Contents of this Page:
In case of the TSMB algorithm the fermion determinant is represented with the help of polynomial approximations. The TSMB algorithm was originally developed for numerical simulations in the supersymmetric Yang-Mills theory (for a review see hep-lat/0112007 ) but, after appropriate tuning, it can also be applied to QCD with light quarks. In the present version of TSMB several ideas on fermionic updating are incorporated: the local update step is based on Lüscher's multi-boson representation of the fermion determinant (hep-lat/9311007), the idea of a global correction step in the update (hep-lat/9505021), the final reweighting correction (hep-lat/9702016) and the determinant breakup boosting the performance (hep-lat/0203026).
Previous applications of TSMB are: supersymmetric Yang-Mills theory (SYM, MÜNSTER) and SU(2)-colour QCD with non-zero quark density (hep-lat/0006018 ). This algorithm can also be applied with more complicated fermion actions (hep-lat/0111015) including domain wall fermions (hep-lat/0204019).
I. Montvay,
Quadratically optimized polynomials for fermion simulations,
Comput. Phys. Commun. 109:144-160, (1998);
hep-lat/9707005
R. Kirchner, S. Luckmann, I. Montvay, K. Spanderen, J. Westphalen,
Numerical simulation of dynamical gluinos: experience with a multi-bosonic
algorithm and first results,
Nucl. Phys. Proc. Suppl. 73:828-833, (1999) 144;
hep-lat/9808024
I. Montvay,
Multi-bosonic algorithms for dynamical fermion simulations,
in Molecular Dynamics on Parallel Computers,
Proceedings of the Workshop at NIC, Jülich, February 1999;
edited by R. Esser, P. Grassberger, J. Grotendorst, M. Lewerenz;
p.305;
hep-lat/9903029
I. Montvay,
Simulation of QCD and other similar theories,
Nucl. Phys. Proc. Suppl. 83:188-190, (2000);
hep-lat/9909020
I. Montvay,
Least-squares optimized polynomials for fermion simulations,
in Numerical Challenges in Lattice Quantum Chromodynamics,
Proceedings of the Workshop in Wuppertal, August 1999;
edited by A. Frommer, T. Lippert, B. Medeke, K. Schilling;
Springer 2000, p. 153;
hep-lat/9911014
W. Schroers, N. Eicker, M. D'Elia, P. de Forcrand, C. Gebert, T. Lippert,
I. Montvay, B. Orth, M. Pepe, K. Schilling,
The quest for light sea quarks: algorithms for the future,
Nucl. Phys. Proc. Suppl. 106:1082-1084, (2002);
hep-lat/0110033
I. Montvay,
Dynamical fermion algorithm for variable actions,
Phys. Lett. B527:155-160, (2002);
hep-lat/0111015
I.L. Bogolubsky, V.K. Mitrjushkin, I. Montvay, M. Muller-Preussker, N.V. Zverev,
Performance studies of the two-step multi-boson algorithm in compact
lattice QED,
Nucl. Phys. Proc. Suppl. 106:1052-1054, (2002);
hep-lat/0111031
I. Montvay,
Unquenched domain wall quarks with multibosons,
Phys. Lett. B537:69-76, (2002);
hep-lat/0204019
I. Montvay,
Unquenched domain wall quarks with TSMB,
Nucl. Phys. Proc. Suppl. 119:843-845, (2003);
hep-lat/0208064
C. Gebert, I. Montvay,
A recurrence scheme for least-square optimized polynomials,
hep-lat/0302025
I. Montvay, E. Scholz,
Updating algorithms with multi-step stochastic correction,
hep-lat/0506006
Link to my homepage.
Last change on November 3, 2005