Standard Model Physics with CMS

Seminar IPM Tehran June 25, 2007

Joachim Mnich DESY

Standard Model Physics with CMS

June 25, 2007

The CMS experiment and status of the detector

Outline

- Prospects for SM physics at the LHC
 - QCD & jet physics
 - b-physics
 - top physics
 - electroweak physics
 - (diffractive and forward physics)
- This talk is mainly based on recent CMS Physics TDR
 some interesting results from ATLAS included

June 25, 2007

Standard Model Physics with CMS

http://cms.cern.ch/iCMS/

The Large Hadron Collider (LHC) at CERN

 Proton-proton collider in the former LEP tunnel at CERN (Geneva)

 Highest ever energy per collision 14 TeV in the pp-system

States - Andres -

- Conditions as 10⁻¹³ 10⁻¹⁴ s after the Big Bang
- 4 experiments:
 - ATLAS

June 25, 2007

- CMS
- LHC-B specialised on b-physics
- ALICE specialised for heavy ion collisons
- Constructed in a worldwide collaboration
- Start planned for 2008

The Large Hadron Collider LHC

LHCD THCP

Physics at Proton Colliders

- Protons are composite, complex objects
 - partonic substructure
 - quarks and gluons

Interesting hard scattering processes quark-(anti)quark quark-gluon qluon-gluon

However, hard scattering (high momentum transfer) processes are only a small fraction of the total cross section

- total inelastic cross section ≈ 70 mb (huge!)
- dominated by events with small momentum transfer

June 25, 2007

Proton-Proton Collisions

x₁p

- Proton beam can be seen as beam of quarks and gluons with a wide band of energies
- The proton constituents (partons) carry only a fraction $0 \le x \le 1$ of the proton momentum

 The effective centre-of-mass energy √ŝ is smaller than √s of the incoming protons

$$p_{1} = x_{1} p_{A}$$

$$p_{2} = x_{2} p_{B}$$

$$if x_{1} = x_{2} = x$$

 $p_A = p_B = 7 \text{ TeV}$

June 25, 2007

To produce a particle of mass						
mass LHC Tevatron						
100 GeV	$\mathbf{x} \approx 0.007$	$\mathbf{x} \approx 0.05$				
5 TeV	$\mathbf{x} \approx 0.36$					

Note:

x₂p

- the component of the parton momentum parallel to the beam can vary from 0 to the proton momentum $(0 \le x \le 1)$
- the variation of the transverse component is much smaller (of order the proton mass)

Standard Model Physics with CMS

June 25, 2007

Parton Density Functions at the LHC

 10°

 10^{8}

 10^{7}

 10^{6}

 10°

 10°

 10^{3}

 10^{2}

 10^{1}

 10^{0}

 10^{-7}

y =

M = 10 GeV

 10^{-6}

 10^{-5}

 (GeV^2)

 \mathbf{O}_{2}^{2}

Q = M

y = rapidity

M = 100 GeV

 $x_{12} = (M/14 \text{ TeV}) \exp(\pm y)$

M = 1 TeV

CELLE EVOLUTION

HER.

 10^{-3}

 10^{-2}

M = 10 TeV

fixed

target

 10^{-1}

 10^{0}

LHC is a proton-proton collider But fundamental processes are the scattering of

- Quark Antiquark
- Quark Gluon
- Gluon Gluon

Examples:

10000

000

June 25, 2007

⇒ need precise PDF(x,Q²) + QCD corrections (scale)

 $q\bar{q} \rightarrow W \rightarrow lv$

 $gg \rightarrow H$

Proton-Proton Collisions at the LHC

- 2835 + 2835 proton bunches separated by 7.5 m
 → collisions every 25 ns = 40 MHz crossing rate
- 10¹¹ protons per bunch
- at 10^{34/}cm²/s
 - ≈ 25 pp interactions per crossing <u>pile-up</u>
- $\rightarrow \approx 10^9$ pp interactions per second !!!
- in each collision
 - \approx 1600 charged particles produced

enormous challenge for the detectors

Cross Section of Various SM Processes

 \Rightarrow Low luminosity phase 10³³/cm²/s = 1/nb/s

approximately

- > 10⁸ pp interactions
- > 10⁶ bb events
- > 200 W-bosons
- 50 Z-bosons
- 1 tt-pair
- will be produced per second and
 - > 1 light Higgs

per minute!

June 25, 2007

The LHC is a b, W, Z, top, Higgs, ... factory!

The problem is to detect the events!

(TeV)

√s

Experimental Signatures

1. Hadronic final states, e.g. quark-quark

no high $p_{\rm T}$ leptons or photons in the final state

holds for the bulk of the total cross section

2. Lepton/photons with high p_T, example Higgs production and decay

Important signatures for interesting events:

- leptons and photons
- missing transverse energy

Standard Model Physics with CMS

June 25, 2007

- good measurement of leptons (high p_T) muons: large and precise muon chambers electrons: precise electromagnetic calorimeter and tracking
- good measurement of photons
- good measurement of missing transverse energy (E_T^{miss}) requires in particular good hadronic energy measurements down to small angles, i.e. large pseudo-rapidities (η ≈ 5, i.e. θ ≈ 1°)

Detector Design Aspects

 in addition identification of b-quarks and τ-leptons precise vertex detectors (Si-pixel detectors)

Very important: radiation hardness e.g. flux of neutrons in forward calorimeters 10¹⁷ n/cm² in 10 years of LHC operation

June 25, 2007

Trigger of interesting events at the LHC is much more complicated than at e⁺e⁻ machines

Online Trigger

- interaction rate: ≈ 10⁹ events/s
- max. record rate: ≈ 100 events/s

event size ≈ 1 MByte $\Rightarrow 1000$ TByte/year of data

- \Rightarrow trigger rejection $\approx 10^7$
- collision rate is 25 ns (corresponds to 5 m cable delay)
 trigger decision takes ≈ a few μs
 - ⇒ store massive amount of data in front-end pipelines while special trigger processors perform calculations

The ATLAS experiment

A Toroidal LHC ApparatuS

ATLAS in a nutshell:

- Large air toroid with μ chambers
- HCAL: steel & scintillator tiles
- ECAL: LAr
- Inner solenoid (2 T)
- Tracker: Si-strips & straw tubes (TRD)
- Si-pixel detector 10⁸ channels
 - 15 μm resolution

June 25, 2007

The CMS experiment

Compact Muon Solenoid

CMS in a nutshell:

- 4 T solenoid
- µ chambers in iron yoke
- HCAL: copper & scintillator
- ECAL: **PbWO₄** crystals
- All Si-strip tracker 220 m², 10⁷ channels
- Si-pixel detector similar to ATLAS

June 25, 2007

Total weight

FORMARD MUON CHAMBERS TRA CEER CRYSTAL ECAL HCAL CALORMETER CMS 12.500t. SUFERCON DUCTING Overall diameter : 15.00m COIL RETURN YOKE Overall length 21.60m Magnetic field

Layout of CMS

• 11 slices: 5 barrel and 2*3 endcaps

Crane installed Lowering started on

June 25, 2007

Status of the CMS detector

solenoid sucessfully operated at 4 Tesla (11/06), field map
lowering of central magnet slice (YB0) on February 28th, 2007

 5/13 heavy pieces still to be lowered but all of known type

June 25, 2007

 2nd endcap cabled, tested & commissioned on surface

Standard Model Physics with CMS

18

Status of the CMS detector

more recent photographs from CMS

June 25, 2007

- Silicon tracker ready
 - under test at surface
 - to be installed in August 2007

The CMS Tracker

CMS tracker:
≈ 220 m² of Si sensors
10.6 million Si strips
65.9 million Si pixel

- Pixel detector:
 - 2/3 of modules produced
 - ready for installation end 2007

June 25, 2007

Status of the CMS detector

• ECAL:

- barrel crystal production and module assembly completed
- Installation May/June
- endcap crystal prodcution started
- full endcaps ready for 2008 physics run
- Trigger and DAQ:
 - is progressing well
 - 400/2000 HLT PC (being) installed

and the state of t

- global run May/June
- Summary status CMS:

12 10

- on track for taking data in fall
- on critical path:
 - installation of services on YB0
- complete detector (+ Pixel + ECAL endcaps) ready for 2008 run

Trigger & DAQ system

Similar design for ATLAS & CMS

Example CMS: Collision rate 40 MHz Level-1 max. trigger rate 100 kHz[†] Average event size ≈ 1 Mbyte

† 50 kHz at startup (DAQ staging)

Filter farm:

- approx. 2000 CPUs
- easily scaleable

June 25, 2007

- staged (lower lumi & saves money)
- uses offline software

The longest journey starts with the first step... Cosmic data taking with assembled detector components... December 2005 **Cosmic Muons in CMS** unertaind Settropingent Depitor/Ref H MB1 **August 2006:** cosmic with magnet on

Comparison of ATLAS and CMS

	ATLAS	CMS				
length	≈ 46 m	≈ 22 m				
diameter	≈ 25 m	≈ 15 m				
weight	≈ 7000 t	≈ 12000 t				

June 25, 2007

Standard Model Physics with CMS

Transverse View

.645 r

- 2007 Completion of machine and detectors
- 2008 first physics year
 - at 7 TeV proton energy
 - try to reach $\geq 10^{32}/\text{cm}^2/\text{s}$
 - integrated luminosity O(1 fb⁻¹)

2008 - 2010 three years at 1 - 2·10³³/cm²/s

- \geq 30 fb⁻¹ in total
- Important for precision physics and discoveries

Possible LHC Schedule

≥ 2011 high luminosity running at 10³⁴/cm²/s ■ 100 fb⁻¹ per year

2015 Upgrade to Super LHC 10³⁵/cm²/s

under discussion

June 25, 2007

requires major machine and detector upgrades

Jet physics at the LHC

• E_T spectrum, rate varies over 11 orders of magnitude

Test QCD at the multi-TeV scale

Jet Physics

June 25, 2007

3.5

NLO pQCD EKS CTEQ 6.1M, (µ=p_T^{Jet}/2)

Jet rates will be one of the first LHC result: statistical precision

Measurement of α_s at LHC limited by

- > PDF (3%)
- Renormalisation & factorisation scale (7%)
- Parametrisaton (A,B)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}E_{\mathrm{T}}} \sim \alpha_{\mathrm{S}}^{2}(\mu_{\mathrm{R}})A(E_{\mathrm{T}}) + \alpha_{\mathrm{S}}^{3}(\mu_{\mathrm{R}})B(E_{\mathrm{T}})$

10% accuracy α_s(m_Z) from incl. jets

- Improvement from 3-jet to 2-jet rate?
- Verification of running of α_s and test of QCD at the smallest distance scale
- > $\alpha_s = 0.118$ at m_Z > $\alpha_s \approx 0.082$ at 4 TeV (QCD expectation)

June 25, 2007

Underlying Event

 Divergent MC predictions, • Everything accompanying the e.g. average particle density vs. jet p_T event but the hard scattering process "Transverse" Charged Particle Density: dN/dŋdo 25 Generator Level "Away' PY-ATLAS Region 14 TeV ChgJet #1 PY Tune DW 2.0 Direction Transvers Region 1.5 "Toward" 1.0 ChgJet Transve Toward" Regio 0.5 Leading Charged Jet (m < 1.0) HERWIG Charged Particles (m|<1.0, PT>0.5 GeV/c) *Transver Region 0.0 "Away" 25 50 75 100 125 150 175 "Away" Region PT(charged jet#1) (GeV/c) Ratio 1.4 c Measurement possible from data: Particle 1.2 feasibility of the measurement MB **JET60** JET120 proven Charged 0.8 agreement between triggers 0.6 spin-off for soft-track 0.4 reconstruction $p_T > 0.5$ GeV 0.2 0_ò 20 40 60 80 100 120 140 160 180 20 prec_jet GeV/c

Standard Model Physics with CMS

June 25, 2007

Inclusive b-production

- Selection
 - $p_{T}^{\mu} > 19 \text{ GeV}$ ■ b→μ non-isolated
 - 1 b-tagged jet, $E_T > 50 \text{ GeV}$
- For 10 fb⁻¹ sensitivity up to $E_T^b \approx 1.5 \text{ TeV}$
- Cross section error ± 18%

• p_T^μ wrt b-tagged jet e.g. 230 GeV $< E_T^b < 300$ GeV

Systematic e	rror	
Source	uncertainty, %	T.
jet energy scale	12	125

Selection for 10 lb

B-Physics

1	10	101261000000000						
jet energy scale	12	All And	$\hat{p_{\mathrm{T}}}$, GeV/c	N _{generated}	bb purity, %	$c\overline{c}$ fraction, %	uds fraction, %	$N_{expected}^{b\overline{b}}$
event selection	6	a a main	50 - 80	198993	66	32	2	1.4 M
B tagging	5	100	80 - 120	294986	66	32	2	6.1 M
luminosity	5	2. Conte	120 - 170	291982	72	26	2	$5.1~\mathrm{M}$
trigger	3	1. 200 1	170 - 230	355978	71	26	3	2.4 M
muon Br	2.6		230 - 300	389978	73	24	3	0.9 M
misalignment	2	and the state	300 - 380	283983	70	25	5	0.3 M
muon efficiency	- 1	and the second	380 - 470	191989	68	27	5	88 k
indon encency	1	12 20	470 - 600	190987	64	29	7	34 k
<i>tt</i> background	0.7		600 - 800	94996	60	31	9	10 k
fragmentation	9	111	800 - 1000	89999	60	30	10	2.0 k
total	18	Sec. 1	1000 - 1400	89998	55	31	14	0.5 k

June 25, 2007

 Rare SM process sensitive to New Physics

- **CMS study in AN 2006/097**
 - 1.6% signal effciency
 - $\rightarrow \approx 6$ events in 10 fb⁻¹ (SM)
 - 2.7·10⁻⁷ bkgd reduction
 - $\rightarrow \approx 48$ bkgd events in 10 fb⁻¹
- Expected upper limit
 - $BR(B_s^0 \to \mu\mu) < 1.2 \cdot 10^{-8}$
 - \approx 4 times SM expectation
- better bkgd determination from data (sidebands) will improve sensitivity

SM branching ratio and exp. upper limits

June 25, 2007

չոր

W and Z bosons were discovered in proton-antiproton collisions 1983: UA1 & UA2 at the SppS collider at CERN

Electroweak Physics (W and Z Bosons)

How do W/Z events look like at proton colliders?

Use leptonic decays (electrons & muons)

• $W \rightarrow lv$ high p_T lepton + missing E_T

■ $Z \rightarrow II$ 2 oppositely charged, high p_T leptons

June 25, 2007

10 GeV

and the states

Examples of early W/Z events

June 25, 2007

Drell-Yan Muon-Pairs

Goal:

- measurement of µµ cross section from Z to multi-TeV rgion
- asymmetry
- constrain PDFs

June 25, 2007

Di-muon invariant mass, GeV/c²

Di-muon invariant mass, GeV/c²

Harris Carlot								
$M_{\mu^{+}\mu^{-}}$,	Detector	Statistical	Statistical	Statistical	Theor. Syst.			
TeV/c ²	smearing	$1{ m fb}^{-1}$	$10 {\rm fb}^{-1}$	$100 {\rm fb}^{-1}$				
≥ 0.2	$8 \cdot 10^{-4}$	0.025	0.008	0.0026	0.058			
≥ 0.5	0.0014	0.11	0.035	0.011	0.037			
≥ 1.0	0.0049	0.37	0.11	0.037	0.063			
≥ 2.0	0.017		0.56	0.18	0.097			
\geq 3.0	0.029			0.64	0.134			
102201		1-1-51		The state				

Detector systematics small wrt. to statistics

• Any improvement at the LHC requires control of systematic error to 10⁻⁴ level

W Mass at the LHC

- take advantage from large statistics $Z \rightarrow e^+e^-$, $\mu^+\mu^-$
- most experimental and theoretical uncertainties cancel in W/Z ratio e.g. Scaled Observable Method

CMS: detailed study of statistical and systematic errors

- 1 fb-1: early measurement
- 10 fb-1: asymptotic reach, best calibrated & understood detector, improved theory etc.

W Mass at the LHC

CNAS /	Source of uncertainty	uncertainty	ΔM_W [MeV/c ²]	uncertainty	ΔM_W [MeV/c ²]	in a second	
CIVIS		wi	th 1 fb ⁻¹	with	n 10 fb ⁻¹	S. C. C.	
Contra	scaled lepton-p _T method applied to W			$N \rightarrow e\nu$	$N \rightarrow e \nu$		
	statistics	1 -	40		15		
	background	10%	10	2%	2	1	
	electron energy scale	0.25%	10	0.05%	2	1000	
	scale linearity	0.00006/GeV	30	<0.00002/GeV	<10	1000	
	energy resolution	8%	5	3%	2	July - 1	
	MET scale	2%	15	<1.5%	<10	1	
. /	MET resolution	5%	9	<2.5%	< 5	-1	
No. Sta	recoil system	2%	15	<1.5%	<10		
	total instrumental		40		<20	1.1	
and a state	PDF uncertainties		20		<10	TWE'	
THE STATE	Γ_W		15		<15	7.5 2.1	
an an the	$p_{\mathrm{T}}^{\mathrm{W}}$		30		30 (or NNLO)	- Contraction	
Tree Bag	transformation method applied to $W \rightarrow \mu \nu$					No. Con	
and the second	statistics		40		15	E Start	
A Starting	background	10%	4	2%	negligible	the state	
	momentum scale	0.1%	14	<0.1%	<10	alain Sta	
	$1/p^T$ resolution	10%	30	<3%	<10	1.19853	
inter a	acceptance definition	η -resol.	19	$< \sigma_{\eta}$	<10	to a county	
the second state of the second s	calorimeter $E_{\mathrm{T}}^{\mathrm{miss}}$, scale	2%	38	$\leq 1\%$	<20	T. Millen	
- Aller	calorimeter $E_{\mathrm{T}}^{\mathrm{miss}}$, resolution	5%	30	<3%	<18	Contra Color	
and the second	detector alignment		12	_	negligible	ET a	
	total instrumental		64		<30	ALL CL	
Harris S	PDF uncertainties		≈ 20		<10	a state	
	Γ_W		10		< 10	NE Sta	

June 25, 2007

Di-Boson Production at the LHC

- very interesting: WW,WZ,ZZ final states not yet observed at the Tevatron
- test triple gauge boson couplings (TGC)
 - γWW and ZWW precisely fixed in SM

New physics

 Z^0/γ^*

γZZ and ZZZ do not exist in SM!

SM

q

 Z^0

Sensitive to quartic gauge boson couplings (QGC)

Triple-Boson Production

June 25, 2007

41

Why is the top quark so interesting special?

- by far the heaviest fermion
- could provide window to New Physics (mass generation)
- discovered 1995 at the Tevatron O(100) events observed in Run I
- still we know very little about it (mass) would like to measure all other properties
- top has a very short lifetime

June 25, 2007

the <u>only</u> quark that decays before forming hadrons

 \rightarrow can determine spin, polarisation from ist decay products

Top Quark Decay

- Top decay: ≈ 100% t → bW
- Other rare SM decays:
 - CKM suppressed t \rightarrow sW, dW: 10⁻³ –10⁻⁴ level
 - t→bWZ: O(10⁻⁶)

difficult, but since $m_t \approx m_b + m_W + m_Z$ sensitive to m_t

• & non-SM decays, e.g. $t \rightarrow bH^+$

In SM topologies and branching ratios are fixed: • expect two b-quark jets

it interest in a

- plus W+W- decay products:
 - 2 charged leptons + 2 neutrinos
 - I charged lepton + 1 neutrino + 2 jets
 - 4 jets (no b-quark!)

June 25, 2007

Standard Model Physics with CMS

June 25, 2007

Top Event at CMS

Example of simulated tt \rightarrow bb qq $\mu\nu$ events from CMS

- Cleanest channel but lowest BR (11%)
 - signal can be seen < 1 fb⁻¹
 - S/B = 12 achieved (e and μ)
- Kinematic reconstruction
 - \rightarrow mass measurement
- Cross section error ≈ 10%

Study of decays into tau leptons tau efficiency

Di-Lepton Channel

golden channel
clean signature and

Statistical uncertainty

Total uncertainty without luminosity uncertainty Total uncertainty with luminosity uncertainty

20

Integrated Luminosity (fb⁻¹)

large branching ratio < 4% non-ttbar bkgd

Relative uncertainty on σ(tt(μ)) (%)

10

10

µ channel tt→bbqqµv

Single-Lepton Channel

12.1		Δ	$\hat{\sigma}_{t\bar{t}(\mu)}/\hat{\sigma}_t$	$\overline{t}(\mu)$
1		$1 {\rm fb}^{-1}$	$5 \mathrm{fb}^{-1}$	$10 {\rm fb}^{-1}$
1.5	Simulation samples (ϵ_{sim})		0.6%	
. [. a	Simulation samples (F_{sim})		0.2%	
10	Pile-Up (30% On-Off)		3.2%	
12	Underlying Event		0.8%	
653	Jet Energy Scale (light quarks) (2%)		1.6%	
6.00	Jet Energy Scale (heavy quarks) (2%)		1.6%	
	Radiation (Λ_{QCD}, Q_0^2)		2.6%	
202	Fragmentation (Lund b, σ_q)		1.0%	
250	b-tagging (5%)		7.0%	
100	Parton Density Functions		3.4%	
	Background level		0.9%	
15	Integrated luminosity	10%	5%	3%
131	Statistical Uncertainty	1.2%	0.6%	0.4%
17.2	Total Systematic Uncertainty	13.6%	10.5%	9.7%
1000	Total Uncertainty	13.7%	10.5%	9.7%
22.3				

■ Cross section error ≈ 10%

10

15

5

Standard Model Physics with CMS

30

25

- Fully Hadronic Channel
- $tt \rightarrow bb qqqq$
- well defined final state with ≥ 6 jets
- enormous QCD background
- Need special trigger scheme, e.g. CMS
 - optimised E_T thresholds
 - pixel b/tag
 - 17% signal efficiency
 - S/B ≈ 1/300
- selection based on kinematic variables
 e.g. centrality
 - simple cut-based
 - and NN selection

June 25, 2007

• Cross section measurement to $\approx 20\%$

- Total cross section:
 - At 14 TeV interesting in itself
 - Sensitive to top mass $\sigma_{tt} \propto 1/m_t^{\ 2}$
- Differential cross sections:
 - $d\sigma/dp_T$ checks pdf
 - dσ/dη checks pdf
 - dσ/dm_{tt} sensitive to production of heavy object decaying to top-pairs X→tt

Top-Pair Cross Section

Importance of Top Mass

-LEP1 and SLD • m_t enters quadratically ---- LEP2 and Tevatron (prel.) 80.5-68% CL in electroweak ∑ 95 80.4 loop corrections $\propto (m_t^2 - m_b^2)$ ž 80.3 • m_H only logarithmically W.Z 175 200 150 m, [GeV] $\propto \log m_{\rm H}/m_{\rm W}$ Theory uncertaint 5 02758 ± 0.00035 All observables include the combined effect! ··· 0.02749+0.00012 ••• incl. low Q² data $\Delta \chi^2$ \rightarrow m_t plays a key role in precision test of the SM 3 • to predict the Higgs mass 2 and once the Higgs is discovered to check the consistency of the model Excluded Preliminary 100 300 30 m_н [GeV]

June 25, 2007

Measurement of the Top Mass

- di-lepton channel
 - kinematically underconstraint
 - use m_w, assume m_t and try to solve kinematics
 - weight solutions with SM neutrino spectrum
 - \rightarrow distribution of most likely solutions

Measurement of the Top Mass

single-lepton channel

sophisticated ideogramm method developed

- self-calibrating using m_W constraint
- reduced bias and sys error

study of systematic errors:

	Standard Selection				
	Gaussian Fit	Gaussian Ideogram	Full Scan Ideogram		
	Δm_t	Δm_t	Δm_t		
	(GeV/c^2)	(GeV/c ²)	(GeV/c^2)		
Pile-Up (5%)	0.32	0.23	0.21		
Underlying Event	0.50	0.35	0.25		
Jet Energy Scale (1.5%)	2.90	1.05	0.96		
Radiation (Λ_{QCD}, Q_0^2)	0.80	0.27	0.22		
Fragmentation (Lund b, σ_q)	0.40	0.40	0.30		
b-tagging (2%)	0.80	0.20	0.18		
Background	0.30	0.25	0.25		
Parton Density Functions	0.12	0.10	0.08		
Total Systematical uncertainty	3.21	1.27	1.13		
Statistical Uncertainty (10 fb ⁻¹)	0.32	0.36	0.21		
Total Uncertainty	3.23	1.32	1.15		
Stand and a	212 2 1 4 LE 1 3 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	a contraction of the second se	1 () () () () () () () () () (

 \rightarrow total top mass error ≤ 1 GeV possible with O(10 fb⁻¹) of well understood data

June 25, 2007

Spin Correlation in Top-Pair Production

FCNC in Top Decays

Top decay in SM: $\approx 100\% t \rightarrow bW$ FCNC decays: $t \rightarrow qZ, q\gamma$ (or qg)

11000	Decay	SM	two-Higgs	SUSY with R	Exotic Quarks	Exper. Limits(95% CL)
20102	$t \rightarrow gq$	5×10^{-11}	$\sim 10^{-5}$	$\sim 10^{-3}$	$\sim 5 imes 10^{-4}$	< 0.29 (CDF+TH)
20112002	$t \rightarrow \gamma q$	$5 imes 10^{-13}$	$\sim 10^{-7}$	$\sim 10^{-5}$	$\sim 10^{-5}$	< 0.0059 (HERA)
	$t \to Zq$	$\sim 10^{-13}$	$\sim 10^{-6}$	$\sim 10^{-4}$	$\sim 10^{-2}$	< 0.14 (LEP-2)

- use top pairs
- select a SM decaying top and jet + Z (or γ)
- SM top pairs are main background

Summary & Concludions

- Experiments at the LHC will soon explore the highest energy frontier
 - for discoveries of new particles and phenomena
 - for precision meaurements
- CMS is well on track for start-up in 2008
- Preparation of physics analyses in full swing
- Many opportunities for SM physics at the LHC Precisions measurements already in low luminosity phase
 - QCD & jet physics
 - W/Z production, e.g. W mass
 - Di-boson production

June 25, 2007

- Top physics, e.g. top mass
- Discoveries: Higgs, SUSY & the unexpected

Very exciting times are ahead of us!

Challenges for the LHC

 Superconducting dipole magnets to keep 7 TeV protons on circular path (r ≈ 3 km)

|B| = 8.33 Tesla

- 1232 dipole magnets are needed (+ quadrupole, sextupoles etc.) each dipole is 15 m long
- 1.9 K operating temperature supraliquid He largest cyrogenic facility in the world
- Quench protection stored energy in one dipole: 8 MJ

June 25, 2007

• LHC dipole design incoporates reversed field for oppositely rotating proton beam

BTW:

the stored energy in the LHC proton beams is 350 MJ enough to melt 500 kg of copper!

Cross Section Calculation

 $\sigma = \sum \int dx_{a} dx_{b} f_{a} (x_{a}, Q^{2}) f_{b} (x_{b}, Q^{2}) \hat{\sigma}_{ab} (x_{a}, x_{b})$

and the second and the

• $f_i(x_i, Q^2)$ = parton density functions

sum over initial states a,b

The service of the

June 25, 2007

 W^+

Example: W production in leading order

$\sigma(pp \rightarrow W) \approx 150 \text{ nb} \approx 2 \cdot 10^{-6} \sigma_{tot}$

I LINE TO THE

Rate of produced events for a given process

N = σ **L** σ cross section [barn = 10⁻²⁴ cm²] L luminosity [1/cm²/s]

- luminosity depends on machine parameters: number of protons stored, beam focus at the interaction point, ...
- Iuminosity should be high to achieve acceptable rates for rare processes

Luminosity

「「「「「「「「「「「「「「」」」」」

Comparison of colliders:

- $10^{31}/cm^2/s$ LEP
- 2·10³²/cm²/s Tevatron Run II design
- 10^{33} /cm²/s LHC initial phase (≈ 3 years)
- 10^{34} /cm²/s LHC design luminosity (> 2010)

- 1 experimental year is about 10⁷ s
- 10 fb⁻¹ per year in the initial LHC phase
- 100 fb⁻¹ per year later

June 25, 2007

requires high granularity (many channels)
good position, momentum and energy resolution

June 25, 2007

Status of ATLAS

Major structures assembled underground

August 2005: 8/8 toroid coils installed

Standard Model Physics with CMS

64

Status of CMS

Major structures assembled on surface Detector slices to be lowered in cavern

September 2005: coil inserted in yoke

Coil cooled down to 4.5°K February 2006

June 25, 2007

Large fraction of muon chambers installed

Comparison of ATLAS and CMS

Physics performance: comparison in terms of mass resolutions

Table 8

Mass resolution for various states in the different experiments (at a luminosity of 2×10^{33} cm⁻² s⁻¹ in the case of ATLAS and CMS)

	ATLAS (GeV c^{-2})	$CMS (GeV c^{-2})$	LHCb (GeV c^{-2})	ALICE (GeV c^{-2})
$B \rightarrow \pi \pi$	0.070	0.031	0.017	
$B \rightarrow J/\psi K_S^0$	0.019	0.016	0.010	
$Y \rightarrow \mu\mu$	0.152	0.050		0.107
$H(130 \mathrm{GeV}c^{-2}) \to \gamma\gamma$	1.55	0.90		
$H(150 \mathrm{GeV}c^{-2}) \to ZZ^* \to 4\mu$	1.60	1.35		
$A(500 \mathrm{GeV}c^{-2}) \to \tau\tau$	50.0	75.0		
$W \rightarrow jet jet$	8.0	10.0		
$Z'(3 \text{ TeV } c^{-2}) \rightarrow \mu\mu$	240	170		
$Z'(1 \mathrm{TeV}c^{-2}) \to \mathrm{ee}$	7.0	5.0		

From T. Virdee, Phys. Rep. 403-404 (2004) 401

L. L. Street CE

QCD and Jet Physics

Measured jet cross section versus E_T:

- comparison to theory
- good agreement
 over many orders of magnitude
- theoretical errors
 - QCD higher order (difficult)

- pdf

measurement can be used to check pdf

- experimental errors
- jet energy scale
- A jet is not a very well defined object:
- need algorithm to define it
- relation to parton energy → correction
 pile-up

W and Z Bosons

Example from the Tevatron:

June 25, 2007

Electrons

- Isolated el.magn. cluster in the calorimeter
- P_T> 25 GeV/c
- Shower shape consistent with expectation for electrons
- Matched with tracks

Z → ee

- 70 GeV/ c^2 < m_{ee} < 110 GeV/ c^2
- $W \rightarrow ev$
- Missing transverse momentum > 25 GeV/c

Separation of W →lv events from background

W Mass at the LHC

ATLAS study:

		the second se	Contraction of the second s
Source	CDF Run Ib	ATLAS or CMS	$W \rightarrow l v$, one lepton species 🧳
	30K evts, 84 pb ⁻¹	60M evts, 10fb ⁻¹	4
Statistics	65 MeV	< 2 MeV	
Lepton scale	75 MeV	15 MeV	most serious challenge
Energy resolution	25 MeV	5 MeV	known to 1.5% from Z peak
Recoil model	33 MeV	5 MeV	scales with Z statistics
W width	10 MeV	7 MeV	ΔΓ _W ≈30 MeV (Run II)
PDF	15 MeV	10 MeV	
Radiative decays	20 MeV	<10 MeV	(improved Theory calc)
P _T (W)	45 MeV	5 MeV	P _⊤ (Z) from data, P _⊤ (W)/ P _⊤ (Z) from theory
Background	5 MeV	5 MeV	
TOTAL	113 MeV	≤ 25MeV	Per expt, per lepton species

Combine both channels & both experiments

 $\Rightarrow \Delta m_{\rm W} \le 15 \text{ MeV} \text{ (LHC)}$

 Compare to
 LEP & Tevatron Run I/II

 2006: $m_W = 80 \ 392 \pm 29 \ MeV$ LEP & Tevatron Run I/II

 2007: $m_W \approx 80 \ \dots \ \pm 20 \ MeV$ (2.5 ·10⁻⁴)

June 25, 2007