbit and optics correction scheme was developed
[60] to recover the lattice performance, using the SAD [61]
and Accelerator Toolbox (AT) [62] codes. BPM errors were
not yet included in the correction scheme.
About 1500 correctors in both the horizontal and vertical

planes were used for the closed-orbit distortion (COD)
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correction. The horizontal correctors and vertical correctors
were placed next to focusing quadrupoles and defocusing
quadrupoles, respectively. About 1500 beam position
monitors were placed next to quadrupoles, four per betatron
wave period. Both the root-mean-squared (rms) values of
the horizontal and vertical closed orbits are smaller than
50 μm after the COD correction. Skew quadrupole coils on
sextupoles and some independent skew quadrupoles were
used to minimize the vertical dispersion and the betatron
coupling. Since the detector solenoids in the interaction
regions are not yet included in the lattice, the vertical
emittance after correction is 2.5 × 10−3 pm · rad at the Z
pole after the coupling correction. It is much smaller than
the target value, 1.6 pm · rad, in the CDR.
To properly account for the parent betatron spin reso-

nances in the equilibrium polarization simulations, the
vertical emittance of the imperfect lattice was adjusted to
the target value as follows. According to a separate analysis
[3], the coupling contribution due to the detector solenoid
fringe field is around 28% of the target vertical emittance
assuming that the detector solenoid field is 2 T during Z
operation. Zero-length skew quadrupoles SQ1 and SQ2
were added next to the final focusing doublet Q1 and Q2,
respectively, to account for the solenoid fringe field
contribution, as illustrated in Fig. 1(b). The integral field
gradients of SQ1 and SQ2 are 6.4 × 10−5 and 3.7 ×
10−6 m−1 respectively. To generate the remaining 72%
targeted vertical emittance, all quadrupoles in the four
straight section regions, as shown in Fig. 1(a), were rotated
by the same angle, 0.2° in the lattice.
Figure 2 shows the closed orbit and the beta beating

along the CEPC lattice in the horizontal and vertical
directions obtained by SAD. The rms values of the hori-
zontal closed orbit and vertical closed orbit are 37 and
28 μm, respectively. The rms values of the horizontal and
vertical beta beatings are 0.36% and 3.4%, respectively. We
are aware that BPM errors, in particular, the relative offset
errors between BPMs and adjacent quadrupole magnets,
once introduced, would worsen the attainable level of
closed-orbit distortions after correction and also affect
the performance after optics correction. These effects
would in turn affect the equilibrium beam polarization
level. These BPM errors and other error sources will be
included properly in future studies and set the basis for a
more practical prediction of the attainable equilibrium

beam polarization level. In this study, the focus is to reveal
the mechanisms of radiative depolarization, rather than to
predict the attainable equilibrium beam polarization level.
Most of the CEPC accelerator design and simulations

were based on SAD [61]. However, the capability to
simulate beam polarization is still under development in
SAD. Then, in this paper, the Bmad and PTC codes were used
in the simulation of equilibrium beam polarization. PTC is
embedded inside Bmad as a library, and much effort has
been invested, by the authors of both codes, to make the
interface almost seamless. Bmad has a built-in module to
simulate the equilibrium beam polarization with contribu-
tions from just the first-order spin resonances. This module
calls PTC internally to construct the linearized orbital and
spin transport matrices and then evaluate n̂0 and ∂n̂

∂δ, using
the SLIM formalism [24]. To go further, Monte Carlo
simulations of the depolarization effects were studied using
PTC [44] so that the influence of high-order spin resonances
was exposed. Both approaches were adopted in the study of
the equilibrium beam polarization of the CEPC.

TABLE I. CEPC magnets’ error settings in the simulations.

Misalignment error

Component ΔxðμmÞ ΔyðμmÞ ΔθzðμradÞ Field error

Dipole 0 0 0 0.01%
Arc quadrupole 100 100 100 0.02%
IR quadrupole 50 50 50 0
Sextupole 100 100 100 0

FIG. 1. The layout of the CEPC straight sections and locations
of coupling adjustment components. In (a), the eight straight
sections of the CEPC include two interaction regions (blue), two
rf regions (blue), and four straight sections (gray) for other
purposes. The quadrupoles in these four straight sections are
artificially rotated to generate the transverse coupling. In (b),
zero-length skew quadrupoles SQ1 and SQ2 are inserted next to
the final focus quadrupoles Q1 and Q2 around each of the two
interaction points, to account for the transverse coupling intro-
duced by the detector solenoids.
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The SAD version of the CEPC lattice was converted to the
Bmad format using a Python script inside the Bmad pack-
age, and then a lattice file in PTC format was generated
within Bmad. Previous studies [63] indicated a good match
of the calculated bare lattice parameters between SAD and
Bmad. The imperfect CEPC lattice was converted to the
Bmad format using this Python script with minor mod-
ifications. The zero-length correctors modeled by the
BEND type in SAD had to be converted to the KICKER
type in Bmad. In addition, the different conventions of the rf
phase and the quadrupole roll were taken into account.

Then, we compared the closed orbit and beta functions of
the CEPC lattice using SAD, Bmad, and PTC, respectively.
The differences are summarized in Table II. The relative
difference of β function Δβ=β is defined as

ðΔβ=βÞcode-SAD ¼ β1code − β1SAD
β0SAD

; ð49Þ

where the superscripts “0” and “1” denote the CEPC bare
lattice and the CEPC imperfect lattice after the error
corrections, respectively. And the subscripts “code”

FIG. 2. The closed orbit (a, b) and the beta beating (c, d) of the CEPC lattice computed by SAD at 45.6 GeV as a function of the
longitudinal position S from one of the two interaction points. The rms values of the horizontal closed orbit and vertical closed orbit are
37 and 28 μm, respectively. The rms values of the horizontal beta beating and vertical beta beating are 3.6 × 10−3 and 3.4 × 10−2,
respectively. Note that in order to reduce the critical energy of synchrotron radiation from the last bending magnet upstream of each
interaction point, these bending magnets are 93.4 m long. The local horizontal closed-orbit distortions are above 0.5 mm in (a) but can be
reduced by implementing more orbital correctors in these regions.
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represents either Bmad or PTC. For the closed orbit and the
beta beating, both the rms and the maximum values of the
differences in Table II are much smaller than the rms values
of the lattice obtained by SAD in Fig. 2. We also compared
the emittances, betatron, and synchrotron tunes using these
three codes, as shown in Table III.
Although the three codes have different models, the

results of simulations of the closed orbits, β functions,
emittances, tunes, and other parameters match very well.
The relative differences between these three codes are
much smaller than the relative differences between the
imperfect lattice and the bare lattice. Therefore, the
simulations using Bmad and PTC can truthfully reflect
the influence of the machine imperfections and the cor-
rection scheme on the CEPC lattice.

IV. APPLICATION OF THE THEORIES

In this section, we apply the theories outlined in
Section II to evaluate the depolarization effects for the
CEPC lattice. We first calculate the Fourier harmonics ω̃k

and λ̃k near the working beam energy and apply the theory
of radiative depolarization taking into account spin
resonances up to the first order. Then the calculated
equilibrium beam polarization is compared with the
simulations via the SLIM formalism. Finally, we discuss
how the theories of the correlated and uncorrelated
regimes are applied to evaluate the depolarization effects
for the CEPC lattice.
As shown in Sec. II, the amplitudes of Fourier harmon-

ics, ω̃k and λ̃k, are the major lattice-dependent inputs to
the theories of depolarization effects at ultrahigh beam

energies. Their evaluation only requires the closed orbit and
some optical parameters that are accessible from the SAD

calculations. According to the definition of the strength of
the integer spin resonance in Eq. (29), ω̃k can be approx-
imately evaluated using

ω̃k ≈
1

2π

Z
2πR

0

ð1þ kÞy000ðsÞeikΦðsÞds

≈
1þ k
2π

XM
h¼1

½py;0ðsh;2Þ − py;0ðsh;1Þ�eikΦðsh;1Þ; ð50Þ

where y0 is the vertical displacement on the closed orbit and
y000ðsÞ ¼ d2y0ðsÞ=ds2 with ds ¼ Rdθ0. We approximate
y00 ¼ dy0=ds by py;0, the vertical canonical momentum
on the closed orbit, and replace the integral with a sum over
the M magnet elements in the lattice. sh;1 and sh;2 are the
longitudinal positions of the entrance and the exit of the hth
magnet, respectively. Similarly, λ̃k in Eq. (38) can be
approximately calculated using

λ̃k ¼
1þ k
2π

Z
2πR

0

GyðsÞηyðsÞeikΦðsÞds

≈
1þ k
2π

XM
h¼1

Gyðsh;1ÞΔshηyðsh;1ÞeikΦðsh;1Þ; ð51Þ

where Δsh is the length of the hth magnet.
Figure 3 shows the jω̃kj2 and jλ̃kj2 calculated for the

CEPC lattice, for various integers k near aγ0 ¼ 103.5
(corresponding to the working beam energy of
45.6 GeV). The amplitude variations are mostly within
one order of magnitude. Moreover, evaluation with Eq. (40)
of the rate of depolarization with just the two harmonics
nearest to the integer part of aγ0 shows that retaining just
those harmonics suffices in most cases in the working
energy range of the CEPC.
Then, we employed the SLIM formalism implemented in

Bmad to calculate the equilibrium beam polarization as a
function of aγ0 for the CEPC lattice, centered on three
working beam energies with aγ0 ¼ 103.5 (45.6 GeV,
Z-pole), aγ0 ¼ 181.5 (80 GeV, WW threshold), and aγ0 ¼
272.5 (120 GeV, Higgs), as shown in Figs. 4(a)–4(c). The
step size of aγ0 is 0.02 in the simulations. For comparison,

TABLE II. The differences of the closed orbit (CO) and the relative difference of the beta function (Δβ=β) of the
CEPC at 45.6 GeV calculated by SAD, Bmad, and PTC. The minus sign indicates the difference between the two
codes. “rms” is the root mean square of the difference around the ring. “MAX” means the maximum absolute value
of the difference around the ring.

COBmad-SADðmÞ COPTC-SADðmÞ ðΔβ=βÞBmad-SAD ðΔβ=βÞPTC-SAD
Horizontal rms 1.2 × 10−8 9.5 × 10−8 6.9 × 10−8 1.6 × 10−5

MAX 6.8 × 10−8 3.3 × 10−7 9.9 × 10−8 4.2 × 10−4

Vertical rms 1.4 × 10−10 1.1 × 10−9 9.0 × 10−7 9.5 × 10−5

MAX 1.3 × 10−9 7.8 × 10−9 1.4 × 10−6 6.5 × 10−4

TABLE III. Emittances and fractional tunes of the CEPC at
45.6 GeV calculated by SAD, Bmad, and PTC.

SAD Bmad PTC

Horizontal emittance (nm rad) 0.1731 0.1738 0.1733
Vertical emittance (pm rad) 1.615 1.623 1.612
Longitudinal emittance (μm rad) 0.9017 0.8956 0.9028
Fractional horizontal tune 0.108 0.108 0.108
Fractional vertical tune 0.217 0.217 0.216
Fractional synchrotron tune 0.028 0.028 0.028
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we also used Eqs. (5), (10), and (40) to evaluate the
equilibrium beam polarization analytically, taking into
account synchrotron spin resonances up to the first order.
Only the strengths of the two nearest integer spin reso-
nances were retained in the evaluation of Eq. (40). The
(numerical) SLIM simulation results match well with the
analytical calculations. As the integer spin resonances in
the tilt of n̂0 become much stronger at the working energy
for the Higgs particle, the equilibrium beam polarization for
the cases with ½aγ0� ≈ 0.5 is also much reduced. In addition,
there are dips in the equilibrium beam polarization near the
first-order parent betatron spin resonances, for example,
when aγ0 is near 104� 0.108 at the working energy for Z.
But apparently their influence is quite localized and much
weaker compared to the first-order parent synchrotron spin
resonances. This justifies the analysis of the relative
significances of first-order spin resonances in Sec. II.
We also evaluated the depolarization effects using the

theories of the correlated and uncorrelated regimes of spin
resonance crossings. We used Eq. (43) to estimate the effect
of the correlated resonance crossing and Eq. (48) to estimate

FIG. 3. Harmonics of jω̃kj2 (a) and jλ̃kj2 (b) near aγ0 ¼ 103.5
for the CEPC lattice.
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FIG. 4. The equilibrium beam polarization as a function of aγ0
near the three working energies of the CEPC. (a) Z-pole (around
45.6 GeV), (b) WW threshold (around 80 GeV), and (c) Higgs
(around 120 GeV). The red points show the simulation results of
SLIM, the step size Δðaγ0Þ ¼ 0.02. The black curve shows the
analytical calculation results using the first-order theory of
Eq. (40). There are dips near first-order parent betatron spin
resonances ν0 � 0.11 ¼ k (horizontal) and ν0 � 0.22 ¼ k (ver-
tical), but these dips are much narrower compared to those
around first-order parent synchrotron spin resonances.
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the effect of the uncorrelated resonance crossing. Then we
evaluated Eqs. (5) and (10) to estimate the equilibrium beam
polarization of the CEPC lattice. In both cases, we only
retained the twoFourier harmonics nearest to the integer part
of aγ0, and for Eq. (43), we retainedm in the range of −100
to 100 as a result of a check of convergence.

V. RESULTS OF SIMULATIONS

In this section, we describe the evaluation of the radiative
depolarization effects of the CEPC lattice usingMonte Carlo
simulations with the PTC code [44] and compare the results
with the predictions of the theories of radiative depolariza-
tion, for various lattice settings. In the Monte Carlo simu-
lations, a bunch of 54 particles was launched on the closed
orbit with the same vertical spin and tracked for ten damping
times in the presence of stochastic photon emissions but
disregarding the Sokolov-Ternov effect. The decay of the
beam polarization was recorded, and the data of the calcu-
lated beam polarization in the last eight damping times were
fitted to obtain an estimate of the time constant of the spin
diffusion τd. Then the equilibrium beam polarization was
estimated through Eqs. (5) and (10).

A. Dependence on beam energy

We first studied the variation of the equilibrium beam
polarization as a function of aγ0 near the three operation
energies, for Z, WW, and Higgs production, respectively, as
shown in Figs. 5(a)–5(c). For the Z and WW energies, the
valleys near integers become much wider relative to those
in Figs. 4(a) and 4(b), as predicted by both theories, while
the Monte Carlo simulation results agree better with the
theory of the correlated regime, as the fine structure of
higher-order synchrotron sideband spin resonances is
clearly seen. For the Higgs energy, however, although
the equilibrium beam polarization level is very low, the
results of the Monte Carlo simulation are quite close to the
predictions of the theory of the uncorrelated regime, but are
generally higher than the prediction of the theory of the
correlated regime, and there are no clear signs of higher-
order synchrotron sideband spin resonances.
We then investigated the dependence of the depolariza-

tion effects on the beam energy, in the range of 45.6 to
120 GeV. The energy points were selected so that
½aγ0� ¼ 0.5. The total rf voltage was adjusted to compen-
sate for the increase of synchrotron-radiation energy loss at
higher beam energies and the synchrotron tunes were set to
the design values according to the CEPC CDR specifica-
tions at 45.6, 80, and 120 GeV. For other beam energy
points, the synchrotron tunes were set in a smoothly
increasing manner. The related lattice parameters are
summarized in Table IV.
Figure 6(a) shows the time constant of the spin diffusion

τd obtained by Monte Carlo simulations, the time constant
of the Sokolov-Ternov effect τp calculated using Bmad, as

well as the self-polarization buildup time τtot, at the various
beam energies. τd decreases much faster than τp with
increasing beam energy, as predicted by both Eqs. (43)

FIG. 5. The equilibrium beam polarization as a function of aγ0
near three working energies of the CEPC. (a) Z-pole (around
45.6 GeV), (b) WW threshold (around 80 GeV), and (c) Higgs
(around 120 GeV). The black dots and green dots show the
equilibrium polarization calculated using the theories of correlated
and uncorrelated regimes, respectively, the red points represent the
Monte Carlo simulation results with a step size of aγ0 of 0.02 in the
central region. Note that in (c), a different y axis range is used since
the equilibrium polarization is very low at the Higgs energy.
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and (48) and becomes the dominant contributor to τtot at
beam energies beyond 85 GeV. This leads to a much-
reduced level of equilibrium beam polarization at higher
beam energies, as shown in Fig. 6(b). In addition to the
results derived from the Monte Carlo simulations, the
calculations using the theories of the correlated and
uncorrelated regimes are also presented in the figure for
comparison. Up to 90 GeV, the simulated equilibrium
polarization matches quite well with the theory of the
correlated regime and is smaller than the theory of the
uncorrelated regime. However, as the beam energies get
even higher, there are nontrivial discrepancies between the
results of simulations and the theories. This might suggest
the paradigm shift from the correlated regime toward the
uncorrelated regime. As shown previously, the results from
the Monte Carlo simulation are close to the theory of the
uncorrelated regime at around 120 GeV.

B. Influence of asymmetric wigglers at the Z pole

The time constant of the Sokolov-Ternov effect is as
large as 253 h at the Z pole. Using the self-polarization
mechanism to generate sufficient beam polarization for RD
requires a much-reduced polarization build-up time. This
can be achieved by implementing asymmetric wiggler
magnets [19]. This possibility was investigated in detail
for LEP [64] and also studied for the FCC-ee [40]. An
asymmetric wiggler consists of three bending magnets. The
central bending magnet has a length Lþ and a magnetic
field Bþ in the same direction as the guiding magnetic field

in the arcs. Its bending angle is denoted as θþ, while the
bending magnets on both sides have equal length L−, equal
magnetic field B− in the opposite direction to Bþ, and equal
bending angles θ−. It is required that θþ þ 2θ− ¼ 0,
ensuring no change in the layout and optics beyond the
wiggler insertion. When Nw units of such asymmetric
wigglers are included in the straight sections of the lattice,
in addition to a decrease in τp, there is also a decrease in
P∞, as well as increases in synchrotron-radiation energy
loss per turn, U0, and the rms relative energy spread σδ. A
larger σδ leads to a larger modulation index σ so that the
higher-order synchrotron sideband spin resonances are
much enhanced. This could in turn increase τp=τd and
further reduce the equilibrium beam polarization level.
For the CEPC, the influence of asymmetric wigglers on

radiative depolarization was evaluated quantitatively. Ten
identical units of asymmetric wigglers were inserted into
the straight sections of the CEPC lattice [65], with L− ¼ 2
m, Lþ ¼ 1 m, i.e., Bþ=B− ¼ 4. In this paper, various
settings of Bþ and thus θþ were used to study the influence
on the depolarization effects. The synchrotron tune was
kept fixed at 0.028 by adjusting the total rf voltages.
Table V shows the beam parameters for the lattice

without wigglers and three different wiggler settings with
increasing θþ. For example, in case 1, the time constant of
the Sokolov-Ternov effect τp is reduced to about 32 h, and
then about 2 h is needed to obtain 5% beam polarization,
more or less sufficient for energy calibrations. Cases 2 and
3 use even stronger wiggler magnets, and the increase inU0

TABLE IV. The CEPC lattice parameters. (* indicates the planned operation energies in the CEPC CDR).

Beam energy (GeV) aγ0 jω̃kj2 (×10−9) jλ̃kj2 (×10−5) σδð×10−4Þ νz τp (h) κ σ

45.6* 103.5 jω̃103j2 ¼ 2.7 jλ̃103j2 ¼ 2.2645 3.77 0.028 252.72 0.03 1.39
jω̃104j2 ¼ 2.8 jλ̃104j2 ¼ 1.7166

60.1 136.5 jω̃136j2 ¼ 3.7 jλ̃136j2 ¼ 0.8178 4.96 0.028 63.34 0.20 2.42
jω̃137j2 ¼ 14.7 jλ̃137j2 ¼ 5.5717

69.8 158.5 jω̃158j2 ¼ 6.6 jλ̃158j2 ¼ 0.9574 5.77 0.0324 30.00 0.36 2.82
jω̃159j2 ¼ 26.4 jλ̃159j2 ¼ 4.4585

80.0* 181.5 jω̃181j2 ¼ 14.4 jλ̃181j2 ¼ 4.9118 6.61 0.0395 15.24 0.52 3.04
jω̃182j2 ¼ 53.3 jλ̃182j2 ¼ 15.6433

84.4 191.5 jω̃191j2 ¼ 16.3 jλ̃191j2 ¼ 15.5332 6.97 0.0425 11.65 0.61 3.14
jω̃192j2 ¼ 19.8 jλ̃192j2 ¼ 1.0088

90.1 204.5 jω̃204j2 ¼ 19.1 jλ̃204j2 ¼ 3.7786 7.43 0.0467 8.39 0.72 3.25
jω̃205j2 ¼ 43.8 jλ̃205j2 ¼ 0.6403

95.4 216.5 jω̃216j2 ¼ 15.0 jλ̃216j2 ¼ 6.1547 7.88 0.0515 6.31 0.80 3.31
jω̃217j2 ¼ 34.8 jλ̃217j2 ¼ 1.2292

99.8 226.5 jω̃226j2 ¼ 10.5 jλ̃226j2 ¼ 35.2604 8.24 0.0550 5.03 0.90 3.39
jω̃227j2 ¼ 27.4 jλ̃227j2 ¼ 4.9787

109.9 249.5 jω̃249j2 ¼ 56.9 jλ̃249j2 ¼ 26.9851 9.08 0.0585 3.10 1.48 3.87
jω̃250j2 ¼ 41.3 jλ̃250j2 ¼ 46.9963

120.1* 272.5 jω̃271j2 ¼ 770.4 jλ̃271j2 ¼ 41.6290 9.90 0.0650 2.03 1.95 4.15
jω̃272j2 ¼ 95.8 jλ̃272j2 ¼ 12.0825
jω̃273j2 ¼ 1684.2 jλ̃273j2 ¼ 361.7036
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and σδ is more substantial. Though not relevant for practical
use, these cases are employed here out of academic interest.
In these three cases, and as depicted in the plots of
equilibrium beam polarization in Fig. 7, the locations of
higher-order synchrotron sideband spin resonances are kept
the same while the theory of the correlated regime predicts
lower levels of equilibrium polarization and wider valleys
near these resonances for increasing wiggler strengths
characterized by θþ. In contrast, as predicted by the theory
of the uncorrelated regime, there are no higher-order
synchrotron sideband spin resonances and the equilibrium

polarization level is higher for aγ0 near 103.5 compared to
the prediction of the theory of the correlated regime.
As shown in Fig. 7, the Monte Carlo simulation results

are compared with the theories of the correlated regime and
the uncorrelated regime. Figure 7(a) shows the outcomes of
case 1 where the Monte Carlo simulation results fit well
with the theory of the correlated regime, with obvious
polarization dips in the synchrotron-sideband spin reso-
nance regions, which are absent in the theory of the
uncorrelated regime. Figure 7(b) shows the outcomes of
case 2 where the results of the Monte Carlo simulation are
inconsistent with the valleys predicted by the theory of the
correlated regime. Figure 7(c) shows the outcomes of case
3 where the results of Monte Carlo simulations show no
obvious resonance structures and are generally between the
predicted levels of equilibrium beam polarization of the two
theories.
These results of the Monte Carlo simulations indicate

deviations from the theory of the correlated regime, when
the condition κ ≪ 1 on the correlation index no longer
holds, but are not in agreement with the theory of the
uncorrelated regime either. Using even larger θþ in the
lattice setup leads to an rf bucket insufficient for fully
capturing the beam particles in the simulations and thus this
parameter space was not explored.
In addition, we fixed the beam energy at 45.6 GeV and

scanned θþ to study the dependence of the energy loss per
turn, rms relative energy spread, polarization time, and
equilibrium polarization, as shown in Fig. 8. The results of
simulations for the equilibrium polarization match well
with the theory of the correlated regime for small θþ
settings. However, there is an increasing deviation for θþ
larger than 0.004 rad. In the parameter range covered, the
results of the Monte Carlo simulations are between the
equilibrium polarization levels predicted by the two theories,
respectively.

C. Influence of rf settings at the Z pole

In the CDR for the CEPC, it is assumed that the ring has
a single-frequency rf system of 650 MHz. Then, for a
chosen momentum compaction factor, e.g., according to
Eqs. (3.43) and (5.66) in Ref. [66], the bunch length and
synchrotron tune cannot be adjusted separately. However,
earlier studies revealed a novel coherent head-tail insta-
bility (X-Z instability) induced by the beam-beam inter-
action at a large Piwinski angle [67,68], which could be
enhanced when the longitudinal impedance is also taken
into account [69,70]. Thus, it was suggested [71] that the
instability could be viably mitigated by including a higher-
harmonic rf system to lengthen the bunches. It has also
been suggested that bunch lengthening can lead to a
reduction in the center-of-mass energy spread in eþ=e−
collisions. For noncolliding bunches, the introduction of
the harmonic cavity itself does not help to reduce the rms
energy spread. However, for colliding bunches, the rms

FIG. 6. Polarization time constants (a) and equilibrium beam
polarization (b) as a function of beam energies for the CEPC
lattice. In (b), estimates of the equilibrium beam polarization
using the theories of “correlated regime” and “uncorrelated
regime” are also plotted for comparison with those derived from
the Monte Carlo simulations.

TABLE V. Beam parameters for various wiggler settings.

wigglers θþ (rad) U0 (MeV) σδ ð×10−4Þ τp (h) κ σ

w/o 0 36.1 3.77 252.8 0.03 1.39
Case 1 0.0033 43.9 9.53 32.3 0.22 3.52
Case 2 0.0056 60.0 17.26 7.2 1.00 6.38
Case 3 0.0080 84.8 24.55 2.5 2.85 9.07
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energy spread of a beam can suffer from a significant
increase due to beamstrahlung and the beamstrahlung-
induced energy spread can to some extent be alleviated
by the introduction of harmonic cavities [72]. Of course, a

reduction of the rms energy spread in the beams also reduces
the spread in the instantaneous spin-precession rate.
In such a double rf system, the synchrotron tune νz at

zero amplitude is different from that of a single rf system
and so is the dependence of νz on the synchrotron
amplitude [73,74]. Since both the modulation index σ
and the correlation index κ depend on νz, it is expected that
the radiative depolarization effects can be different.
Although there is currently no plan to use a double rf

system for the CEPC, a study of the effect of radiative
depolarization with such a system opens up new directions
for study which might bare fruit in the future. We, therefore,
now look in detail at the effects of a double-frequency
system for the CEPC running near 45.6 GeV.
Simulationswith the thick-lens SLIM algorithm in the code

SLICKTRACK [30] for a real ring show that synchrotron
motion for a single rf system is close to simple harmonic
although the rf cavities are localized. Then it is reasonable, as
a first step, to follow the description in Ref. [74] in which the
rf system is distributed uniformly. Moreover, only synchro-
tron motion is included here but the applicability of this
model has been confirmed a posteriori with Monte Carlo
simulations with localized cavities as described below.
Thus we begin by writing the voltage seen by beam

particles in the presence of a double-frequency rf system as

V totðϕÞ ¼ V1 sin ðϕþ ϕs1Þ þ V2 sin ðnϕþ ϕs2Þ; ð52Þ

where ϕ is the rf phase of a particle relative to that of the
reference particle, V and ϕs are the total voltage, and rf
synchronous phase for each rf frequency, with subscripts
“1” and “2” denoting the fundamental and the harmonic rf
system, respectively, and the integer n is the ratio of the
harmonic rf frequency to the fundamental rf frequency. The
parameters of the double-frequency rf system must be set to
compensate for the synchrotron-radiation energy loss per
turn U0, this requires

eV1 sinðϕs1Þ þ eV2 sinðϕs2Þ ¼ U0; ð53Þ

where e is the charge of the electron.
There are still 3 degrees of freedom in the parameters of

the double rf system. To simplify the discussion in this
paper, we study three different cases of rf settings. All these
cases feature a single rf bucket and beam particles oscillate
around a single “stable” fixed point at ðz; δÞ ¼ ð0; 0Þ. In
case A, we set V2 ¼ 0 MV so that the double rf system
effectively reduces to the case of the single rf system. Then
we specify V1 as the only independent variable, which is
related to the rms bunch length and the rf bucket height. In
case B, we fix ϕs2 ¼ 0 rad so that eV1 sinðϕs1Þ ¼ U0, and
thus with Eq. (53), the settings of the fundamental rf system
are the same as that of a single rf system alone. For a
specified V1, we choose various positive values of V2

that lead to different rms bunch lengths and different

FIG. 7. The equilibrium polarization vs spin tune for the CEPC
lattice in the presence of tenwigglers. TheMonteCarlo simulations
adopt a step size of aγ0 of 0.02. (a) Case 1: θþ ¼ 0.0033 rad. (b)
Case 2: θþ ¼ 0.0056 rad. (c) Case 3: θþ ¼ 0.0080 rad.
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dependences of synchrotron tune on the synchrotron
amplitude. Note that this reduces to case A if
V2 ¼ 0 MV. In case C, we consider a special type of
setting called the “ideal bunch lengthening” condition, with
a vanishing slope of the rf wave at the synchronous phase.
This requires both the first and second derivatives of
the total rf voltage at the synchronous phase to be set to
zero [73]:

∂V tot

∂ϕ

				
ϕ¼0

¼ 0

∂
2V tot

∂ϕ2

				
ϕ¼0

¼ 0 ð54Þ

so that

V2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
1

n2
−

U2
0

n2 − 1

r

ϕs1 ¼ π − arcsin

�
n2

n2 − 1

U0

V1

�

ϕs2 ¼ − arcsin

�
1

n2 − 1

U0

V2

�
. ð55Þ

We specify V1 as the only independent variable, all other rf
parameters are determined using Eq. (55).

In the following studies, we use the CEPC lattice with
the wiggler settings of case 1 and consider a fundamental rf
system running at 650 MHz and a harmonic rf system
running at 1.3 GHz.
But before describing our numerical results for the three

different cases of rf settings, we direct the reader to the
Appendix (Sec. A 3) where the mathematical details are
presented together with illustrative plots of the regions of
stable motion in δ and ϕ and indications of the positions of
the unstable fixed points and the turning points. Then, with
that formalism, we evaluate the synchrotron tune νz at
various synchrotron amplitudes as well as the equilibrium
longitudinal distribution ρðzÞ of particles under the influ-
ence of damping and excitation by synchrotron radiation.
For that, we choose a beam energy of 45.72 GeV
(aγ0 ¼ 103.76) and fix V1 ¼ 103.372 MV. Then ϕs1 ¼
2.693 rad in cases A and B. For case C, ϕs1 ¼ 2.526 rad,
V2 ¼ 44.750 MV, and ϕs2 ¼ −0.340 rad.
The dependences of νz on the orbital amplitudes of the

three cases are shown in Fig. 9(a) where, as indicated in the
Appendix (Sec. A 3), the amplitudes are represented by
the measure zH0

. As shown, a larger V2 in case B leads to a
lower νz at zero synchrotron amplitude relative to that of case
A and approaches a vanishing νz at zero synchrotron
amplitude in case C. The latter is expected given that, as
mentioned earlier, the slope of the rf wave is zero at the
synchronous phase. In addition, νz is essentially proportional
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FIG. 8. The energy loss per turn, rms relative energy spread, polarization time, and equilibrium polarization vs θþ. The step size
Δθþ ¼ 0.0002 rad. (a) U0 vs θþ. (b) σδ vs θþ. (c) Polarization time constants vs θþ. (d) Peq vs θþ.
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to the amplitude of z at a small amplitude in case C and the
spread of νz among beam particles is much larger compared
to that of cases A and B. As shown in Fig. 9(b), the
longitudinal distribution ρðzÞ in the presence of damping
and synchrotron radiation is Gaussian in case A and features
a flattop and a much wider distribution in case C. The
distribution ρðzÞ becomes wider for increasing V2 in case B
and falls between the distributions of cases A and C. In
addition, if we choose an even larger V2 (for example,
50 MV) in case B, then ðz; δÞ ¼ ð0; 0Þ is no longer a single
stable fixed point that beam particles oscillate around.
Instead, there are two stable fixed points within the single
rf bucket so that the longitudinal distribution follows a

“double-hump” shape, and the distribution of νz in terms
of z would be more complicated. This “over-stretched”
regime is discussed in Ref. [74] but is beyond the scope
of this paper.
The applicability of the model with a uniform distribution

of the rf system is illustrated in the Appendix (Sec. A 3)
where one sees good agreement for case C between the
predictions of themodel and the distributions in δ and z from
Monte Carlo simulations with the two kinds of localized
cavities and full synchrobetatron motion.
Now we are ready to present the influence of the various

settings of the double rf system on the radiative depolari-
zation effects. For case Awith a single rf system alone, the
results of equilibrium polarization for the CEPC have
already been shown in Fig. 7(a). Although different settings
of the rf voltage and phase were used relative to those of
case A in Fig. 9, the Monte Carlo simulation results agree
with the prediction of the theory of the correlated regime.
For case C at the ideal bunch lengthening condition, as

already shown in Fig. 9(a), the synchrotron tune νz is zero
at zero amplitude. A direct application of Eq. (41), by
plugging νz ¼ 0 at zero amplitude, then leads to a vanish-
ing enhancement factor so that the expected equilibrium
beam polarization of the theory of the correlated regime is
the same as the result of the first-order theory. Meanwhile,
the correlation index κ is infinite and it is expected that the
theory of the uncorrelated regime is applicable.
We chose a beam energy of 45.6 GeV and selected the

following parameters of the double rf system to match the
ideal bunch lengthening condition: V1 ¼ 112.217 MV,
ϕs1 ¼ 2.592 rad, V2¼ 50.047MV, and ϕs2¼−0.297 rad.
To simplify the treatment, this rf setting was used in the
simulations at different beam energies in the range of aγ0 ¼
103 to aγ0 ¼ 104. Then the “ideal bunch lengthening”
condition is exactly met for aγ0 ¼ 103.5, with minor devia-
tions for other beam energies. Figure 10 shows the equilib-
rium beam polarization for the CEPC. On one hand, the
results of SLIM calculationswith equal numbers of both kinds
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FIG. 10. The equilibrium polarization for the CEPC with the
wiggler setting case 1 and the double rf system under the ideal
lengthening condition.

FIG. 9. The dependence of the synchrotron tune νz on the
synchrotron amplitude, and the longitudinal distribution ρðzÞ of
beam particles, for various settings of a double rf system. The
beam energy is set to 45.72 GeV (aγ0 ¼ 103.76) and
V1 ¼ 103.372 MV. The red curves correspond to case A with
a single rf system alone, the magenta, green and blue curves
correspond to three instances of case B with ϕs2 ¼ 0 rad but
different V2, and the black curves correspond to case C at the
ideal lengthening condition. (a) Amplitude dependent synchro-
tron tune. (b) Beam longitudinal distribution.
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of localized cavities match well with the prediction of the
first-order theory. On the other hand, the results of
Monte Carlo simulations are in good agreement with the
predictions for the theory of the uncorrelated regime and are
quite different from the predictions of the first-order theory.
These results are indeed consistent with the theory of the
uncorrelated regime encapsulated in Eq. (48).
We also studied the influence of the double rf settings in

case B on the radiative depolarization effects. Here, we fixed
the beam energy at E ¼ 45.72 GeV (aγ0 ≈ 103.76), where
there is a more obvious contrast in the behavior of the
equilibrium beam polarization. We fixed the settings at
V1 ¼ 103.372 MV, ϕ1 ¼ 2.693 rad, and ϕ2 ¼ 0 and
scanned the total voltage of the harmonic rf system V2 from
0 to 45.07MV, thus obtaining a range of synchrotron tunes at
zero amplitude of synchrotron motion, from 0.028 down
to 0.005.
The outcome is shown in Fig. 11 where the equilibrium

beam polarization is plotted as a function of the synchro-
tron tune at zero amplitude and the results of the
Monte Carlo simulation are compared with the predictions
of the theories. The theory of the uncorrelated regime
encapsulated in Eq. (48) predicts that the equilibrium beam
polarization is independent of the synchrotron tune, in
strong contrast with the prediction of the theory of the
correlated regime, whereby a closer examination of
Eq. (43) indicates that the equilibrium beam polarization
should oscillate as the distance to the nearest higher-order
synchrotron sideband spin resonance varies with νz at zero
amplitude. Thus, the dips correspond to certain higher-
order synchrotron sideband spin resonances and as νz at
zero amplitude increases, so does the distance between
adjacent dips (and adjacent peaks), as well as the peak
equilibrium beam polarization. The results of the
Monte Carlo simulation match well with the theory of

the correlated regime for νz at zero amplitude larger than
0.025 and are in-line with the theory of the uncorrelated
regime for νz at zero amplitude smaller than 0.01. Between
these two extremes, the simulation results suggest a
transition from the correlated regime to the uncorrelated
regime. The vertical dashed line corresponds to κ ¼ 1 to
guide the eye, but we cannot detect a clear boundary
between the correlated regime and the uncorrelated regime.
In summary, when the synchrotron tune at zero ampli-

tude is very small, in the presence of a harmonic rf system,
the Monte Carlo simulation results agree well with the
theory of the uncorrelated regime. As the synchrotron tune
at zero amplitude becomes larger, the Monte Carlo simu-
lations indicate a gradual transition from the uncorrelated
regime to the correlated regime and match well with the
theory of correlated regime when κ ≪ 1.
As we already mentioned in Sec. II B, the theory of the

correlated regime was derived under the assumption that
the synchrotron motion is approximately harmonic, which
is applicable in case A. However, in the presence of a
double-rf system, the synchrotron motion could become
nonlinear even at small amplitudes. This is particularly true
in case C. In case B, as we increase the voltage of the
harmonic rf system V2, the synchrotron motion at small
amplitudes becomes more nonlinear and deviates from case
A. However, the nonlinear synchrotron motion of ϕ and δ
can still be represented by action-angle variables, but in a
much more complicated form involving elliptical functions
[74]. It is unclear whether simple analytical forms for
∂n̂=∂δ like those underlying Eq. (43), can be obtained
following the approach of derivation in Ref. [45] in this
context. However, it is clear that the application of the
theory of correlated regime is limited to the case where the
assumption of approximately harmonic synchrotron motion
is still valid.

VI. SUMMARY, CONCLUSIONS, COMMENTARY,
AND FUTURE NUMERICAL WORK

This paper presents a detailed investigation of the
radiative depolarization effects in the CEPC. Both theo-
retical evaluations and Monte Carlo simulations are
employed and compared, for a CEPC CDR lattice with
detailed error modeling and after dedicated corrections, and
for various lattice settings.
The contribution from the first-order parent synchrotron

spin resonances to radiative depolarization is explicitly
derived and its connection to the underlying integer spin
resonance strengths is established, for ultrahigh energy
electron storage rings. This agrees with the expressions in
Ref. [19] for a vanishing synchrotron tune. SLIM simulations
for the CEPC lattice agreewell with this first-order theory for
various beam energies and also indicate that the first-order
parent betatron spin resonances are much weaker compared
to the first-order parent synchrotron spin resonances.
There are two distinct theories [19] that describe

the influence of synchrotron oscillations on radiative

FIG. 11. The equilibrium polarization vs synchrotron tune at
zero amplitude for the CEPC lattice with the wiggler setting
case 1 at aγ0 ≈ 103.76. The blue dashed line corresponds to the
condition κ ¼ 1. We chose a step size of Δνz ¼ 0.001 in the
Monte Carlo simulations.
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depolarization at ultrahigh beam energies. The theory of the
correlated regime highlights the enhancement of the parent
spin resonances by higher-order synchrotron sideband spin
resonances, while the theory of the uncorrelated regime
predicts vanishing resonance structures and a generally
higher equilibrium beam polarization level compared to
the theory of the correlated regime.Monte Carlo simulations
have been conducted for various beam energies, various
settings of asymmetric wigglers at the Z energy, aswell as for
various settings of harmonic rf cavities. On one hand, these
simulation results are in-linewith the theory of the correlated
regime for a correlation index κ ≪ 1. On the other hand, the
simulation results of the double-rf system in the ideal
lengthening condition are consistent with the theory of the
uncorrelated regime, while κ is infinite by definition.
Between these two extremes, the Monte Carlo simulations
of the equilibrium beam polarization are generally between
the predictions of these two theories but are not in line with
either. This indicates a gradual evolution from the correlated
regime to the uncorrelated regime.
Then we can state our conclusions as follows: These

analyses supplement previous studies that focused on
theoretical aspects and numerical estimates in assessing
the effects of radiative depolarization in future ultrahigh
energy electron storage rings. In particular, the comparison
between the results of our Monte Carlo simulations and
those of the theories suggests that radiative depolarization
can be reasonably estimated by evaluations of the spin-
resonance strengths and use of theoretical formulas in certain
parameter regions, before conducting time-consuming but
more reliable Monte Carlo simulations. On the other hand,
these studies also suggest that known theories of radiative
depolarization are still incomplete.
We thus suggest that further theoretical investigations are

required in order to to achieve a more complete description
of radiative depolarization, which merges into these two
theories at extremes. In that context, we make the following
observations. Electron and positron storage rings need
accelerating cavities in order to replace the particle energy
lost by synchrotron radiation. Then the particle dynamics is
unavoidably intrinsically time dependent and that is rec-
ognized in [20,21,45,75] among many others. Thus, for
example, the vector n̂ of the ISF is a function of all six
canonical orbital variables as well as θ. Moreover, as in [38],
it can be argued that for phase-space equilibrium and for the
relatively slow variation of the polarization, the local
polarization vector P⃗locðu⃗; θÞ at each point in six-
dimensional phase space is parallel to n̂ðu⃗; θÞ defined on
six-dimensional phase space. This is the so-called ISF
approximation. However, the ISF in [16,19] is defined to
be explicitly time independent. Then in [19], synchrotron
motion is added to the dynamics by hand. So what, then, is
the direction of P⃗locðu⃗; θÞ at orbital equilibrium in that case?
In any case, we expect the ISF approximation to apply in the
regime of nonresonant spin diffusion but it perhaps needs

verification for the regime of resonant spin diffusion.
Moreover, if the ISF is not relevant in the regime of resonant
spin diffusion, what is the status of the terms ½1 − 2

9
ðn̂ · ŝÞ2�

and b̂ · n̂ in the DK formula, Eq. (7)? Should the averages
involving n̂ in those terms simply be replaced by averages
involving n̂0 as is usually done anyway in practical evalu-
ations of the depolarization-free asymptotic polarization?
Fortunately, we can now evaluate the validity of the

theory behind resonant spin diffusion and uncorrelated
resonance crossing at ultrahigh energy by following the
history of individual spins using Monte Carlo simulations.
So ν0 could be set close to, or far away, from resonances
and the effects on single spins of large synchrotron
amplitude or large photon energy could be studied in detail
and perhaps then used to predict the behavior of ensembles.
Monte Carlo codes like Bmad can also be used to check

and support analytical calculations. For example, it has
been seen that some perturbative calculations involving
∂n̂=∂δ of the rate of depolarization for nonresonant spin
diffusion do not always converge at high energy as more
and more synchrotron sidebands are included [57,59]. Then
Monte Carlo simulations should be used instead. Of course,
this matter is unrelated to the smoothing away of synchro-
tron sidebands in the regime of uncorrelated resonance
crossing.
It should be noted that the so-called Bloch equations

[37–39] foreseen in [21] have the potential to expose
deviations from the DK formula, Eq. (7), starting from
first principles.
Under the heading of future numerical work, we are

aware of developments in Bmad, in particular, its facility to
gain speed by using preestablished spin-orbit maps [76] for
tracking between dipoles where radiation takes place,
instead of tracking element-by-element. The increase in
computing speed provided by this advanced feature, so-
called “sectioning,” should make it possible in future
studies to track many more particles, launch finer parameter
scans while simulating the resonant-depolarization process.
The results presented here refer to a single set of error

seeds. Future work, facilitated by sectioning, will employ
several sets of error seeds in order to obtain a better
overview. For example, ensembles of distortions of n̂0 and
deviations of ν0 from aγ0 will be available. The statistical
spread of ν0 due to closed-orbit distortions will give
insights into how well the beam energy, and then the
center-of-mass energy, can be estimated with RD [77]. In
addition, more contributors to depolarization like the
detector solenoids, the spin rotators needed to realize
longitudinal polarization and more complete sources of
machine imperfections, shall be included in future studies.
These are important for predicting the attainable beam
polarization level and for establishing methods for realizing
a high beam polarization. Note that we did not implement
dedicated corrections such as in harmonic closed-orbit spin
matching schemes [54,55], which decrease the distortion of
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n̂0. Applications of these correction schemes shall be
carefully studied in order to optimize the attainable beam
polarization, as part of an integrated approach to perfor-
mance optimization in these future colliders.
We finish by reiterating some points already mentioned

above. So new work is needed to provide a firm theoretical
basis to bring predictions of theory and simulations more in
line and future simulations will be made for more lattice
seeds with more extensive sources and corrections of
machine imperfections and with many more particles.
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APPENDIX

1. The calculation of e⃗y · k̂0

k̂0 can be expanded in terms of n̂00, k̂00, and k̂⋆00 as

k̂0 ≈ k̂00 þ c1n̂00 þ c2k̂00 þ c3k̂
⋆
00; ðA1Þ

where jc1j2 þ jc2j2 þ jc3j2 ≪ 1. In fact, it can be shown
that c3 ¼ 0 due to the orthonormality of m̂0 and l̂0.
Consider that k̂00 is in the horizontal plane, while n̂00ke⃗y,

e⃗y · k̂0 ≈ c1. ðA2Þ

Putting Eq. (A1) into the Thomas-BMT equation
[Eq. (2)] on the closed orbit, we find

∂c1
∂θ

n̂00 ¼ ΔΩ⃗ × k̂0 ¼ iΔΩ⃗ · k̂00 ðA3Þ

then the solution of c1 is

c1 ≈ Lim
ϵ→þ0

�
i
Z

θ

−∞
eϵθ

0ΔΩ⃗ · k̂00ðθ0Þdθ0
�

≈ Lim
ϵ→þ0

�
i
Z

θ

−∞
eϵθ

0ΔΩxeiν0Φðθ0Þdθ0
�
. ðA4Þ

Here Φðθ0Þ ¼ R
R
θ0
0

1
ρx
dθ00. ΔΩx is the component of ΔΩ⃗

along the x direction and represents the influence of the
radial magnetic field.
Then, the integrand of Eq. (A4) can be expanded into

Fourier series,

ΔΩxeiν0Φðθ0Þ ¼
X∞
k¼−∞

ω̃keiðν0−kÞθ
0
. ðA5Þ

where ω̃k is the complex strength of the integer spin
resonance,

ω̃k ¼
1

2π

Z
2π

0

ΔΩxeiν0ðΦðθ0Þ−θ0Þþikθ0dθ0. ðA6Þ

Equation (A4) can be simplified to the following form:

e⃗y · k̂0ðθÞ ≈ i
X∞
k¼−∞

ω̃keiðν0−kÞθ

ν0 − k
: ðA7Þ

Note that the denominators in this expression are an
artifact of the approximations used here and that this
expression must be used with care when ν0 is near an
integer to avoid invalidating the approximations.

2. ξj of an ultrahigh energy electron storage ring

The Fourier harmonic ξj of the vertical component
of ω⃗z is

ξj ¼ −
1þ aγ0

2π

Z
2π

0

RηxGxeijθdθ. ðA8Þ

Let us consider an ultrahigh-energy electron storage ring
lattice composed of P superperiods, where each superperiod
contains a straight section with a length Lss which is
dispersion free, and an arc including M FODO cells with
half-length L with the following structure [QF=2 B QD B
QF=2].
Then, following the treatment of Lee [50], the Fourier

harmonic ξj becomes

ξj ≈ −
1þ aγ0

2π

�
ηQF;x

fQF
cos

�
j
L
R

�
þ ηQD;x

fQD

�

× ς

�
P;

j
P

�
ς

�
M;

j
MP

�
1 −

PLss

2πR

��

× eij
LþLss

R eij
P−1
P πeij

M−1
MP πð1−PLss

2πR Þ; ðA9Þ

where the enhancement function ςðN; xÞ is given by

ςðN; xÞ ¼ sinðNπxÞ
sinðπxÞ ðA10Þ

and where N is a positive integer and x ∈ R. Figure 12
shows ςðN; xÞ=N for several different N. The following are
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some key properties of ςðN; xÞ. (i) ςðN; xÞ ¼ 0 when N �
x ∈ Z while x ∉ Z; (ii) jςðN; xÞj → N, as x approaches an
integer k; and (iii) for N ≥ 5, jςðN; xÞj ≤ N

4
for jx − kj ≥ 0.8

N ,
where k is the integer nearest to x.
Taking the thin-lens approximation, the dispersion func-

tions at the center of the focusing quadrupole (QF) and
defocusing quadrupole (QD) of a FODO cell are

ηQF;x ¼
fQFð4fQD − LÞϕ̃
2fQF þ 2fQD − L

;

ηQD;x ¼ −
fQDð−4fQF þ LÞϕ̃
2fQF þ 2fQD − L

; ðA11Þ

where fQF and fQD are the focal lengths of QF and QD,
respectively. ϕ̃ is the dipole bending angle in eachhalf FODO
cell: ϕ̃ ¼ π=ðPMÞ. Note that with L ≪ R, for small j,

1þ aγ0
2π

�
ηQF;x

fQF
cos

�
j
L
R

�
þ ηQD;x

fQD

�
≈
1þ aγ0
PM

. ðA12Þ

For j ¼ 0, the enhancement functions amount to PM so
that ξ0 ≈ −ð1þ aγ0Þ. Then, we consider jξj=ξ0j with
jjj > 0, i.e., the influence of the enhancement functions.
At ultrahigh beam energies, the total length of straight

sections PLss only occupies a small fraction of the ring
circumference 2πR, since a high filling factor of dipoles is
required to reduce the synchrotron-radiation energy
loss. Taking the CEPC lattice as an example, the fraction
is 0.18.
ςðP; jPÞ becomes P only for j ¼ kP; k ∈ Z, and is

otherwise 0. In contrast, jς½M; j
MP ð1 − PLss

2πRÞ�j approaches
M when j

MP ð1 − PLss
2πRÞ approaches an integer k but is less

than M=4 when jjj ≥ P and jjj < MP. In addition, only a
few k near the integer part of ν0 have a significant influence
in Eq. (34). The contribution of terms with very large jjj is
further suppressed by the ðν0 − kþ jÞ2 term in the denom-
inator. Therefore, we can retain only ξ0 in Eq. (34) as a
reasonable approximation.
As an illustration, Fig. 13 shows the results of simulation

for jξj=ξ0j for various j, using the CEPC lattice. The CEPC
lattice includes eight interleaved arc sections and straight
sections. Each arc section contains 145 regular FODO cells
and four FODO cells with half-bending angles as dispersion
suppressors. In effect, P ¼ 8 and M ¼ 149. Then peaks of
jξj=ξ0j occur when j is near kMP=ð1 − PLSS

2πR Þ, k ∈ Z,
agreeing with the observation in the Fig. 13(b). However,
the eight straight sections have different functions and thus
different lengths. There are also chromatic-correction
sections with dipoles in the final focus systems. These are
different from the model that we analyzed and somehow
break the symmetry so that Fourier harmonics other than
j ¼ 8k have comparable strengths, as shown in the
Fig. 13(a). Nevertheless, the conclusion of our analysis still
applies to the CEPC lattice, namely that the contribution
of ξ0 in Eq. (34) is much larger compared to other Fourier
harmonics.

FIG. 12. The enhancement function ςðN; xÞ for various N. The
red dashed lines indicate jς=Nj ¼ 1=4 as a reference.

FIG. 13. jξj=ξ0j for various j of the CEPC lattice at the Z pole. Peaks occur when j is near kMP=ð1 − PLSS
2πR Þ, k ∈ Z. (a) A smaller range

jjj < 100. (b) A much larger range jjj < 3000.
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3. More detailed theory of a double-frequency rf system

Our treatment of double rf systems follows the treatment
in Chapter 3 of Ref. [74], but here and elsewhere we use a
different convention for ϕ, whereby ϕ is the rf phase of a
particle relative to that of the reference particle, rather than
the phase coordinate ϕLee relative to the fundamental rf
system in Ref. [74]. Then ϕ ¼ ϕLee − ϕs1.
Then with time t as an independent variable, without

considering radiation damping and quantum excitation, the
equations of motion are

dϕ
dt

¼ h1ω0ηδ

dδ
dt

¼ eω0

2πE0β
2

�
V1 sinðϕþϕs1Þ þV2 sinðnϕþϕs2Þ−

U0

e

�
;

ðA13Þ

where ω0 ¼ c=R, η ¼ αc − 1=γ20, αc is the momentum
compaction factor and h1 is the harmonic number of the
fundamental rf system. Equivalently, a particle’s longi-
tudinal motion is described by the Hamiltonian

Hðϕ; δÞ ¼ h1ω0η

2
δ2 þ eω0

2πE0β
2
UðϕÞ

UðϕÞ ¼ V1 cosðϕþ ϕs1Þ þ
V2

n
cosðnϕþ ϕs2Þ

þ ϕ
U0

e
− V1 cosðϕs1Þ −

V2

n
cosðϕs2Þ. ðA14Þ

This is a constant of motion for each particle and it is
helpful to think of the term with δ2 as being analogous to a
kinetic energy, whereas the term with UðϕÞ can be thought
of as a potential energy while the Hamiltonian is analogous
to total energy.
To understand the synchrotron motion, one starts by

solving for the fixed points, i.e., the solution of ðϕ; δÞ such
that

dϕ
dt

¼ 0;

dδ
dt

¼ 0. ðA15Þ

In our convention, we choose ðϕ; δÞ ¼ ð0; 0Þ as one such
fixed point. Then the parameters of the double-frequency rf
system must be set to compensate for the synchrotron-
radiation energy loss per turnU0, and this leads to Eq. (53).
In the case of a single rf system, this is a stable fixed point
around which small amplitude particles execute synchro-
tron oscillations. Besides, there is an unstable fixed point at
ðϕ; δÞ ¼ ðπ − 2ϕs1; 0Þ, which corresponds to the maximum
value of the Hamiltonian, i.e., the boundary of the rf bucket.
In the case of a double rf system, the number and

locations of the fixed points can be obtained by numerically

solving Eq. (A15). In this paper, we focus on the cases with
two fixed points, a stable fixed point at ðϕ; δÞ ¼ ð0; 0Þ, and
an unstable fixed point at ðϕ; δÞ ¼ ðϕufp; 0Þ. The torus that
passes through the unstable fixed point is called the
separatrix. This separates phase space into regions of
bound and unbound motions. We only study particle
motion around the stable fixed point and within the
boundary of the rf bucket enclosed by the separatrix,
i.e., just the bound motion. Besides the unstable fixed
point, there is another special point on the separatrix,
ðϕ; δÞ ¼ ðϕsep; 0Þ, namely, the turning point at which the
“kinetic energy” is zero and the “potential energy” is the
“total energy.” Since the beam energy range is well above
the transition energy in this paper, i.e., η > 0, then
−π < ϕufp < 0 < ϕsep < π. Separatrices for cases A, B,
and C with our settings are shown in Fig. 14 together with
their unstable fixed points and their turning points. We see
that for case C, the stable region in ϕ is indeed larger than in
cases A and B. All three are mirror-symmetric across the
ϕ axis.
Longitudinal phase-space trajectories of particles follow

Hamiltonian torii Hðϕ; δÞ ¼ H0, where H0 is a constant of
motion on a torus. The trajectories are also mirror sym-
metric across the ϕ axis. Then with Eq. (A14), an H0 is the
“potential energy” for the phase coordinates ϕ̂− and ϕ̂þ
with (ϕufp < ϕ̂− < 0 < ϕ̂þ < ϕsep) at which “kinetic
energy” is zero, namely at δ ¼ 0. On the other hand, the
maximum “kinetic energy” written as h1ω0ηδ̂

2=2 occurs at
the minimum of the “potential energy,” namely, at ϕ ¼ 0
where UðϕÞ ¼ 0. Then

H0¼
h1ω0η

2
δ̂2¼ eω0

2πEbβ
2
Uðϕ̂−Þ¼

eω0

2πEbβ
2
Uðϕ̂þÞ ðA16Þ

FIG. 14. The separatrices for various settings of a double rf
system. The locations of ϕufp and ϕsep are also labeled. The red
curve corresponds to case A with a single rf system alone, the
magenta curve corresponds to one instance of case B with ϕs2 ¼
0 rad but V2 ¼ 12 MV, the black curve corresponds to case C at
the ideal lengthening condition.
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so that H0 expresses the amplitude of the synchrotron
motion in terms of δ̂, ϕ̂−, or ϕ̂þ.
Equation (A14) can be written as

h1ω0η

2
δ2 ¼ H0 −

eω0

2πE0β
2
UðϕÞ.

Then the synchrotron oscillation period can be obtained
by using this to integrate the first equation of Eq. (A13):

Tz ¼
I

dϕ

�
2h1ω0η

�
H0 −

eω0

2πE0β
2
UðϕÞ

��
−1=2

. ðA17Þ

This can be numerically evaluated for a specifiedH0 so that
we can then obtain the synchrotron tunes, νz ¼ 2π

Tzω0
, plotted

in Fig. 9(a). For each H0, a measure of the maximum
longitudinal distance of a particle from the center of the

bunch is zH0
≡ ðϕ̂þ−ϕ̂−ÞR

2h1
and this, being more recognizable,

is used instead of H0 as the horizontal axis in Fig. 9(a).
In the presence of radiation damping and quantum

excitation, the longitudinal phase-space distribution settles
to an equilibrium given by the static solution of the Fokker-
Planck equation [78], namely, ψ̃ðδ;ϕÞ ∝ exp½−constant×
Hðϕ; δÞ�. This distribution is approximately Gaussian in δ
with an rms relative energy spread σδ, while the distribution
of ϕ is

ρ̃ðϕÞ ¼ Aρ exp

�
−

eUðϕÞ
2πE0h1ησ2δ

�
; ðA18Þ

where Aρ is a normalization factor chosen so thatR ϕsep

ϕufp
ρ̃ðϕÞdϕ ¼ 1. The first-order and second-order beam

moments can be numerically evaluated by

ϕ̄ ¼
Z

ϕsep

ϕufp

ϕρ̃ðϕÞdϕ

Σϕ ¼
Z

ϕsep

ϕufp

ðϕ − ϕ̄Þ2ρ̃ðϕÞdϕ. ðA19Þ

The longitudinal distributions, ρ̃ðϕÞ, are shown in Fig. 9(b)
and are obtained by numerically evaluating the rhs of
Eq. (A18). The horizontal axis in Fig. 9(b) is the longitudinal
coordinate z ¼ −βcΔt ¼ ϕR

h1
. The rms bunch length is then

σz ¼
ffiffiffiffiffiffi
Σϕ

p
R

h1
. ðA20Þ

Note that the second-order beammoments at equilibrium are
usually calculated using the beam-envelopematrix as in [79].
That method is still applicable for the calculation of the rms
energy spread, but it fails to deliver the correct rms bunch
length in the presence of a double rf system, because UðϕÞ
now contains components higher than second order in ϕ,

which are not properly taken into account by that method. In
this case, one can use Eqs. (A19) and (A20) to numerically
evaluate σz, or use Monte Carlo simulation to obtain σz.
In any case, Fig. 15 shows the probability density

functions (PDF) of the beam distributions in δ and z, for
case C at the ideal lengthening condition, where the
theoretical distributions match well with the histograms
from the final beam distribution of a Monte Carlo simu-
lation with localized cavities and full synchrobetatron
motion tracking with 4000 particles for ten damping times
(about 25 000 turns). The beam energy is set to 45.72 GeV
(aγ0 ¼ 103.76) and V1 ¼ 103.372 MV.
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