

Standard Model Physics at the LHC

Joachim Mnich RWTH Aachen

Standard Model Physics at the LHC

Outline:

Perspectives on

> Parton distribution functions

- > QCD + jet physics
- > Electroweak physics (Z/W bosons)
- > Top physics

Will not cover other SM physics topics, e.g.

- > Higgs
- > **B-physics**
- > Tau physics
- > Diffraction, luminosity, ...

Standard Model Physics at the LHC

Cross Section of Various SM Processes

The LHC <u>uniquely</u> combines the two most important virtues of HEP experiments:

- 1. High energy 14 TeV
- 2. and high luminosity $10^{33} 10^{34}/\text{cm}^2/\text{s}$
- \Rightarrow Low luminosity phase 10³³/cm²/s = 1/nb/s

approximately

- ➤ 200 W-bosons
- 50 Z-bosons
- 1 tī-pair

will be produced per second!

Parton Distribution Functions (PDF)

PDF from W/Z production

- \bullet $p_{\rm T}$ and rapidity distributions are very sensitive to pdf
- particularly sensitive variable: ratio of W⁺/W⁻ cross section measures u(x)/d(x)

Example: study for 0.1 fb⁻¹, i.e. $2 \cdot 10^6 \text{ W} \rightarrow \mu \nu$ produced

Sensitive to small differences in sea quark distribution

PDF of s, c and b quarks

Parton Distribution Functions (PDF)

Recipe for measurements of PDFs from SM processes:

Process:	Constraning PDF of:
Di-jets	Quarks and Gluons
Jet + photon(s)	Quarks and Gluons
Jet + W	Quarks and Gluons
W and Z	Quarks
Drell-Yan	Quarks

Advertisement for the ongoing HERA/LHC workshop:

Jet Physics

- Measure jet E_T spectrum, rate varies over 11 orders of magnitude
- Test QCD at the multi-TeV scale

Inclusive jet rates for 300 fb⁻¹:

E _T of jet	Events
> 1 TeV	4.10 ⁶
	4 10
>2 TeV	3.104
> 3 TeV	400

QCD

Measurement of α_s at LHC limited by

- **≻ PDF (3%)**
- ➢ Renormalisation & factorisation scale (7%)
- ➢ Parametrisaton (A,B)

 $\frac{d\sigma}{dE_{T}} \sim \alpha_{s}^{2}(\mu_{R})A(E_{T}) + \alpha_{s}^{3}(\mu_{R})B(E_{T})$

10% accuracy α_s(m_Z) from incl. jets
Improvement from 3-jet to 2-jet rate?

Verification of running of α_s and test of QCD at the smallest distance scale $\geq \alpha_s = 0.118$ at m_z

 $\succ \alpha_s \approx 0.082$ at 4 TeV (QCD expectation)

Electroweak Physics: Properties of W and Z bosons

Measurement of the W mass at the LHC

 m_W is important parameter in precision tests of the SM

2004: $m_W = 80 \ 425 \pm 34 \ MeV$ LEP & Tevatron Run I2007: $m_W \approx 80 \ \dots \ \pm 20 \ MeV$ (2.5 $\cdot 10^{-4}$)incl. Tevatron Run II

Improvement at the LHC requires control of systematic error to 10⁻⁴ level

Source	CDF Run Ib	ATLAS or CMS	$W{\rightarrow} l\nu$, one lepton species C	
	30K evts, 84 pb-1	60M evts, 10fb ⁻¹		Ĵ
Statistics	65 MeV	< 2 MeV		
Lepton scale	75 MeV	15 MeV	most serious challenge	
Energy resolution	25 MeV	5 MeV	known to 1.5% from Z peak	
Recoil model	33 MeV	5 MeV	scales with Z statistics	
W width	10 MeV	7 MeV	ΔΓ _W ≈30 MeV (Run II)	•
PDF	15 MeV	10 MeV		
Radiative decays	20 MeV	<10 MeV	(improved Theory calc)	
P _T (W)	45 MeV	5 MeV	$P_T(Z)$ from data, $P_T(W)/P_T(Z)$ from theory	•
Background	5 MeV	5 MeV		
TOTAL	113 MeV	≤ 25MeV	Per expt, per lepton species	Ξ

- Take advantage from large statistics
 Z → e⁺e⁻, μ⁺μ⁻
- Combine channels & experiments
- $\Rightarrow \Delta m_W \le 15 \text{ MeV}$

Drell-Yan Lepton-Pair Production

Inversion of $e^+e^- \rightarrow q\overline{q}$ at LEP

• Total cross section pdf parton lumi search for Z', extra dim. , ...

Much higher mass reach as compared to Tevatron

Drell-Yan Lepton-Pair Production

(per channel & expt.)

 $\Delta \sin^2 \vartheta_{\rm W} \approx 0.00014$

> Systematics (probably larger)

• PDF

- Lepton acceptance
- Radiative corrections

July 16th, 2004

Di-Boson Production

Measuring Triple Gauge Couplings (TGC) & testing the gauge boson self couplings of the SM

> WWγ and WWZ vertices do exist in the SM

Requiring C,P and elm. gauge invariance ⇒ 5 coupling parameters

$\kappa_{\gamma,Z}$	1	Dim4, ∝ √s
$\lambda_{\gamma,Z}$	0	Dim6, ∝ s
g_1^Z	1	Dim4, ∝ √s

➤ ZZγ and ZZZ vertices do NOT exist in the SM

Requiring Lorentz & elm. gauge invariance & Bose symmetry

 \Rightarrow 12 coupling parameters

 $h_i^{~V}, f_i^{~V} \quad (V = \gamma, Z)$

h ₁	dim6, $\propto s^{3/2}$	СЪ,
h ₂	dim8, $\propto s^{5/2}$	СФ́
h ₃	dim6, $\propto s^{3/2}$	СР
h_4	dim8, $\propto s^{5/2}$	СР
f ₄	dim6, $\propto s^{3/2}$	СР́
f ₅	dim6, $\propto s^{3/2}$	СР

Deviations from SM amplified by high energies!

WWy Couplings

Test CP conserving anomalous couplings at the WW γ vertex $\Delta\kappa$ and λ

Sensitivity to anomalous couplings from

- Wy final states
- W \rightarrow ev and μv
- **p**_T spectrum of bosons

 $p_{T}\left(\gamma\right)$ spectrum for SM couplings & current limits $\Delta\kappa,\,\lambda$ at 1.5 TeV

Sensitivity to WW_γ Couplings

July 16th, 2004

16

ZZγ Couplings

Example: Couplings at the ZZ γ vertex h_i^{γ}

- Zy final states
- Z \rightarrow e⁺e⁻ and $\mu^+\mu^-$
- p_T spectrum of photons and $m_T(ll\gamma)$

Spectra for SM couplings compared to current limits on anomalous couplings ($\Lambda = 1.5$ TeV):

J. Mnich: SM Physics at the LHC

Triple-Boson Production

Events for 100 fb ⁻¹ (m _H = 200 GeV)	Produced (no cuts,no BR)	$Selected \\ (leptons, p_T > 20 \text{ GeV}, \eta < 3)$
$pp \rightarrow WWW (3 \nu's)$	31925	180
$pp \rightarrow WWZ (2 \nu's)$	20915	32
$pp \rightarrow ZZW$	6378	2.7
$pp \rightarrow ZZZ$	4883	0.6
$pp \rightarrow W\gamma\gamma$	best channel for analysis	

Sensitive to quartic gauge boson couplings (QGC)

J. Mnich: SM Physics at the LHC

W

Top Physics

• tt production

87% gluon fusion

13% quark annihilation

Inverse ratio of production mechanism as compared to Tevatron

• Approx. 1 ft-pair per second at 10³³/cm²/s

LHC is a top factory!

• Top decay: $\approx 100\% t \rightarrow bW$

- Other rare SM decays:
 - CKM suppressed t \rightarrow sW, dW: 10⁻³ –10⁻⁴ level
 - t→bWZ: O(10⁻⁶)

difficult, but since $m_t \approx m_b + m_W + m_Z$ sensitive to m_t

• & non-SM decays, e.g. $t \rightarrow bH^+$

Measurement of the Top Mass: Motivation

Top Mass from Semi-Leptonic Events

Top Mass from Semi-Leptonic Events

Reconstruct m_t from hadronic W decay Constrain two light quark jets to m_W

J. Mnich: SM Physics at the LHC

Top Mass from Semi-Leptonic Events

- 3.5 million semileptonic events in 10 fb⁻¹ (first year of LHC operation)
- \Rightarrow Error on $m_t \approx \pm 1 2 \text{ GeV}$

Dominated by

- Jet energy scale (b-jets)
- Final state radiation

Top Mass from Other Channels

 $\Rightarrow \Delta m_t \approx \pm 1.7 \text{ GeV}$

Fully hadronic events: • BR ≈ 45% • difficult jet enviroment

$$\Rightarrow \Delta m_t \approx \pm 3 \text{ GeV}$$

Top Mass from J/Ψ channel

• Estimated ultimate precision:

 $\Delta m_t \approx 1 \text{ GeV}$

W Polarization

Massive gauge bosons have three polarization states

At LEP in $e^+e^- \rightarrow W^+W^-$: determine W helicity from lepton (quark) decay angle in W rest frame θ^*

- $(1 \pm \cos \theta^*)^2$ transverse
- sin²θ*
 longitudinal

W Polarization in Top Decays

tt Spin Correlation

Use double leptonic decays $tt \rightarrow bb lv lv$

 $A = 0.311 \pm 0.035 \pm 0.028$ (using 30 fb⁻¹)

July 16th, 2004

Single Top Production

Production mechanisms and cross sections:

experimental determination of V_{tb} to percent level (with 30 fb⁻¹)

Determination of Top Charge

Top charge:

LHC:

Determine charge from rate of radiative tty events **p**_T spectrum of photons for 10 fb⁻¹:

Measurement of tt cross section

Total cross section:

> At 14 TeV interesting in itself

> Sensitive to top mass $\sigma_{tt} \propto 1/m_t^2$

Differential cross sections:

- $> d\sigma/dp_T$ checks pdf
- $> d\sigma/d\eta$ checks pdf

> $d\sigma/dm_{tt}$ sensitive to production of heavy object decaying to top-pairs X \rightarrow tt

Summary & Conclusions

SM physics at the LHC

• Very important in initial phase

- ➤ to check detector
- to check generators (pdf)
- ➤ to prepare discoveries

• Large potential for precision measurements

- Iarge cross sections
- > precision limited by systematics
- ➤ use as many different strategies as possible

Credits:

Marina Cobal, Matt Dobbs, Fabiola Gianotti, Alexander Oh, Dominique Pallin, Sergey Slabospitsky