From LHC to Linear Colliders:

Physics and Detectors

Joachim Mnich

DESY

September 2008

contact: Joachim.Mnich@desy.de

1

Outline

Introduction

LHC

- design & challenges
- machine & detectors
- physics examples

Linear Collider (ILC)

- design & challenges
- machine & detectors
- physics motivation

Comparison Proton and Electron Colliders

- Proton (anti-) proton colliders:
 - Energy range higher (limited by magnet bending power)
 - Composite particles, different initial state constituents and energies in each collision
 - Hadronic final states difficult
- Discovery machines
- Excellent for some precision measurements

- Electron positron colliders:
 - Energy range limited (by RF power)
 - Point-like particles, exactly defined initial state quantum numbers and energies
 - Hadronic final states easy
- Precision machines
- Discovery potential

- Precision is main motivation for a new electron positron collider
- Complementarity to proton machines, e.g. SppS/Tevatron and LEP

Comparison Proton and Electron Colliders

Electron Positron Collider

Recall: 10³⁴/cm²/s corresponds to 100 fb⁻¹ per year

Linear Collider Concepts

- International Linear Collider ILC
 - superconducting acceleration
 - 31.5 MeV/m, 1.3 GHz
 - advanced design (c.f. XFEL)
 - 500 GeV (→ 1TeV)
 - Luminsosity: 2 x 10³⁴ cm⁻² s⁻¹
- Compact Linear Collider CLIC
 - normalconducting acceleration
 - 100 MeV/m, 12 GHz
 - two-beam acceleration principle
 - up to several TeV
 - still in fundamental R&D phase

- Summary:
 - ILC ready to go ahead, but limited in energy reach (≤ 1 TeV)
 - CLIC in very early state, but may pave the way for higher energy ⁶

The International Linear Collider

- Electron-positron collider
 - centre-of-mass energy up to 1 TeV centre-of-mass energy
 - Iuminosities > 10³⁴/cm²/s
- Designed in a global effort
- Accelerator technology: supra-conducting RF cavities
- Elements of a linear collider:

The International Linear Collider

- International organisation:
 - Global Design Effort (GDE), started in 2005
 - Chair: Barry Barish representatives from Americas, Asia and Europe all major laboratories and many people contributing

The International Linear Collider

- 2006: Baseline Configuration Document
- 2007: <u>Reference Design Report</u>
- Layout of the machine:

- 2 × 250 GeV
 - upgradable to $2 \times 500 \text{ GeV}$
- I interaction region
- 2 detectors (push-pull)
- 14 mrad crossing angle

- Cost estimate:
 - 4.87 G\$ shared components + 1.78 G\$ site-dependent = 6.65 G\$
 - + 13000 person years

- Quest for the highest possible accelerator gradient
- ILC goal: 35 MV/m
- Huge progress over the last 15 years
- 25-fold improvement in perfomance/cost
- Major impact on next generation light sources:
 - XFEL designed for ≥ 25 MV/m 10% prototype for ILC
- Recall: LEP II used 7 MV/m

FLASH: Prototype for XFEL and ILC

- I GeV electron LINAC based on SCRF
- used for ILC studies and as light source (free electron laser)

Challenges

Getting to 35 MV/m:

Acceleration gradient goal:

- 35 MV/m in 9-cell cavities with production yield >80%
- 50 MV/m have been reached with single cavities
- Mass production reliability is the key problem

Challenges

Luminostity:

$$L = \frac{n_{\rm b} N_{\rm e}^2 f_{\rm rep}}{4\pi \,\sigma_x^* \sigma_y^*} \times H_D$$

- $n_{\rm b}$ number of bunches per pulse
- $N_{\rm e}$ number of electrons (positrons) per bunch
- $f_{\rm rep}$ pulse repetition frequency
- H_D disruption enhancement factor (≈ 2)
- $\sigma_{x(y)}^*$ beam dimensions at interaction point

make beams as small as possible at IP 6 nm × 600 nm

н Д тірон

Challenges

Beamstrahlung

 Energy loss in collision due to Beamstrahlung:

$$\delta_{BS} = \frac{\Delta E}{E} = \frac{E_{CM}}{\sigma_Z} \left(\frac{N}{\sigma_x + \sigma_y}\right)^2$$

- But: $\mathcal{L} \sim 1/\sigma_x \sigma_y \Rightarrow$ choose flat beams
- 1.5 % energy loss on average
- pprox 100 000 $\gamma\gamma$ pairs per BX!
- Intense backgrouns in the forward direction, need high B if field to control e⁺e⁻ pairs = occ

SM Higgs Branching Ratio

 10^{1}

 10^{-2}

10

- ILC will complement LHC discoveries by precision measurements
- Here just two examples:
- 1) There is a Higgs, observed at the LHC
 - e⁺e⁻ experiments can detect Higgs bosons without assumption on decay properties Higgs-Strahlungs process (à la LEP)
 - identify Higgs events in e⁺e[−] → ZH from Z → µµ decay
 - count Higgs decay products to measure Higgs BRs
 - and hence (Yukawa)-couplings

 Z^*

e

110

100

120

130

140

150

160

M_H(GeV)

ILC Physics Motivation

 Measure Higgs self-couplings e⁺e⁻ → ZHH to establish Higgs potential

Note: small signal above large QCD background

- 2) There is NO Higgs (definite answer from LHC!)
 - something else must prevent e.g. WW scattering from violating unitarity at O(1 TeV)
 - strong electroweak symmetry breaking?
 → study e⁺ e⁻ → WWvv, Wzev and ZZee events

16

- need to select and distinguish W and Z bosons in their hadronic decays!
 BR (W/Z → hadrons) = 68% / 70%
- Many other physics cases: SM, SUSY, new phenomena, ...

Need ultimate detector performance to meet the ILC physics case

- Vertex detector:
 - e.g. distinguish c- from b-quarks
 - goal impact parameter resolution
 - $\sigma_{r\phi} \approx \sigma_z \approx 5 \oplus 10/(p \sin \Theta^{3/2}) \ \mu m$ 3 times better than SLD
 - small, low mass pixel detectors, various technologies under study O(20×20 μm²)
- Tracking:
 - superb momentum resolution to select clean Higgs samples
 - ideally limited only by Γ_Z
 - $\rightarrow \Delta(1/p_T) = 5 \cdot 10^{-5} / \text{GeV}$ (whole tracking system) 3 times better than CMS

Options considered:

- Large silicon trackers (à la ATLAS/CMS)
- Time Projection Chamber with ≈ 100 µm point resolution (complemented by Si–strip devices)

Impact on Detector Design

 Calorimeter: distinguish W- and Z-bosons in their hadronic decays
 → 30%/√E jet resolution!

2 times better than ZEUS

• WW/ZZ \rightarrow 4 jets:

 \rightarrow Particle Flow or Dual Readout calorimeter

Detector Challenges at the ILC

- Bunch timing:
 - 5 trains per second
 - 2820 bunches per train separated by 307 ns
 - no trigger
 - power pulsing
 - readout speed
- 14 mrad crossing angle
- Background:
 - small bunches
 - create beamstrahlung
 → pairs

backgound not as severe as at LHC but much more relevant than at LEP

19

Four detector concepts are being investigated

- <u>GLD (Global Large Detector)</u> Merging into one concept:
- LDC (Large Detector Concept)
 (ILD) International Large Detector
- SiD (Silicon Detector)
- 4th concept
- Summer 2006: Detector Outline Documents (DOD) evolving documents, detailed description
- Summer 2007: Reference Design Reports (RDR) comprehensive detector descriptions, along with machine RDR

Prepared by international study groups

• GLD

■ LDC

- TPC tracking large radius
- particle flow calorimeter
- 3 Tesla solenoid

- TPC tracking

smaller radius

- 4 Tesla solenoid

- scint. fibre µ detector

- SiD
 - silicon tracking
 - smaller radius
 - high field solenoid (5 Tesla)
 - scint. fibre / RPC μ detector
- Silicon tracker

- high field
- but smaller volume

2.25

2 1.75

1.5

1.25 1 0.75

0.5 0.25

0

4.5 4

3.5 3 2.5

2

1.5 1

0.5 0

- 4th concept
 - TPC
 - multiple readout calorimeter
 - iron-free magnet, dual solenoid
 - muon spectrometer (drift tubes)
- Dual solenoid
 - iron return yoke replaced by second barrel coil and endcap coils

- **• R&D** efforts for key detector elements
- Overlap with detector concepts:

	GLD	LDC	SID	4th concept	Detector R&D collaborations
Vertex	X	X	X	X	LCFI
Tracking					
- TPC	Χ	X		X	LCTPC
- Silicon	*	*	X	*	SILC
Calorimetry:					
- Particle Flow	Χ	X	X		CALICE
- Multiple Readout				X	
- Forward region	Χ	X	X	X	FCAL

* silicon forward and auxiliary tracking also relevant for other concepts

Vertex Detector

- Key issuses:
 - measure impact parameter for each track
 - space point resolution < 5 μm
 - smallest possible inner radius $r_i \approx 15 \text{ mm}$
 - transparency: ≈ 0.1% X₀ per layer
 = 100 µm of silicon
 - stand alone tracking capability
 - full coverage |cos Θ| < 0.98</p>
 - modest power consumption < 100 W</p>
- Five layers of pixel detectors plus forward disks
 - pixel size O(20×20 μm²)
 - 10⁹ channels
- Note: wrt. LHC pixel detectors
 - 1/5 r_i
 - 1/30 pixel size
 - 1/30 thickness

- Critical issue is readout speed:
- Inner layer can afford O(1) hit per mm² (pattern recognition)
 - once per bunch = 300 ns per frame too fast
 - once per train $\approx 100 \text{ hits/mm}^2$ too slow
 - 20 times per train ≈ 5 hits/mm²
 50 μs per frame of 10⁹ pixels!

might work

- → readout during bunch train (20 times) or store data on chip and readout in between trains e.g. ISIS: In-situ Storage Image Sensor
- Many different (sensor)-technologies under study CPCCD, MAPS, DEPFET, CAPS/FAPS, SOI/3-D, SCCD, FPCCD, Chronopixel, ISIS, ...
 → Linear Collider Flavour Identification (LCFI) R&D collaboration
- Below a few examples
- Note: many R&D issues independent of Si-technology (mechanics, cooling, ...)

- CCD
 - create signal in 20 µm active layer
 - etching of bulk material to keep total thickness $\leq 60 \ \mu m$
 - Iow power consumption
 - but very slow
- \rightarrow apply column parallel (CP) readout
 - Second generation CP CCD designed to reach 50 MHz operation

MAPS and DEPFET

- CMOS Monolithic Active Pixel detectors
 - standard CMOS wafer integrating all functions
 - no bonding between sensor and electronics
 - e.g. Mimosa chip

- DEPFET: DEPleted Field Effect Transistor
 - fully depleted sensor with integrated pre-amplifier
 - Iow power and low noise

Silicon Tracking

0.08

0.04

- The SiD tracker:
 - 5 barrel layers
 - $r_i = 20 \text{ cm}$

$$r_0 = 125 \text{ cm}$$

- 10 cm segmentation in z short sensors
- measure phi only
- endcap disks
 - 5 double disk per side
 - measure r and phi
- critical issue:
 - material budget (support, cooling, readout)
 - goal: 0.8% X₀ per layer

Theta

+ main tracker

beam pipe

TPC Tracking

Time Projection Chamber in a solenoid field

E||B: drifting electrons curl around B field lines: limited spread.

Time Projection Chamber

- GLD, LDC and 4th: high resolution TPC as main tracker ■ 3 – 4 m diameter • \approx 4.5 m length Iow mass field cage ■ 3%X₀ barrel ■ < 30% X₀ endcap • \approx 200 points/track • \approx 100 µm single point res. $\rightarrow \Delta(1/p_{\rm T}) = 10^{-4} / {\rm GeV}$ (10 times better than LEP!)
- Complemented by Forward Tracking
 - endcap between TPC and ECAL
 - Si strip, straw tube, GEM-based, ... are considered
- TPC development performed in LCTPC collaboration

Time Projection Chamber

- New concept for gas amplication at end flanges: Replace proportional wires by Micro Pattern Gas Detectors (MPGD)
- GEM or MicroMegas
 - finer dimensions
 - two-dimensional symmetry
 - \rightarrow no E×B effects
 - only fast electron signal
 - Intrinsic suppression of ion backdrift

 Principle of MPGD based TPC established many small scale prototype experiments over the last ≈ 5 years

- cosmics, testbeam
- magnetic field
- under construction for experiments (MICE, T2K)

Single point resolution O(100 µm) established in

- small scale prototypes
- high magnetic fields

Time Projection Chamber

- Low mass fieldcage
 - large prototype under construction
 - using composite material

- Electronics
 - few 10⁶ channels on endplate (ILD)
 - Iow power to avoid cooling
 - two development paths:
 - FADC based on ALICE ALTRO chip
 - and TDC chips

- TPC
 - 200 space points (3-dim) → continuous tracking, pattern recognition
 - Iow mass easy to achieve (barrel)
- Silicon tracking
 - better single point resolution
 - fast detector (bunch identification)

Silicon TPC Readout

- Combine MPGD with pixel readout chips
- 2-d readout with
 - Medipix2 0.25 µm CMOS
 - 256×256 pixel
 - 55 \times 55 μ m²

(Micromegas)

- Medipix (2-d) \rightarrow TimePix (3-d)
- 50 150 MHz clock to all pixel
- Ist version under test
- Will eventually lead to
 - TPC diagnostic module
 - cluster counting to improve dE/dx

TimePix layout

TimePix + µMegas

- The paradigm of Particle Flow Algorithm (PFA) for optimum jet energy resolution:
 - try to reconstruct every particle
 - measure charged particles in tracker
 - measure photons in ECAL
 - measure neutral hadrons in ECAL+HCAL
 - use tracker + calorimeters to tell charged from neutral

- average visible energy in a jet
 COP(abaved particles
 - $\approx 60\%$ charged particles
 - $\approx 30\%$ photons
 - $\approx 10\%$ neutral hadrons

particles in jet	fraction of energy in jet	detector	single particle resolution	jet energy resolution
charged particles	60 %	tracker	$rac{\sigma_{p_l}}{p_t}\sim 0.01\%\cdot p_t$	negligible
photons	30 %	ECAL	$\frac{\sigma_E}{E}\sim 15\%/\sqrt{E}$	$\sim 5\%/\sqrt{E_{jet}}$
neutral hadrons	10 %	HCAL+ECAL	$\frac{\sigma_E}{E}\sim 45\%/\sqrt{E}$	$\sim 15\%/\sqrt{E_{jet}}$

Jet resolution

 $\boldsymbol{\sigma} = \boldsymbol{\sigma}_{charged} \oplus \boldsymbol{\sigma}_{photons} \oplus \boldsymbol{\sigma}_{neutral} \oplus \boldsymbol{\sigma}_{confusion}$

- confusion term arises from misassignment, double counting, overlapping clusters, ...
- minimizing confusion term requires highly granular calorimeter both ECAL and HCAL
 38

Particle flow simulation

idea: reconstruct each particle separately: tracks, γ , n, K_{L}^{0} , μ

reconstructed

generated

- CALICE collaboration (Calorimeter for the Linear Collider Experiment)
 > 30 institutes from > 10 countries
 - performs R&D effort to validate the concept and design calorimeters for ILC experiments

- GLD, LDC, SID concepts based on PFA calorimeters
- ECAL:
 - SiW calorimeter
 - **23** X₀ depth
 - 0.6 X₀ 1.2 X₀ long. segmentation
 - 5×5 mm² cells
 - electronics integrated in detector
- Alternative: W + Scintillating strips (GLD)

• HCAL:

2 options under consideration

- Analogue Scintillator Tile calorimeter
 - moderately segmented 3×3 cm²
 - use SiPM for photo detection

- Gaseous Digital HCAL
 - finer segmentation 1×1 cm²
 - binary cell readout
 - based on RPC, GEM or µMegas detectors

Calorimeter

• CALICE Testbeam at CERN (2006/07)

HCAL 100 \times 100 cm 2

scint.tiles of 3×3, 6×6, 12×12 cm² (216 tiles per layer)

TCMT 100×100 cm² scint.strips X or Y of 5×100 cm²

(20 strips per layer)

Tail Catcher - Muon Tracker

TCMT

ECAL

Calorimeter

• CALICE Testbeam at CERN (2006/07)

π^- 30 GeV

ECAL threshold = 0.5 mip HCAL threshold = 0.5 mip TCMT threshold = 0.7 mip

CALICE prototype now at FNAL

Calorimeter

Simulation of an ILC event

- 4th concept
 - calorimetry based on dual/triple readout approach
 - complementary measurements of showers reduce fluctuations
- Fluctuations of local energy deposits
- Fluctuations in electromagnetic fraction of shower energy
- Fine spatial sampling with SciFi every 2 mm
- clear fibres measure only EM component by Cerenkov light of electrons (E_{th} = 0.25 MeV)
- like SPACAL (H1)
- like HF (CMS)

- Dual Readout Module (DREAM) in testbeam at CERN
- Binding energy losses from nuclear break-up
- try to measure MeV neutron triple readout component of shower (history or Li/B loaded fibres)

• DREAM testbeam:

- measure each shower twice

200 GeV π^- beam at CERN

- Forward calorimeters needed
 - LumCal: precise luminosity measurement precision < 10⁻³, i.e. comparable to LEP or better
 - BeamCal: beam diagnostics & luminosity optimisation
- Detector technology: tungsten/sensor sandwich
- Example: LDC design for zero cross angle to be adapted for 14 mrad ILC design

BeamCal

- Challenges:
 - ≈ 15000 e⁺e⁻ pairs per BX in MeV range, extending to GeV
 - total deposit O(10 TeV)/BX
 - ≈ 10 MGy yearly rad. dose
 - identification of single high energy electrons to veto two-photon bkgd.
- Requires:
 - rad. hard sensors (diamond)
 - high linearity & dynamic range
 - fast readout (307 ns BX interval)
 - compactness and granularity

Electron ID efficiency:

The ILC Physics Case

SM Higgs Production at the ILC

Dominant production mechanisms: Higgsstrahlung and WW-fusion

.)

Higgs

 Model independent Higgs measurement

Higgs Couplings

- Measuring the couplings of the Higgs to massive particle
- Check coupling-mass relation
 - The smoking gun!

Higgs Spin

- Higgs would be the first fundamental scalar
- Need to confirm its spin
 - Threshold scan
- Softer turn-on for non-zero spin

Other Higgs Quantum Numbers

Higgs CP

- SM Higgs is CP even
- Confirm that, using spin correlations in $h \rightarrow \tau \tau$ decays

Verification of the Higgs Potential

Outline

Higgs Top Yukawa Coupling

- Want: absolute top Yukawa coupling
- Use combined information from ILC500 and LHC:
 - From LHC: rate of gg, qq → tt h; (h → bb, WW) is proportional to gtt × gbb/WW
 - From ILC500: $\mathcal{B}(h \rightarrow bb, WW)$ absulte measurement of g_{bb}, g_{WW}

• Or simply use ILC1000 . . .

Giga-Z

- Production of 10⁹ Z-Bosonen at $\sqrt{s} = 91$ GeV
 - 100-fold LEP I statistics
 - polarisation (as SLC)
 - 30 fb⁻¹ = 1/2 year

	LEP/SLC/Tevatron	Giga-Z
mz	91 187,5 ± 2,1 MeV	
$\sin^2 \vartheta_{\rm W}$	$0,23153 \pm 0,00016$	± 0,000013
A _b	0,899 ± 0,013	± 0,001
R _b	$0,21629 \pm 0,00066$	$\pm 0,00014$
m _W	80 392 ± 29 MeV	± 6 MeV

Mass of the Top Quark

Cross-checking with Precise top Mass Measurement

- Check g_{htt} vs. SM expectation
- Need: A very precise top quark mass measurement!
- Achieve this via threshold scan (50 MeV uncertainty)
- Width uncertainty pprox 3 %
- This is very important:
 - Presently the largest source of uncertainty of many SM calculations
 - Top quark might be an interesting window towards new physics, due to its extremely large mass (and grader provide the set of the

Supersymmetry

• If $m_{SUSY} < 2$ TeV \Rightarrow Discovery at the LHC

SUSY will be the New Standard Model

Scalar partners of fermions

 $\widetilde{\mathbf{e}}_{R}, \widetilde{\mathbf{e}}_{L}, \widetilde{\boldsymbol{\mu}}_{R}, \widetilde{\boldsymbol{\mu}}_{L}, \dots, \widetilde{\mathbf{t}}_{1}, \widetilde{\mathbf{t}}_{2}$

- Fermionic partners of bosons
 - $\widetilde{\chi}^{\pm}, \widetilde{\chi}_{1}^{0}, \cdots, \widetilde{\chi}_{4}^{0}, \widetilde{\mathrm{g}}$
- \geq 2 Higgs-doublets h, H, A, H[±]

Template mass spectra:

Advantages of an electron positron collider:

- tune cms energy: turn on SUSY particles one-by one
- mass measurement at the kinematic threshold
- polarisation of electrons and positrons separation of SUSY partners, e.g.:

$$e_L^+ e_L^- \to \widetilde{e}_L^+ \widetilde{e}_L^- \quad e_R^+ e_R^- \to \widetilde{e}_R^+ \widetilde{e}_R^- _{59}$$

The Cosmological Connection

- Could SUSY particles be the Cold Dark Matter?
- Astrophysics experiments measure just densities
- ILC could close the loop

Gravity

- Why is gravity so weak?
- If extra-dimensions would exist, gravitons could vanish there
- Real graviton emission should be measurable
 - single photon plus missing energy in the detector

- ILC: 500 → 1000 GeV Linear Collider next large collider project
- Ideally complements LHC discoveries by precision measurements
- Requires detectors with unprecedented performances
 - challenges different than at the LHC
- 4 (now 3) detector concepts under development
- R&D on detector technologies
 - candidate technologies
 - identified & verified in small scale experiments
- Many questions still to be answered
- Need to increase efforts to have ILC and two detectors ready next decade

