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Derbenev and Kondratenko calculated the equilibrium degree of radiative electron polarization
in 1973 (Ya. S. Derbenev and A. M. Kondratenko, Zh. Eksp. Teor. Fiz. 64, 1918 (1973) [Sov.
Phys.—JETP 37, 968 (1973))), and more recently Bell and Leinaas did likewise for a more limited
model, but following a different approach [J. S. Bell and J. M. Leinaas, Nucl. Phys. B 284, 488
(1987)]. They report a difFerent resonance structure. In this paper the notations, formalisms, and
viewpoints of the two sets of authors are compared, and the connection between their treatments
is explained. The formula for the polarization, taking into account vertical fiuctuations, is derived
following the Derbenev-Kondratenko approach and is generalized to strong-focusing machines. It
is also combined with the Derbenev-Kondratenko result into a united formula.

I. INTRODUCTION II. HAMII. TONIAN
Derbenev and Kondratenko studied the problem of ra-

diative electron polarization in the early 1970s, general-
izing the work of previous authors, and gave a formula
for the equilibrium degree of polarization in 1973, which
is now called the Derbenev-Kondratenko formula. ' This
formula described the effect, on the polarization, of elec-
tron energy loss due to photon emissions, but neglected
vertical recoils by the electrons. The latter efFect had
been included in an earlier paper, but the treatment was
incomplete. More recently, Bell and Leinaas, following
a difFerent approach, also calculated the equilibrium de-
gree of radiative electron polarization, taking into ac-
count vertical electron recoils, and here again this work
supersedes previous publications by these authors on the
problem.
In this paper the notations, formalism, and viewpoints

of the two sets of authors are compared, and the connec-
tion between their treatments is explained. Their results
are also combined into a unified formula. For brevity
the authors will be referred to as DK (Derbenev and
Kondratenko) and BL (Bell and Leinaas), with an obvi-
ous notation. BL treat only a specific model, and so
their results are valid in a more restricted domain of ac-
celerator physics than those of DK. Their results also
di8'er in a small energy region near a spin resonance. To
quote BL (abstract of Ref. 3), "This analysis coniirms the
standard result for the polarization, except in the neigh-
borhood of a narrow resonance. " In Sec. VI we ol'er a
more general treatment and explain how these points ap-
pear in Ref. l. Unless otherwise stated, all references to
DK will be to Ref. 1, not Ref. 2.

Perhaps it would be simplest if the derivation of the
equilibrium polarization were summarized afresh and
comparisons with Refs. I and 3 were made along the
way. The argument will largely follow that of Ref. 4.
The unperturbed Hamiltonian is

2 1 /2

+ee,„,+O,„, s

and the interaction Hamiltonian is

~int (farad p Arad)+ farad ~

where

PlC
a+—B— P BP1 ay
r r+1

a+ PXEr+1 ext„rad

The notation is standard: r and p are the canonical elec-
tron position and momentum, respectively; m, e, and s
are the electron mass, charge, and spin; p is the electron
velocity in units of c; and the subscripts ext and rad
denote external (accelerator) and radiation fields. In Eq.
(3) a —=(g —2)/2; BL write tt=(g —2)/2. DK write qo
and q', where qo=e/mc and q'=ae/mc, and write
x =q'/qo =(g —2)/2.
It will be useful below to write Q.s in the form
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Q's= — s B +r0z"s &

ge
2PEC f

where 8' is the rest-frame magnetic Geld and ra& is the
Thomas precession vector

m, =— Px(E+Px B)=— PxE',mc y+1 mc (@+1)

where E' is the rest-frame electric field. The use of this
form for the Hamiltonian will simplify comparison with
the work of BL.
DK use Eqs. (1) and (2), which pertain to the laborato-

ry (accelerator) frame. BL start from the Dirac Hamil-
tonian, and as with DK, they introduce a coupling to
the anomalous magnetic moment, following a standard
procedure T.hey also make a canonical transformation
to the comoving (electron) frame, and in this frame they
make a Foldy-%outhuysen transformation to first order
in iii to bring the Hamiltonian to semiclassical form. See
Eqs. (4)-(17) of Ref. 3.

III. DIAGONAI. IZATION
Now BL restrict attention to perfectly aligned weak-

focusing storage rings, where the accelerator fields are
constant, i.e., independent of arc length, around the ring.
The field is vertical on the planar closed orbit and has a
gradient index n =—(8 /B)dB /dr, where 8 is the
machine radius, 8 is the magnetic field strength, and r is
the radial displacement from the closed orbit. Their
term "classical particle orbit" denotes only the closed
orbit (a circle), not the betatron oscillations. When DK
refer to the "particle trajectory, " they mean an arbitrary
trajectory, not just the closed orbit. This use of words
will have some bearing on their respective statements
concerning the diagonalization of the spin-dependent
part of the Hamiltonian, which will now be described.
BL divide the Hamiltonian into unperturbed and in-

teraction terms slightly differently from Eqs. (1) and (2).
In Sec. 3 of Ref. 3, they write

&spi~ = i fire 0''
where rr =(2/vari)s and ai contains both external and radi-
ation 6elds. These are all operators in the comoving, not
the accelerator, frame. They divide ~ into a classical
part r0, and a quantum part 5r0. The classical part per-
tains to motion on the classical particle orbit, i.e., the
closed orbit, which is a horizontal circle, and the quan-
tum part contains everything else, including betatron os-
cillations. Thus, m;o ~ 0"z and so they choose x as their
quantization axis; it diagonalizes their unperturbed
Hamiltonian.
Let us now look at how DK perform the diagonaliza-

tion. The Heisenberg equation of spin motion is the
Thomas-Bargmann-Michel-Telegdi (Thomas-BMT) equa-
tion

ds 1 [s,&,„,)= . [s,s Q,„,]=Q,„,Xs,1

and note that Q,„,=Q,„,(r, p); it depends on the orbital

trajectory. Diagonalizing the spin-dependent part of the
Hamiltonian basically means finding the right quantiza-
tion axis; let us call it n. Since 0,„, depends on the or-
bital trajectory, which is not always the closed orbit, DK
pointed out that n must depend on the orbit, too. The
Heisenberg equation of motion for the operator s.n,
which measures the spin projection along n, is

d 1—(s n)= . [s n,& ]+—(s n) .dt i fi Bt
(8)

Following the article by Yokoya, ' in which some aspects
of the DK work are clari6ed, n is defined to be the ex-
plicitly time-independent solution of Eq, (7) on a given
orbital trajectory: n=n(r, p) only, i.e., n&n(r, p, t). Ac-
tually, since n is a classical vector, not a quantum opera-
tor, dn/dt = (Q,„,) &(n, where ( Q,„,) is the expectation
value of Q,„, over the electron state. By the properties
of s and n, B(s n)/Bt =0, and also

—(s n)=(Q, „,Xs) n+s. ((Q,„,)&(n)=0, (9)

the symbol =0 being used because the right-hand side
actually vanishes only to the leading order in R. Thus,
in Eq. (8), the commutator [s.n, ff,„,] vanishes, to the
leading order in A, and we have diagonalized the unper-
turbed Hamiltonian, to that order.
Note that in a uniform magnetic field, n (DK) is the

direction of the field, and so n =z on the closed orbit of
the BL inodel. So DK and BL are not using grossly
different quantization axes.

IV. PKRTURBATIONS

Let us now consider the perturbations. DK do not
describe the calculation of the orbital equilibrium explic-
itly, but they assume it to be determined by the standard
ingredients of radiation damping and stochastic excita-
tion. BL basically do the same, but they do it explicitly,
using a Langevin equation to calculate the equilibrium
emittance (z ) of the vertical betatron oscillations.
They use the terms "quantum fluctuations" from the
"classical orbit" instead of "stochastic excitations" from
the closed orbit. Note that both sets of authors take into
account the fact that the energy loss in synchrotron radi-
ation is compensated, and that the whole thing results in
damping and stochastic excitations and/or quantum
fluctuations; the original work of Sokolov and Ternov
(solution of the Dirac equation in a uniform, static, vert-
ical magnetic field, with second-quantized radiation field)
did not.
At this point the main difFerence between Refs. 1 and

3 appears; to calculate the vertical emittanee BL take
into account the vertical recoil of the electron when em-
itting a photon. For electrons moving mainly horizon-
tally, such terms are very small, and are neglected by
DK in Ref. 1. They are included in Ref. 2, but the
treatment is incomplete. For this reason 8L obtain a
difFerent result from DK, but in Sec. VI the results of
Refs. 1-3 will be unified into a general formula.
Considering now the spin-dependent perturbations,

s.n or o'z is no longer a constant of the motion in the
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presence of radiation. In the quantum theory (spin —,'),
s I can have one of only two values, and the radiation
causes transitions between them,

—(s n)= Is nP';„, I

2

E,', =— ('z'—y cooz )
c

describes the radiation damping. They put

5E,', =—y cg)OQ (m/e)z,

(12)

= Is,&;„,I n+s. In,&;„,I

=(Q„~Xs) n+s In, e(4„d—p A„d)I . (10)

i.e., they assume that the vertical betatron oscillations
are exactly harmonic. Here Q is the vertical betatron
tune, Q =&n, where n =—(8 /8)58/Br is the field gra-
dient index. They call their effective interaction Hamil-
tonian R5ro a /2 and calculate

Poisson brackets have been used instead of quantum
commutators because Eq. (10) is taken from DK, and
they used Poisson brackets. Note that there are turbo

contributions to the fiuctuations in s n, and they must be
added in the spin-fiip matrix elements, not in the transi-
tion rates. DK misunderstood this point in their early
work in Ref. 2. In Eq. (4.13) they calculated a "depolar-
ization time" which had to be combined with a polariza-
tion time in order to arrive at the equilibrium polariza-
tion. This means that they were adding the terms in the
transition rates, which is why their treatment there was
incomplete, as stated above. They corrected themselves
later on in Ref. 1. DK call the first term the "direct in-
teraction" and the second "spin-orbit coupling. "BL call
the first term the "basic polarization mechanism" and
the second the "vertical Nuctuation effect." To quote
them, "%ith the spin-orbit coupling taken into account,
the radiation can thus act on the polarization not only
directly, but also via the trajectory, perturbing the
quantization axis" (DK, Ref. 1) and, ". . .we treat the
vertical fluctuation effect coherently with the basic po-
larization mechanism. . ."(BL, Ref. 3).
Equation (10) is in the DK form, which is applicable

to arbitrary electron trajectories. The BL calculation of
quantum fi.uctuations, etc., is only valid in a small region
near the closed orbit (where n=z). We shall see later
that because of this they obtain only first-order spin res-
onances in their calculation. Both DK and BL combine
the above mechanisms of spin fiip to obtain efFective in-
teraction Hamiltonians before calculating the matrix ele-
ments and transition probabilities per unit time. In oth-
er words, they include the kinetics of orbital motion,
which is not present in &;„,of Eq. (2), into the efFective
interaction Hamiltonian. They come up with difterent
functions, obviously, but the connection between them
will now be established.

V. EQUILIBRIUM POLARIZATION

BL take into account vertical recoils due to photon
emissions, and write

mz =e (E', +5E,', ),
where the primes denote evaluation in the comoving
frame, 5E,' is the field seen due to motion off the closed
ol'bit (vertical betatron oscillatlons), alld Eq ls the qllall-
tum part of the radiation electric field, including radia-
tion damping. BL write E', =E&,+E,'„where E&, is the
free radiation field, and

5~~ =5al (xk~ i y )=— g58~ +2/ i—
2%iC e

(g8/~+(2+f*)Ej. j2mc
(13)

(g -2)Q' (16)

and from this they obtain their formula for the equilibri-
um degree of polarization,

P, = 8 6
5v'3,

18 360

(17)

This formula has a resonance at v =Q =~n, or
y =2v n /(g —2). This agrees with the previously
known result for the locations of resonances
v=k, +k„Q„+k,Q, +k, Q, , (18)

where Q„, Q„and Q, are the orbital tunes and ko,
are integers, including zero. BL report that as y moves
through the resonance from below, P,q drops from
8/(5v 3)=0.924 to —0.169, but then increases to 0.992
before falling again to 0.924. This can be checked by a
simple computer calculation. It is found that the ex-
tremum values for P,q do not depend on the value of n,
but the width of the resonance does, becoming larger as
n increases.
Let us now consider the DK work. They call their

e8'ective interaction Hamiltonian co s, defined such that

—(s n)= Is n,%',I = ts n, co sJ =(coXs) n,IIIt (19)

and using Eq. (10), they derive

where E& and 8I are the free radiation electric and mag-
netic fields, respectively, and

(g —2)y'Q'I*= 1 1 Zly Q yv—+ihyv/coo
and

2

1 (y coo+y a)ov ),szzzz
PtlC

where coo——Pe/R, Q is the vertical betatron tune, and
v=y(g —2)/2 is the spin tune. They neglect the term in
8, and write
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6) =Qr~d —n X
Bp

(20) a) =0—ng F.
Bp

e ~ Bllr0=Q„d— p E„dnxmc
(21)

where F=e(E...+px8„,). The fields are of course in
the laboratory frame now. DK neglect vertical recoil,
and assume that the only efFect of photon emissions is
energy loss (but see below), in which case
B/Bp =(p/mc)B/By, so that

=0—nX Fy B n—ng
mc By

I„
n

ymc BP,

Fy Bn=0— n&(y
pele Bp

Bnng
ymc BP,

(25)

Since I'» =yF, and y ~p 1 and y(Bn/By)
~=

~
Bn/Bp, ~, the last term is neglected, which yields the

DK expression for co. It so happens that in a perfect
planar storage ring, y(Bn/By)=0 (see Appendix), so
that the above approximation breaks down.

From this they obtain their polarization formula VI. RELATIONSHIP OF FORMALISMS

1 Bn1 n—y B
cq 2

1—-(n v) +- y
1, 2 „Bn
ii 9 is

with resonances as in Eq. (18). Here b =v X v /
~
v Xv

~

and p is the local bending radius of the trajectory. Now,
for the weak-focusing model of BL, it can be shown that
y(Bn/By)=0, and so the above formula cannot repro-
duce the BL result.
DK neglect the vertical quantum fluctuations at the

beginning of Sec. 6 of Ref. 1, where they say (using our
mathematical notation), "In the case of motion in inho-
mogeneous 6elds, the gradients of n in the longitudinal
and transverse directions are generally speaking of the
same order. " Recognizing that F, -yp„, we obtain the
following expression for co:

e e e „Bn
c0=— 8„—,8„— P.En X

ymc y~mc mc By

The 6rst sentence states that

(24)

However, the DK formalism can incorporate the
efrects of vertical recoil. Let us derive the polarization,
taking into account vertical recoils, following the DK
approach. To avoid cluttering the formula with inessen-
tial material, let us ignore Bn/By, which vanishes any-
way for the model in question. Then

1

Bp ymc BP,
(26)

e~=Orad
'I/' PIC

z (E„,+PX8...)nx
Z

(27)

Now note that the photon is emitted almost longitudi-
nally, so that

E,',dz (E„d+PX8„,~)=z ' = Ef, , —
y y

(28)

in BL notation. Recall that Ef is the rest-frame-free ra-
diation electric Geld. Also, let us rewrite O„d using Eqs.
(4) and (5),

Q= — 8'+ror =— 8'— PXE'2mcy 2mcy mc(y+1)
(29)

In the second sentence, F:—e (E+pX8)—=F, +F,„.
Now

Q„~=— (g8j +2px Ef ) .2mcy
Hence,

(30)

cog =cil'(xkl y) gBf'~+2(x iy) ~ (yXEf )+ Ef', (x iy) —zx.2plcp y
(31)

where the approximations p=y and n=z have been
used. The above result simpli6es to

co+—— gBf'+ +2Ef, + Ef', ( y+i x)——
2P7lc g

(32)

There is an overall factor of y ' from time dilation; oth-
erwise, this agrees with the BL expression 5co+ provided
(2/y)( y+ix) Bn/BP—, equals .f of Eq. (16).
We therefore evaluate Bn/Bp, to first order in the

vertical betatron oscillations, followed by substitution
into Eq. (32). To do this we first solve for n to first or-
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der in z. For a weak-focusing machine, the vertical p
function is constant and so, using the normalization of
Ref. 4,

where a =(g —2)/2. Using Eq. (33),

z =a,&p/2exp(iQ8)+c. c. , (33) Q&(8)=(1+ya)kzx+ y

where 8 is the machine aziinuth, Q =&n is the vertical
betatron tune, p=R /Q, a, is a constant, and the weak-
focusing quadrupole strength is k =n /R =Q /R.
Clearly there is a problem of confusion with other mean-
ings for p, k, etc., but there is no simple solution to this,
so the reader is simply advised to be careful. Now we
must solve Eq. (7) for n. It is more convenient to use 8
as the independent variable, and so we write

=(Qo+Qp) Xn,
where Qo=(1+ ya)z is the spin precession vector on the
closed orbit and

' 1l2

=a, (1+ya)k — x+i y e'~ +c.c. ,2 v'2p

(36)

whence

' 1/2

Q&+——a, (1+ya)k — + —e'~ ' +c.c.
2 v'2p

(37)

DECQ)0
I

B— p Bp —Qo,1 ay
x+& (35) This is Eq. (4.11) of Ref. 2, in different notation. Then,

to 6rst order in 0&, it can be shown that '

' 1/2
(x—iy) p ya e'~=z+ ~ — a, ( I+ya)k

2 v'2p Q —v
' 1/2

a, (1+ya)k — + +c.c.(x+iy) p ya e'~
2 2P +v (38)

Bn i 1=——(x—iy) f(1+ya)kp —ya]
Bp, 4 Q —v

+ (x+iy)—[(1+ya)kp+ya] +c.c.+v

Q2 v2=—y (1+y ) Q2 v2 Q2 v2

vQ 2

Q2 2 (39)

because v= ya. Thus

Some details on the partial differentiation 8/Bp, are
given in the Appendix. The result is simply to replace
a, by i &P/2 exp( iQ8), w—hence

2 . Bn 2 vQ 2 (g —2)Q2
'Y ~Ps y v —Q y Q2—v'

(40)
This is exactly the form which appears in Eq. (4.13) of
Ref. 2, and so our calculation for the quadratic terms
agrees with theirs [see Eq. (41) below]. The BL calcula-
tion yields the final term (g —2)Q /(Q —v ), which is
the f of Eq. (16). The additional term in Eq. (40), how-
ever, is finite at a spin resonance, whereas f in Eq. (16)
goes to in6nity, and so near to the resonance we may
consider the above results to be in agreement.
One of us (S.R.M.) has rederived the polarization, but

using Eq. (40), and has generalized it to strong-focusing
storage rings. The basis I x, y, zj is reinterpreted as
meaning y=v, x=—v/~ v ~, and z=xXy=b is the
direction of the field, not necessarily vertical. Next we
define f—:—(2/y)Bn/Bpb, a vector, and it does not in
general point along v. Note that horizontal betatron
and synchrotron oscillations will also now contribute to
f, in general. Then

, (n.b——,'v f)
P, = 8

5&3
1——29(n v)— .(nxf)+ —,",, /

f /'
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where p is the local bending radius of the trajectory, and the angular brackets denote an average over the distribution
of particle orbits and the ring azimuth. DK did in fact almost obtain this result, for a perfect planar weak-focusing
storage ring, as implied by Eq. (4.13) of Ref. 2. Because they added the spin-flip mechanisms of Eq. (10) only in the
transition rates, not in the matrix elements, Eq. (4.13) of Ref. 2 contains only the quadratic, not the linear, terms in f.
The derivative Bn/By, which describes the effects of energy loss on the spin, has been neglected above. Putting it

in, it is found that no cross terms between Bn/By and Bn/BPb appear, and so the formula which describes the com-
bined set of resonances is

3}' B13i,
Bn 13 Bn

(42)

VII. TRANSITION PROBABILITIES

Both DK and BL use "integrals of free field correla-
tion functions" [Eq. (46), Ref. 3] to calculate the spin-flip
transition probabilities per unit time. Let us start with
the BL integrals. Using Eq. (46) of Ref. 3,

I y= 4 Texp T-I, co]s cog s 2 Np —v 2

(43)

where the subscripts k pertain to spin Sips from +z to
kz, respectively. The quantity m& is the spin precession
angular frequency on the classical orbit (closed orbit)
[see Eqs. (2), (3), and (21}of Ref. 3],

(44)

This agrees with the DK expression Q=cooy(g —2)/2
for this model, the extra factor of y in Eq. (44) coming
from time dilation.
DK write almost the same expressions, in fact. In-

stead of spin Hips from only +z to +z, they consider
spin Hips from kn to Tn. DK call their effective in-
teraction Hamiltonian ru s, whereas BL call theirs
(iii'/2}5co ir. Thus, instead of using 5ro+=5co„+i5ra~,
they use m Y/—:co.(iI, +i/i) aild rd. Tf', where iI, aild v12
are unit vectors orthogonal to n and to each other, and
are both solutions of the Thomas-BMT equation on a
given orbital trajectory (not necessarily the closed orbit}.
DK denote the spin-Nip transition probabilities per unit
time from kn to T n by p i and p t, respectively, where

P f —4 d& 0 gg+ /2 gf —/2

and similarly for p&. The large angular brackets denote
an average over orbits and

~
0}is the unperturbed initial

state. BL absorb both of these into their angular brack-
ets (5co+5co+ }. It is easy to compare Eq. (45) with Eq.
(43). First, transforming to the comoving frame, and re-
stricting attention to the closed orbit,

q(~) =g, +ig2 =(x+iy}exp( iso,~) . —
Then, putting r =0 in Eq. (45),

a) g(r/2) =ra (x iy+)ex ( pi c.o,r/2)—

I+—I
I ++I" (47)

Time-dilation factors cancel out between numerator and
denominator in the above expressions.
Both sets of authors then derive their respective ex-

pressions for the equilibrium degree of polarization. The
algebra involved need not concern us.

VIII. CONCLUSIONS

The main points of this paper have now been made,
and remaining details can be left as an exercise for the
reader. Some concluding remarks now follow. It has
been sho~n that both Derbenev and Kondratenko and
Bell and Leinaas have included the kinetic and
statistical-mechanical subtleties of radiative electron po-
larization into their calculations, even though their for-
mulations difFer so much. The main point of attention
has been the effect of vertical electron recoils on the po-
larization. Using the Derbenev-Kondratenko approach,
the results of Refs. 1—3 were unified in Eqs. (41) and
(42). However, numerically, the change is likely to be
negligible, in comparison to the Derbenev-Kondratenko
formula of Ref. l. It so happens that y(Bn/By) vanishes
in the quantitative calculations displayed in this paper,
but it is an important vector in general. For the sake of
completeness, and to ofFer the reader some feeling for
what happens in models not considered in this paper, a

ro iI'( ~/—2) =co (x iy—)exp( in),—r/2) .

Putting co+ co (——xki. y) and using BL angular brackets,

pt i ———,
' f di exp(+icoir)(co+(r/2)co+( ~/2)—}, (46)

and with small further changes of notation, . this estab-
lishes the equivalence of the BL and DK expressions, ex-
cept for the disagreement in Eq. (40). One should really
be more precise in Eq. (46), because p & &

there are in the
comoving frame, and are a factor y larger than their
values in Eq. (45) (accelerator frame). Similarly, co+ and

are not the same as in Eq. (45). This is not surpris-
ing, because of the time-dilation factor y relating the po-
larization buildup rates in these two frames. However,
the equilibrium degree of polarization is the same, be-
cause
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few parenthetical statements on the behavior of
y(Bn/By ) follow. In general,

The Ei are normalized so that E&SEi ——i for A, &0 and
E&SE&———i for kg0, where

Bii 2 Bii
yB )&—

Bp
=f (48) 0 1

—1 0
It was already noted by Bell and Leinaas that with only
one resonance, f +0—at high energies. In a model with
several resonances the nonresonant part of f remains ap-
proxirnately constant as the energy increases. However,
the nonresonant part of y(Bn/By) actually increases
with energy. Thus the increase in P,„seen by Bell and
Leinaas near a resonance is not likely to be important at
high energies.
The unified formula, Eq. (42), can be used in a

modified version of the computer program suM of
Chao or sMtLE of Mane. Since for strong-focusing
machines, the vertical p function and the orbit curvature
are no longer constant, the "new" derivative Bn/Bpb will
yield other first-order resonances corresponding to
nonzero values of ko in Eq. (18), as well as higher-order
resonances. However, Eq. (18) itself, which gives the
spectrum of resonances, is not affected. In this connec-
tion it is interesting to note that in an earlier account by
Chao of the suM formalism, in which he considered the
effect of the vertical recoils, he would also have obtained
Eq. (4.13) of Ref. 2, with f given by Eq. (40). One can
also show that the formalism of Ref. 9 yields the vertical
emittance (z ) obtained by Bell and Leinaas.
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APPENDIX

In this appendix some details of the partial derivatives
of the DK spin-quantization axis n with respect to y or
p, will be given. The approach will follow that of
Chao. The orbital trajectory X(8) is written as a six-
component column vector (x,x', z, z', 5s, hE/Eo), where
X=0 is the closed orbit. Primes denote difFerentiation
with respect to arc length. Then X can be expressed as a
sum of normal modes E&,

A, =El, +2,%3
where the a& are constants for a given trajectory. The
notation is E &

——E& and a &——a&. Then the derivative
yBX/By is given by considering two trajectories which
difFer by unity only in the sixth component, i.e.,

0

(A2)

0 1

—1 0

(A3)

Blank spaces denote zeros in the above matrix. It then
follows that

iEs—i (8), A, &0

By s
~o By s iE5i (8), A, (0, (A4)

where E5& is the fifth component of E&. Thus the par-
tial difFerentiation yB/By can be effected by a simple
substitution. By entirely similar reasoning, the deriva-
tive BIBp, can be obtained by demanding

0

Bg Ba
Bz & Bz

0
0

and the result is
—iE&i (8), A, & 0

t

Bz' s iEii (8), A, &0, (A6)

There is one important point to note before using the
above expressions in the main body of the text. It has to
do with the coordinate system employed. Following
standard accelerator physics practice, in this appendix
the coordinate system is I z,xs[, a right-handed coordi-
nate system where x is radial, z is vertical, and s is longi-
tudinal. In the main body of the text, the BL coordinate
system has been used, to simplify comparison with their
work, and it is I y,xj, zalso a right-handed coordinate
system, and where x is still radial, but the second vector
y is longitudinal and z is vertical. This implies a relative
minus-sign difFerence between the coordinate systems for
one of the unit vectors. Because of this, the correct ex-
pression for Bo, /BP, in Eq. (38) is i&P/2exp( iQ, 8), —
i.e., the above solution must be multiplied by a minus
sign.

where E3& is the third component of E&. For a perfectly
aligned planar machine, including the weak-focusing
model considered here, E5i ——0 for the vertical (betatron)
normal mode since there is no coupling between vertical
and longitudinal oscillations. Furthermore, E3& for the
vertical mode is a function only of the vertical p func-
tion and phase. Speci6cally, for the weak-focusing mod-
el of BL,

E,i ——&P/2exp(ig, 8) (A, )0) .
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